Skip to main content

Is Trophic Factor Gene Disruption a “Knockout” Model for Parkinson’s Disease?

  • Chapter
Central Nervous System Diseases

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

Parkinson’s disease is a debilitating and progressive disease of the extrapyramidal motor system that occurs due to the degeneration of dopaminergic (DAergic) neurons in the ventral mesencephalic (VM) nucleus substantia nigra (1). Despite numerous hypotheses and continued speculation, the triggering mechanisms for this degeneration of the DA neurons remain unknown. Recent studies have suggested that mitochondrial oxidative dysfunction may cause premature cell death and may be linked to accelerated apoptosis, excessive free and toxic radicals, deficient neurotrophic factors, or some combination thereof (2–6). It has, for example, been shown that certain substances can give rise to significant apoptotic changes in these neurons, such as levodopa (7), DA-melanin (8), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 9), hypoischemia (10), as well as axonal transection (11,12). The standard therapeutic intervention to date is the administration of the DA precursor levo-Dopa, or L-Dopa (13,14). However, with the progression of the disease this drug is less effective, and continued administration also leads to significant negative side effects such as hallucinations and hyperkinesia (1,13). Therefore, much research effort has been put forth during recent years to develop alternative treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schneider, J. S. (1998) GM1 ganglioside and neurotrophic factors in the treatment of Parkinson’s disease. Neuroscience News 1, 10–16.

    CAS  Google Scholar 

  2. Fahn, S. and Cohen, G. (1992) The oxidant stress hypothesis in Parkinson’s disease: evidence supporting it. Ann. Neurol. 32, 804–812.

    Article  PubMed  CAS  Google Scholar 

  3. Mochizuki, H., Goto, K., Mori, H., and Mizuno, Y. (1996) Histochemical detection of apoptosis in Parkinson’s disease. J. Neurol. Sci. 137, 120–123.

    Article  PubMed  CAS  Google Scholar 

  4. Tompkins, M. M., Basgall, E. J., Zamrini, E., and Hill, W. D. (1997) Apoptotic-like changes in Lewy-body associated disorders and normal aging in substantia nigra neurons. Am. J. Pathol. 150, 119–131.

    PubMed  CAS  Google Scholar 

  5. Ruberg, M., Brugg, B., Prigent, A., Hirsch, E., Brice, A., and Agid, Y. (1997) Is differential regulation of mitochondrial transcripts in Parkinson’s disease related to apoptosis? J. Neurochem. 68, 2098–2110.

    Article  PubMed  CAS  Google Scholar 

  6. Kosel, S., Egensperger, R., von Eitzen, U., Mehraein, P., and Graeber, M. B. (1997) On the question of apoptosis in the Parkinsonian substantia nigra. Acta Neuropathol. 93, 105–108.

    Article  PubMed  CAS  Google Scholar 

  7. Ziv, I., Zilkha-Falb, R., Offen, D., Shirvan, A., Barzilai, A., and Melamed, E. (1997) Levodopa induces apoptosis in cultured neuronal cells —a possible accelerator of nigrostriatal degeneration in Parkinson’s disease? Move. Disord. 12, 17–23.

    Article  CAS  Google Scholar 

  8. Offen, D., Ziv, I., Barzilai, A., Gorodin, S., Glater, E., Hochman, A., and Melamed, E. (1997) Dopamine-melanin induces apoptosis in PC 12 cells: possible implications for the etiology of Parkinson’s disease. Neurochem. Int. 31, 207–216.

    Article  PubMed  CAS  Google Scholar 

  9. Tatton, N. A. and Kish, S. J. (1997) In situ detection of apoptotic nuclei in the substantia nigra compacta of MPTP-treated mice using terminal deoxynucelotidyl transferase labeling and acridine orange staining. Neuroscience 77, 1037–1048.

    Article  PubMed  CAS  Google Scholar 

  10. Oo, T. F., Henchcliffe, C., and Burke, R. E. (1995) Apoptosis in substantia nigra following developmental hypoxic-ischemic injury. Neuroscience 69, 893–901.

    Article  PubMed  CAS  Google Scholar 

  11. Venero, J., Revuelta, M., Cano, J., and Machado, A. (1997) Time course changes in the dopaminergic nigrostriatal system following transection of the medial forebrain bundle: detection of oxidatively modified proteins in substantia nigra. J. Neurochem. 68, 2458–2468.

    Article  PubMed  CAS  Google Scholar 

  12. Marti, M. J., James, C. J., Oo, T. F., Kelly, W. J., and Burke, R. E. (1997) Early developmental destruction of terminals in the striatal target induces apoptosis in dopamine neurons of the substantia nigra. J. Neuroscience 17, 2030–2039.

    CAS  Google Scholar 

  13. Koller, W. C. and Hubble, J. P. (1990) Levodopa therapy in Parkinson’s disease. Neurology 40 (Suppl.), 40–47.

    Article  PubMed  Google Scholar 

  14. Montgomery, E. B., Jr. (1992) Pharmacokinetics and pharmacodynamics of levodopa. Neurology 42, 17–22.

    PubMed  Google Scholar 

  15. Date, I., Notter, M., Felten, S., and Felten, D. (1990) MPTP-treated young mice but not aging mice show partial recovery of the nigrostriatal dopiminergic system by stereotaxic injection of acidic fibroblast growth factor (aFGF). Brain Res. 526, 156–160.

    Article  PubMed  CAS  Google Scholar 

  16. Beck, K. D., Knusel, B., and Hefti, F. (1993) The nature of trophic action of brain-derived neurotrophic factor, des(1–3)-insulin-like growth factor-1, and basic fibroblast growth factor on mesencephalic DAergic neurons developing in culture. Neuroscience 52, 855–866.

    Article  PubMed  CAS  Google Scholar 

  17. Hyman, C., Hofer, M., Barde, Y-A., Juhasz, M., Jancoupolous, G., Squinto, S., and Lindsay, R. (1991) BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350, 230–232.

    Article  PubMed  CAS  Google Scholar 

  18. Knusel, B., Winslow, J., Rosenthal, A., Burton, L., Seid, B., Nikolicks, K., and Hefti, F. (1991) Promotion of central cholinergic and dopaminergic neuron differentiation by brain-derived neurotrophic factor but not neurotrophin-3. Proc. Natl. Acad. Sci. USA 88, 961–965.

    Article  PubMed  CAS  Google Scholar 

  19. Knusel, B., Michel, P. P., Schwaber, J. S., and Hefti, F. (1990) Selective and non-selective stimulation of central cholinergic and dopaminergic development in vitro by nerve growth factor, basic fibroblast growth factor, epidermal growth factor, insulin and the insulin-like growth factors I and II. J. Neurosci. 10, 558–570.

    PubMed  CAS  Google Scholar 

  20. Nikkah, G., Odin, P., Smits, A., Tingström, A., Ohtberg, A., Brundin, P., Funa, K., and Lindvall, O. Platelet-derived growth factor promotes survival of rat and human mesencephalic dopamine neurons in culture. Exp. Brain Res. 92, 516–523.

    Google Scholar 

  21. Giacobini, M. M. J., Almstrom, S., Funa, K., and Olson, L. (1993) Differential effects of PDGF isoforms on dopamine neurons in vivo: AA enhances formation BB supports cell survival. Neuroscience 57, 923–929.

    Article  PubMed  CAS  Google Scholar 

  22. Magal, E., Burnham, P., Varon, S., and Louis, J-C. (1993) Convergent regulation by ciliary neurotrophic factor and dopamine of tyrosine hydroxylase expression in cultures of rat substantia nigra. Neuroscience 52, 867–881.

    Article  PubMed  CAS  Google Scholar 

  23. Alexi, T. and Hefti, F. (1993) Trophic actions of transforming growth factor alpha on mesencephalic dopaminergic neurons in culture. Neuroscience 55, 903–918.

    Article  PubMed  CAS  Google Scholar 

  24. Lin, L. F., Doherty, D. H., Lile, J. D., Bektesh, S., and Collins, F. (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260, 1130–1132.

    Article  PubMed  CAS  Google Scholar 

  25. Hoffer, B. J., Hoffman, A. F., Bowenkamp, K., Huettl, P., Hudson, J., Martin, D., Lin, L.-F., and Gerhardt, G. A. (1994) Glial cell-line derived neurotrophic factor reverses toxininduced injury to midbrain dopaminergic neurons in vivo. Neurosci. Lett. 182, 107–111.

    Article  PubMed  CAS  Google Scholar 

  26. Hudson, J., Granholm, A-Ch., Gerhardt, G. A., Henry, M. A., Hoffman, A., Biddle, P., Leela, N. S., Mackerlova, L., Lile, J. D., Collins, F., and Hoffer, B. J. (1995) Glial cell linederived neurotrophic factor augments dopaminergic circuits in vivo. Brain Res. Bull. 36, 425–432.

    Article  CAS  Google Scholar 

  27. Bowenkamp, K. E., Hoffman, A. F., Gerhardt, G. A., Henry, M. A., Biddle, P. T., Hoffer, B. J., and Granholm, A. C. H. (1995) Glial cell line-derived neurotrophic factor supports survival of injured midbrain dopaminergic neurons. J. Comp. Neurol. 355, 479–489.

    Article  PubMed  CAS  Google Scholar 

  28. Tomac, A., Lindquist, E., Lin, L-F., Orgen, S. O., Young, D., Hoffer, B. J., and Olson, L. (1995) Protection and repair of the nigrostriatal DAergic system by GDNF. Nature (Lond.) 373, 335–339.

    Article  CAS  Google Scholar 

  29. Sauer, H., Rosenblad, C., and Björklund, A. (1995) Glial cell line-derived neurotrophic factor but not transforming growth factor beta 3 prevents delayed degeneration of nigral dopaminergic neurons following striatal 6-hydroxy dopamine lesion. Proc. Natl. Acad. Sci. USA 92, 8935–8939.

    Article  PubMed  CAS  Google Scholar 

  30. Lindner, M. D., Winn, S. R., Baetge, E. E., Hammang, J. P., Gentile, F. T., Doherty, E., McDermot, P. E., Frydel, B., Ullman, M. D., and Schallert, T. (1995) Implantation of encapsulated catecholamine and GDNF-producing cells in rats with unilateral dopamine depletions and Parkinsonian symptoms. Exp. Neurol. 132, 62–76.

    Article  PubMed  CAS  Google Scholar 

  31. Gash, D. M., Zhang, Z., Ovadia, A., Cass, W. A., Yi, A., Simmerman, L., Russell, D., Martin, D., Lapchak, P. A., Collins, F., Hoffer, B. J., and Gerhardt, G. A. Functional recovery in Parkinsonian monkeys treated with GDNF. Nature 380, 252–255.

    Google Scholar 

  32. Granholm, A-Ch., Mott, J. L., Eken, S., van Horne, C., Bowenkamp, K., Hoffer, B. J., Henry, S., and Gerhardt, G. A. (1997b) Glial cell line-derived neurotrophic factor improves survival of ventral mesencephalic grafts to the 6-OHDA lesioned striatum. Exp. Brain Res. 116, 29–38.

    Article  PubMed  CAS  Google Scholar 

  33. Sinclair, S. R., Clive, C. A., Svendsen, N., Torres, E. M., Fawcett, J. W., and Dunnett, S. B. (1996) GDNF enhances dopaminergic cell survival and fiber outgrowth in embryonic nigral grafts. NeuroReport 7, 2547–2552.

    Article  PubMed  CAS  Google Scholar 

  34. Pichel, J. G., Shen, L., Sheng, H. Z., Drago, J., Grinberg, A., Lee, E. J., Ping Huang, S., Saarma, M., Hoffer, B. J., Sariola, H., and Westphal H. (1996) Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382, 73–76.

    Article  PubMed  CAS  Google Scholar 

  35. Granholm, A.-Ch., Srivastava, N., Mott, J. L., Henry, S., Henry, M., Westphal, H., Pichel, J. P., Shen, L., and Hoffer, B. J. (1997) Morphological alterations in the peripheral and central nervous systems of mice lacking glial cell line-derived neurotrophic factor (GDNF): immunohistochemical studies. J. Neurosci. 17, 1168–1178.

    PubMed  CAS  Google Scholar 

  36. Buchman, V. L. and Davies, A. M. (1993) Different neurotrophins are expressed and act in a developmental sequence to promote the survival of embryonic sensory neurons. Development 118, 989–1001.

    PubMed  CAS  Google Scholar 

  37. Davies, A. M., Horton, A., Burton, L. E., Schmelzer, C., Vandlen, R., and Rosenthal, A. (1993) Neurotrophin 4/5 is a mammalian-specific survival factor for distinct populations of sensory neurons. J. Neurosci. 13, 4961–4967.

    PubMed  CAS  Google Scholar 

  38. Ernfors, P., Lee, K.-F., and Jaenisch, R. (1994) Mice lacking brain-derived neurotrophic factor develop with sensory deficits. Nature 368, 147–150.

    Article  PubMed  CAS  Google Scholar 

  39. Farinas, I., Jones, K. R., Backus, C., Wang, X.-Y., and Reichardt, L. F. (1994) Severe sensory and sympathetic deficits in mice lacking neurotrophin-3. Nature 369, 658–661.

    Article  PubMed  CAS  Google Scholar 

  40. Jones, K. R., Farinas, I., Backus, C., and Reichardt, L. F. (1994) Targeted disruption of the BDNF gene perturbs brain and sensory neuron development but not motor neuron development. Cell 76, 989–999.

    Article  PubMed  CAS  Google Scholar 

  41. Klein, R., Smeyne, R. J., Wurst, W., Long, L. K., Auerbach, B. A., Jouyner, A. L., and Barbacid, M. (1994) Targeted disruption of the trkB neurotrophin receptor gene results in nervous system lesions and neonatal death. Cell 75, 113–122.

    Google Scholar 

  42. Smeyne, R. J., Klein, R., Schnapp, A., Long, L. K., Bryant, S., Lewin, A., Lira, S. A., and Barbacid, M. (1994) Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene. Nature 368, 246–249.

    Article  PubMed  CAS  Google Scholar 

  43. Ziljstra, M., Li, E., Sajjadi, F., Subramani, S., and Jaenisch, R. (1989) Germ-line transmission of a disrupted beta 2-microglobulin gene produced by homologous recombination in embryonic stem cells. Nature 342, 435–438.

    Article  Google Scholar 

  44. Conover, J. C. and Yancopoulos, G. D. (1997) Neurotrophin regulation of the developing nervous system: Analyses of knockout mice. Rev. Neurosci. 8, 13–27.

    PubMed  CAS  Google Scholar 

  45. Erickson, J. T., Conover, J. C., Borday, V., Champagnat, J., Barbacid, M., Yancopoulos, G. D., and Katz, D. M. (1996) Transgenic mice lacking brain-derived neurotrophic factor exhibit visceral sensory neuron losses distinct from mice lacking NT-4 and display a severe developmental deficit in control of breathing. J. Neurosci. 1617, 5361–5371.

    Google Scholar 

  46. Crowley, C., Spencer, S. D., Nishimura, M. C., Chen, K. S., Pitts-Meek, S., Armanini, M. P., Ling, L. H., McMahon, S. B., Shelton, D. L., Levinson, A. D., and Phillips, H. S. (1994) Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell 76, 1001–1011.

    Article  PubMed  CAS  Google Scholar 

  47. Gu, H., Zhou, Y. R., and Rajewksy, K. (1993) Independent control of immunological switch regions evidenced through CreloxP-mediated gene targeting. Cell 73, 1155–1164.

    Article  PubMed  CAS  Google Scholar 

  48. Rossant, J. and Nagy, A. (1995) Genomic engineering: the new mouse genetics. Nat. Med. 16, 592–594.

    Article  Google Scholar 

  49. Davies, A. M. (1994) The role of neurotrophins in the developing nervous system. J. Neurobiol. 2511, 1334–1348.

    Article  Google Scholar 

  50. Ernfors, P., Wetmore, C., Olson, L., and Persson, H. (1990) Identification of cells in the rat brain and peripheral tissues expressing mRNA for members of the nerve growth factor family. Neuron 5, 511–526.

    Article  PubMed  CAS  Google Scholar 

  51. Mufson, E. J., Kroin, J. S., Liu, Y., Sobreviela, T., Penn, R. D., Miller, J. A., and Kordower, J. H. (1996) Intrastriatal and intraventricular infusion of brain-derived neurotrophic factor in the cynomologous monkey: distribution, retrograde transport and co-localization with substantia nigra dopamine-containing neurons. Neuroscience 71, 179–191.

    Article  PubMed  CAS  Google Scholar 

  52. Date, I. and Ohmoto, T. (1996) Neural transplantation and trophic factors in Parkinson’s disease: special reference to chromaffin cell grafting, NGF support from pretransected peripheral nerve and encapsulated dopamine secreting cell grafting. Exp. Neurol. 137, 333–344.

    Article  PubMed  CAS  Google Scholar 

  53. Götz, R., Koster, R., Winkler, C., Raulf, F., Lottspeich, F., Schartl, M., and Thoenen, H. (1994) Neurotrophin-6 is a new member of the nerve growth factor family. Nature 372, 266–269.

    Article  PubMed  Google Scholar 

  54. Bothwell, M. (1991) Keeping track of the neurotrophin receptors. Cell 65, 915–918.

    Article  PubMed  CAS  Google Scholar 

  55. Chao, M. V. (1992) Neurotrophin receptors: a window into neuronal differentiation. Neuron 9, 583–593.

    Article  PubMed  CAS  Google Scholar 

  56. Barde, Y.-A. (1994) Neurotrophic factors: an evolutionary perspective. J. Neurobiol. 2511, 1329–1333.

    Article  Google Scholar 

  57. Hyman, C., Juhasz, M., Jackson, C., Wrigth, P., Ip, N. Y., and Lindsay, R. M. (1994) Overlapping and distinct actions of the neurotrophins BDNF, NT-3, and NT4/5 on cultured dopaminergic and GABAergic neurons of the ventral mesencephalon. J. Neurosci. 14, 335–347.

    PubMed  CAS  Google Scholar 

  58. Birling, M.-C. and Price, J. (1995) Influence of growth factors on neuronal differentiation. Curr. Opin. Cell Biol. 7, 878–884.

    Article  PubMed  CAS  Google Scholar 

  59. Timmusk, T., Belluardo, N., Metsis, M., and Persson, H. (1993) Widespread and developmentally regulated expression of neurotrophin 4 mRNA in rat brain and peripheral tissues. Eur. J. Neurosci. 5, 605–613.

    Article  PubMed  CAS  Google Scholar 

  60. Conover, J. C., Erickson, J. T., Katz, D. M., Bianchi, L. M., Poueymirou, W. T., McClain, J., Pan, L., Helgren, M., Ip, N. Y., Boland, P., and Friedman, B. (1995) Neuronal deficits not involving motor neurons in mice lacking BDNF and/or NT4. Nature 375, 235–238.

    Article  PubMed  CAS  Google Scholar 

  61. Roberts, A. B. and Sporn, M. B. (1990) in Peptide Growth Factors and Their Receptors, (Sporn, M. B. and Roberts, A. B., eds., Springer Verlag, Heidelberg, pp. 419–472.

    Chapter  Google Scholar 

  62. Clarkson, E. D., Zawada, W. M., and Freed, C. R. (1995) GDNF reduces apoptosis in dopaminergic neurons in vitro. NeuroReport 7, 145–149.

    PubMed  CAS  Google Scholar 

  63. Clarkson, E. D., Zawada, W. M., and Freed, C. R. (1997) GDNF improves survival and reduces apoptosis in human embryonic dopaminergic neurons in vitro. Cell Tissue Res 289, 207–210.

    Article  PubMed  CAS  Google Scholar 

  64. Moore, M. W., Klein, R. D., Farinas, I., Sauer, H., Armanini, M., Phillips, H., Reichardt, L. F., Ryans, A. M., Carver-Moore, K., and Rosenthal, A. (1996) Renal and neuronal abnormalities in mice lacking GDNF. Nature 382, 76–79.

    Article  PubMed  CAS  Google Scholar 

  65. Sanchez, M. P., Silos-Santiago, I., Frisen, J., He, B., Lira, S. A., and Barbacid, M. (1996) Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382, 70–73.

    Article  PubMed  CAS  Google Scholar 

  66. Heuckeroth, R. O., Tourtelotte, L., Gavrilina, G., Johnson, E., and Milbrandt, J. (1997) Characterization of the neurturin knockout mouse. Abstr. Soc. Neurosci. 668, 1.

    Google Scholar 

  67. Arenas, E., Trupp, M., Akerud, P., and Ibanez, C. F. (1995) GDNF prevents degeneration and promotes the phenotype of brain noradrenergic neurons in vivo. Neuron 15, 1465–1473.

    Article  PubMed  CAS  Google Scholar 

  68. Mahalik, T. J., Hanh, W. E., Clayton, G. H., and Owens, G. P. (1994) Programmed cell death in developing grafts of fetal substantia nigra. Exp. Neurol. 129, 27–36.

    Article  PubMed  CAS  Google Scholar 

  69. Kaddis, F. G., Zawada, W. M., Schaack, J., and Freed, C. R. (1996) Conditioned medium from aged monkey fibroblasts stably expressing GDNF and BDNF improves survival of embryonic dopamine neurons in vitro. Cell Tiss. Res. 286, 241–247.

    Article  CAS  Google Scholar 

  70. Jing, S. Q., Wen, D. Z., Yu, Y. B., Holst, P. L., Luo, Y., Fang, M., Tamir, R., Antonio, L., Hu, Z., and Cupples, R. (1996) GDNF-induced activation of the Ret protein tyrosine kinase is mediated by GDNFRα, a novel receptor for GDNF. Cell 85, 1113–1124.

    Article  PubMed  CAS  Google Scholar 

  71. Treanor, J., Goodman, L., de Sauvage, F., Stone, D. M., Poulsen, K. T., Beck, K. D., Gray, C., Armanini, M. P., Pollock, R. A., and Hefti, F. (1996) Characterization of a multicomponent receptor for GDNF. Nature 382, 80–83.

    Article  PubMed  CAS  Google Scholar 

  72. Creedon, D. J., Tansey, M. G., Baloh, R. H., Osborne, P. A., Lampe, P. A., Fahrner, T. J., Heuckeroth, R. O., Milbrandt, J., and Johnson, E. M., Jr. (1997) Neurturin shares receptors and signal transduction pathways with glial cell line-derived neurotrophic factor in sympathetic neurons. Proc. Natl. Acad. Sci. USA 94, 7018–7023.

    Article  PubMed  CAS  Google Scholar 

  73. Milbrandt, J., de Sauvage, F. J., Fahrner, T. J., Baloh, R. H., Leitner, M. L., Tansey, M. G., Lampe, P. A., Heuckeroth, R. O., Kotzbauer, P. T., Simburger, K. S., Golden, J. P., Davies, J. A., Vejsada, R., Kato, A. C., Hynes, M., Sherman, D., Nishimura, M., Wang, L. C., Vandlen, R., Moffat, B., Klein, R. D., Poulsen, K., Gray, C., Garces, A., and Johnson, E. M., Jr. (1998) Persephin, a novel neurotrophic factor related to GDNF and neurturin. Neuron 20, 245–253.

    Article  PubMed  CAS  Google Scholar 

  74. Durbec, P. L., Larsson-Blomberg, L. B., Schuchardt, A., Costantini, F., and Pachnis, V. (1996) Common origin and developmental dependence of subsets of enteric and sympathetic neuroblasts. Development 122, 349–358.

    PubMed  CAS  Google Scholar 

  75. Cacalano, G., Farinas, I., Wang, L-C., Hagler, K., Forgie, A., Moore, M., Armanini, M., Phillips, H., Ryan, A. M., Reichardt, L. F., Hynes, M., Davies, A., and Rosenthal, A. (1998) GFRα1 is an essential receptor component for GDNF in the developing nervous system and kidney. Neuron 21, 53–62.

    Article  PubMed  CAS  Google Scholar 

  76. Enomoto, H., Araki, T., Jackman, A., Heuckeroth, R. O., Snider, W. D., Johnson, E. M., Jr., and Milbrandt, J. (1998) GFRα-1 deficient mice have deficits in the enteric nervous system and kidneys. Neuron 21, 317–324.

    Article  PubMed  CAS  Google Scholar 

  77. Saucedo-Cardenas, O., Kardon, R., Ediger, T. R., Lydon, J. P., and Conneely, O. M. (1997) Cloning and structural organization of the gene encoding the murine receptor transcription factor NURR1. Gene 187, 135–139.

    Article  PubMed  CAS  Google Scholar 

  78. Zetterström, R. H., Solomin, L., Jansson, L., Hoffer, B. J., Olson, L., and Perlmann, T. (1997) Dopamine neuron agenesis in Nurrl-deficient mice. Science 276, 248–250.

    Article  PubMed  Google Scholar 

  79. Zhou, Q-Y., Quaife, C. J., and Palmiter, R. D. (1995) Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are essential for mouse fetal development. Nature 374, 640–643.

    Article  PubMed  CAS  Google Scholar 

  80. Zhou, Q-Y. and Palmiter, R. D. (1995) DA-deficient mice are severely hypoactive, adipsic, and aphagic. Cell 83, 1197–1209.

    Article  PubMed  CAS  Google Scholar 

  81. Szczypka, M. S., Mandel, R. J., Donahue, B. A., Snyder, R. O., Leff, S. E., and Palmiter, R. D. (1999) Viral gene delivery selectively restores feeding and prevents lethality of dopamine-deficient mice. Neuron 22, 167–178.

    Article  PubMed  CAS  Google Scholar 

  82. Carter-Russell, H. R., Song, W-J., and Surmeier, D. J. (1995) Coordinated expression of dopamine receptors (D1–5) in single neostriatal neurons. Soc. Neurosci. Abstr. 21, 1425.

    Google Scholar 

  83. Boyer, J. J., Park, D. H., Joh, T. H., and Pickel, V. M. (1984) Chemical and structural analysis of the relation between cortical inputs and tyrosine hydroxylase-containing terminals in rat neostriatum. Brain Res. 302, 267–275.

    Article  Google Scholar 

  84. Freund, T. F., Powell, J., Smith, A. D. (1984) Tyrosine hydroxylase immunoreactive boutons in synaptic contact with identified striatonigral neurons with particular reference to dendritic spines. Neuroscience 13, 1189–1215.

    Article  PubMed  CAS  Google Scholar 

  85. Drago, J., Gerfen, C. R., Lachowicz, J. E., Steiner, H., Hollon, T. R., Love, P. E., Ooi, G. T., Grinberg, A., Lee, E. J., Huang, S. P., Bartlett, P. F., Jose, P. A., Sibley, D. R., and Westphal, H. (1994) Altered striatal function in a mutant mouse lacking D1A dopamine receptors. Proc. Natl. Acad. Sci. USA 91, 12,564–12,568.

    Article  CAS  Google Scholar 

  86. Xu, M., Moratalla, R., Gold, L. H., Hiroi, N., Koob, G. F., Graybiel, A. M., and Tonegawa, S. (1994) Dopamine D1 receptor mutant mice are deficient in striatal expression of dynorphin and in dopamine-mediated behavioral responses. Cell 79, 729–742.

    Article  PubMed  CAS  Google Scholar 

  87. Xu, M., Caine, S. B., Cooper, D. C., Gold, A. M., Graybiel, A. M., Hu, X. T., Koeltzow, T. E., Koob, G., Moratalla, R., White, F. J., and Tonegawa, S. (1995) Analysis of D3 and D1 receptor mutant mice. Soc. Neurosci. Abstr. 21, 363.

    Google Scholar 

  88. Balk, J. H., Picetti, R., Salardi, A., Thirlet, G., Dierich, A., Depaulls, A., LeMeur, M., and Borrelli, E. (1995) Parkinsonian-like locomotor impairments in mice lacking dopamine D2 receptors. Nature 377, 424–428.

    Article  CAS  Google Scholar 

  89. Accili, D., Fishbourne, C. S., Drago, J., Steiner, H., Lachowicz, J. E., Gerfen, C. R., Sibley, D. R., Westphal, H., Fuchs, S. (1996) A targeted mutation of the D3 dopamine receptor gene is associated with hyperactivity in mice. Proc. Natl. Acad. Sci. USA 93, 1945–1949.

    Article  PubMed  CAS  Google Scholar 

  90. Levine, M. S., Altemus, K. L., Cepeda, C., Cromwell, H. C., Crawford, C., Ariano, M. A., Drago, J., Sibley, D. R., and Westphal, H. (1996) Modulatory actions of dopamine on NMDA receptor-mediated responses are reduced in D 1 A-deficient mutant mice. J. Neurosci. 16, 5870–5882.

    PubMed  CAS  Google Scholar 

  91. Miner, L. L., Drago, J., Chamberlain, P. M., Donovan, D., and Uhl, G. R. (1995) Retained cocaine conditioned place reference in D1 receptor deficient mice. NeuroReport 6, 2314–2316.

    Article  PubMed  CAS  Google Scholar 

  92. Schuldiner, S., Shirvan, A., and Linial, M. (1995) Vesicular neurotransmitter transporters: from bacteria to humans. Physiol. Rev. 75, 369–392.

    PubMed  CAS  Google Scholar 

  93. Johnson, R. G., Jr. (1988) Accumulation of biological amines into chromaffin granules: a model for hormone and neurotransmitter transport. Physiol. Rev. 68, 232–307.

    PubMed  CAS  Google Scholar 

  94. Gonzalez, A. M., Walther, D., Pazos, A., and Uhl, J. (1994) Synaptic vesicular monoamine transporter expression: distribution and pharmacological profile. Mol. Brain Res. 22, 219–226.

    Article  PubMed  CAS  Google Scholar 

  95. Wang, Y. M., Gainetdinov, R. R., Fumagalli, F., Xu, F., Jones, S. R., Bock, C. B., Miller, G. W., Wightman, R. M., and Caron, M. G. (1997) Knockout of the vesicular monoamine transporter 2 gene results in neonatal death and supersensitivity to cocaine and amphetamine. Neuron 19, 1285–1296.

    Article  PubMed  CAS  Google Scholar 

  96. Hebert, M. A. and Gerhardt, G. A. (1998) Normal and drug-induced locomotor behavior in aging: comparison to evoked dopamine release and tissue content of F344 rats. Brain Res. 797, 42–54.

    Article  PubMed  CAS  Google Scholar 

  97. Gainetdinov, R. R., Fumagalli, F., Wang, Y. M., Jones, S. R., Levey, A. I., Miller, G. W., and Caron, M. G. (1998) Increased MPTP neurotoxicity in vesicular monoamine transporter 2 heterozygote knockout mice. J. Neurochem. 70, 1973–1978.

    Article  PubMed  CAS  Google Scholar 

  98. Jaber, M., Jones, S., Giros, B., and Caron, M. G. (1997) The dopamine transporter: a crucial component regulating dopamine transmission. Move. Disord. 12, 629–633.

    Article  CAS  Google Scholar 

  99. Uhl, G. R., Vandenbergh, D. J., and Miner, L. L. (1996) Knockout mice and dirty drugs. Drug Addict. Curr. Biol. 6, 935–936.

    Article  CAS  Google Scholar 

  100. Hoffer, B. J., Granholm, A-Ch., Stevens, J. O., and Olson, L. (1988) Catecholamine containing grafts in Parkinsonism: Past and present. Clin. Res. 36, 189–195.

    PubMed  CAS  Google Scholar 

  101. Lindvall, O., Rehncrona, S., Gustaavii, B., Brundin, P., Åstedt, B., Widner, H., Lindholm, T., Björklund, A., Leenders, K., and Rothwell, J. (1988) Fetal dopamine-rich mesencephalic grafts in Parkinson’s disease. Lancet 2 (8626–8627), 1483–1484.

    CAS  Google Scholar 

  102. Granholm, A-Ch., Strömberg, I., Gerhardt, G. A., Seiger, Å., Olson, L., and Hoffer, B.J. (1989) Transplantation in Parkinson’s Disease: experimental and Clinical Trials, in Neural Regeneration and Transplantation (Seil, F. J., ed.), Alan R. Liss, New York, pp. 227–237.

    Google Scholar 

  103. Freed, C. R., Breeze, R. E., Rosenberg, N. L., Schneck, S. A., Kriek, E., Qi, J-X., Lone, T., Zhang, Y-B., Snyder, J. A., Wells, T. H., Olson Ramig, L., Thompson, L., Maziotta, J. C., Huang, S. C., Grafton, S. T., Brooks, D., Sawle, G., Schroter, G., and Ansari, A. A. (1992) Survival of implanted dopamine cells and neurological improvement 12 to 46 months after transplantation for Parkinson’s disease. N. Engl. J. Med. 327, 1549–1555.

    Article  PubMed  CAS  Google Scholar 

  104. Hitchcock, E. (1995) Current trends in neural transplantation. Neurol. Res. 17, 33–37.

    PubMed  CAS  Google Scholar 

  105. Kordower, J. H., Freeman, T. B., Snow, B. J., Vingerhoets, F. J., Mufson, E. J., Sanberg, P. R., Hauser, R. A., Smith, D. A., Nauert, G. M., and Perl, D. P. (1995) Neuropathological evidence of graft survival and striatal reinnervation after transplantation of fetal mesencephalic tissue in a patient with Parkinson’s disease. N. Engl. J. Med. 332, 118–1124.

    Article  Google Scholar 

  106. Lopez-Lozano, J. J., Bravo, G. G., Brera, B., Dargallo, J., Salmean, J., Uria, J., Insausti, J., and Millan, I. (1995) Long-term follow up in 10 Parkinson’s disease patients subjected to fetal brain grafting into a cavity in the caudate nucleus: the Clinica Puerta de Hierro experience. CPH Neural Transplantation Group. Transplant Proc. 27, 1395–1400.

    PubMed  CAS  Google Scholar 

  107. Deacon, T., Schumacher, J., Dinsmore, J., Thomas, C., Palmer, P., Kott, S., Edge, A., Penney, D., Kassisieh, S., Dempsey, P., and Isacson, O. (1997) Histological evidence of fetal pig neural cell survival after transplantation into a patient with Parkinson’s disease. Nat. Med. 3, 350–353.

    Article  PubMed  CAS  Google Scholar 

  108. Rioux, L., Gaudin, D., Bui, L., Gregoire, L., DiPaolo, T., and Bedard P. (1991) Correlation of functional recovery after a 6-hydroxy dopamine lesion with survival of grafted fetal neurons and release of dopamine in the striatum of the rat. Neuroscience 40, 123–131.

    Article  PubMed  CAS  Google Scholar 

  109. Freeman, T. B., Sanberg, P. R., and Nauert, G. M. (1995) The influence of donor age on the survival of solid and suspension intraparenchymal human embryonic nigral grafts. Cell Transplant. 4, 141–154.

    Article  PubMed  CAS  Google Scholar 

  110. Rosenstein, J. M. (1995) Why do neural transplants survive? Exp. Neurol. 133, 1–6.

    Article  PubMed  CAS  Google Scholar 

  111. Duan, W.-M., Westerman, M., Flores, T., and Low, W. C. (1998) Xenotransplantation of fetal dopamine neurons: From MHC I and MHC II knockout mice to adult rats: enhancement of cell survival. Abstr. American Society for Neural Transplantation. Exp. Neurol. 153, 376.

    Google Scholar 

  112. Holtzman, D. M., Li, Y., DeArmnod, S. J., McKinley, M. P., Gage, F. H., Epstein, C. J., and Mobley, W. C. (1992) Mouse model of neurodegeneration: atrophy of basal forebrain cholinergic neurons in trisomy 16 transplants. Proc. Natl. Acad. Sci. USA 89, 1383–1387.

    Article  PubMed  CAS  Google Scholar 

  113. Coyle, J. T., Oster-Granite, M. L., Reeves, R. H., and Gearhart, J. D. (1988) Down syndrome, Alzheimer syndrome, and the trisomy 16 mouse. Trends Neurosci. 11, 390–394.

    Article  PubMed  CAS  Google Scholar 

  114. Holtzman, D. M., Santucci, D., Kilbridge, J., Chua-Couzens, J., Fontana, D. J., Daniels, S. E., Mohnson, R. M., Chen, K., Sun, Y., Carlson, E., Alleva, E., Epstein, C. J., and Mobley, W. C. (1996) Developmental abnormalities and age-related neurodegeneration in a mouse model of Downs syndrome. Proc. Natl. Acad. Sci. USA 93, 13,333–13,338.

    Article  CAS  Google Scholar 

  115. Fiedler, J. L., Epstein, C. J., Rapoport, S. I., Caviedes, R., and Caviedes, P. (1994) Regional alteration of cholinergic function in central neurons of trisomy 16 mouse fetuses, an animal model of human trisomy 21 (Down’s syndrome). Brain Res. 658, 27–32.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Granholm, AC., Hoffer, B. (2000). Is Trophic Factor Gene Disruption a “Knockout” Model for Parkinson’s Disease?. In: Emerich, D.F., Dean, R.L., Sanberg, P.R. (eds) Central Nervous System Diseases. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-691-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-691-1_13

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-152-3

  • Online ISBN: 978-1-59259-691-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics