Advertisement

Immune Adjuvants

  • Jory R. Baldridge
  • Susan Hand Zimmermann
  • Sally P. Mossman
Part of the Cancer Drug Discovery and Development book series (CDD&D)

Abstract

The success of cancer immunotherapy is dependent on the discovery of tumorassociated antigens (TAAs) for vaccine targets, but equally important is the need for effective delivery strategies and potent adjuvants to induce an appropriate immune response. Although there is evidence that many cancer patients do mount an immune response against their tumor, the affinity and frequency of responding T cells appears to be low. Additionally, the “natural” immune response to some cancers is a T helper 2 (Th2) response, whereas it appears that a Th1 inflammatory response, involving cytotoxic T lymphocytes (CTLs), may be necessary for effective antitumor immunity (1). Thus, the use of a potent Thl adjuvant may provide sufficient exogenous danger signals to help tip the balance in favor of generating a protective immune response.

Keywords

Cancer Vaccine Adjuvant Activity General Vaccine Immunotherapy Strategy Mycobacterial Cell Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tatsumi T, Kierstead LS, Ranieri E, Gesualdo L, Schena FP, Finke JH, et al. Disease-associated bias in T helper type 1 (Th1)/Th2 CD4(+) T cell responses against MAGE-6 in HLA-DRB10401(+) patients with renal cell carcinoma or melanoma. J Exp Med 2002; 196:619–628.PubMedCrossRefGoogle Scholar
  2. 2.
    Irvine KR, Rao JB, Rosenberg SA, Restifo NP. Cytokine enhancement of DNA immunization leads to effective treatment of established pulmonary metastases. J Immunol 1996; 156:238–245.PubMedGoogle Scholar
  3. 3.
    Kass E, Panicali DL, Mazzara G, Schlom J, Greiner JW. Granulocyte/macrophage-colony stimulating factor produced by recombinant avian poxviruses enriches the regional lymph nodes with antigenpresenting cells and acts as an immunoadjuvant. Cancer Res 2001; 61:206–214.PubMedGoogle Scholar
  4. 4.
    Vogel FR, Powell MF. A compendium of vaccine adjuvants and excipients. In: Powell MF, Newman MJ, eds. Vaccine design: the subunit and adjuvant approach. New York: Plenum, 1995:141–228.Google Scholar
  5. 5.
    Ramon G. Procedes pour acoitre la production des antitoxins. Ann Inst Pastuer Immunol 1926; 40:1–10.Google Scholar
  6. 6.
    Cox JC, Coutler AR. Adjuvants-a classification and review of their modes of action. Vaccine 1997; 15:248–256.PubMedCrossRefGoogle Scholar
  7. 7.
    Stoute JA, Slaoui M, Heppner DG, Momin P, Kester KE, Desmons P, et al. A preliminary evaluation of a recombinant circumsporozoite protein vaccine against plasmodium falciparum malaria. N Engl J Med 1997; 336:86–91.PubMedCrossRefGoogle Scholar
  8. 8.
    Nauts HC, Swift WE, Corley BL. Treatment of malignant tumors by bacterial toxins as developed by the late William B. Coley, M.D., reviewed in light of modern research. Cancer Res 1946; 6:205–216.PubMedGoogle Scholar
  9. 9.
    Hall SS. A Commotion in the blood. New York: Henry Holt, 1997.Google Scholar
  10. 10.
    Munoz J. Effects of bacteria and bacteria products on antibody response. In: Dixon FJ, Kunkel HG, eds. Advances in immunology. New York: Academic, 1964:397–440.Google Scholar
  11. 11.
    Johnson AG, Gaines S, Landy M. Studies of the O antigen of Salmonella typhosa V. Enhancement of antibody response to protein antigens by the purified lipopolysaccharide. J Exp Med 1956; 103: 225–246.PubMedCrossRefGoogle Scholar
  12. 12.
    Alexandroff AB, James K. Immunotherapy of bladder cancer. In: Stern PL, Beverley PLC, Carroll MW, eds. Cancer vaccines and immunotherapy. Cambridge, England: Cambridge University Press, 2000: 19–46.CrossRefGoogle Scholar
  13. 13.
    Hrouda D, Baban B, Dunsmuir WD, Kirby RS, Dalgleish AG. Immunotherapy of advanced prostate cancer: a phase I/II trial using Mycobacterium vaccae (SRL172). Br J Urol 1998; 82:568–573.PubMedCrossRefGoogle Scholar
  14. 14.
    O’Brien ME, Saini A, Smith IE, Webb A, Gregory K, Mendes R, et al. A randomized phase II study of 5RL172 (Mycobacterium vaccae) combined with chemotherapy in patients with advanced inoperable non-small-cell lung cancer and mesothelioma. Br J Cancer 2000; 83:853–857.PubMedCrossRefGoogle Scholar
  15. 15.
    Mendes R, O’Brien ME, Mitra A, Norton A, Gregory RK, Padhani AR, et al. Clinical and immunological assessment of Mycobacterium vaccae (5RL172) with chemotherapy in patients with malignant mesothelioma. Br J Cancer 2002; 86:336–341.PubMedCrossRefGoogle Scholar
  16. 16.
    Assersohn L, Souberbielle BE, O’Brien ME, Archer CD, Mendes R, Bass R, et al. A randomized pilot study of 5RL172 (Mycobacterium vaccae) in patients with small cell lung cancer (SCLC) treated with chemotherapy. Clin Oncol (R Coll Radiol) 2002; 14:23–27.CrossRefGoogle Scholar
  17. 17.
    Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol 2001; 1:135–145.PubMedCrossRefGoogle Scholar
  18. 18.
    Dupuis M, Denis-Mize K, LaBarbara A, Peters W, Charo IF, McDonald DM, et al. Immunization with the adjuvant MF59 induces macrophage trafficking and apoptosis. Eur J Immunol 2001; 31:2910–2918.PubMedCrossRefGoogle Scholar
  19. 19.
    Freund J, Casals J, Hosmer EP. Sensitisation and antibody formation after injection of tubercle bacilli and paraffin oil. Proc Soc Exp Biol Med 1937; 37:509–513.Google Scholar
  20. 20.
    Cormier JN, Salgaller ML, Prevette T, Barracchini KC, Rivoltini L, Restifo NP, et al. Enhancement of cellular immunity in melanoma patients immunized with a peptide from MART-1/Melan A. Cancer J Sci Am 1997; 3:37–44.PubMedGoogle Scholar
  21. 21.
    Rosenberg SA, Yang JC, Schwartzentruber DJ, Hwu P, Marincola FM, Topalian SL, et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med 1998; 4:321–327.PubMedCrossRefGoogle Scholar
  22. 22.
    Lee KH, Wang E, Nielsen MB, Wunderlich J, Migueles S, Connors M, et al. Increased vaccine-specific T cell frequency after peptide-based vaccination correlates with increased susceptibility to in vitro stimulation but does not lead to tumor regression. J Immunol 1999; 163:6292–6300.PubMedGoogle Scholar
  23. 23.
    Weber JS, Hua FL, Spears L, Marty V, Kuniyoshi C, Celis E. A phase I trial of an HLA-Al restricted MAGE-3 epitope peptide with incomplete Freund’ s adjuvant in patients with resected high-risk melanoma. J Immunother 1999; 22:431–440.PubMedCrossRefGoogle Scholar
  24. 24.
    Zaks TZ, Rosenberg SA. Immunization with a peptide epitope (p369–377) from HER-2/neu leads to peptide-specific cytotoxic T lymphocytes that fail to recognize HER-2/neu+ tumors. Cancer Res 1998; 58:4902–4908.PubMedGoogle Scholar
  25. 25.
    Weber J, Sondak VK, Scotland R, Phillip R, Wang F, Rubio V, et al. Granulocyte-macrophage-colonystimulating factor added to a multipeptide vaccine for resected Stage II melanoma. Cancer 2003; 97:186–200.PubMedCrossRefGoogle Scholar
  26. 26.
    Miconnet I, Koenig S, Speiser D, Krieg A, Guillaume P, Cerottini JC, et al. CpG are efficient adjuvants for specific CTL induction against tumor antigen-derived peptide. J Immunol 2002; 168:1212–1218.PubMedGoogle Scholar
  27. 27.
    Rosenberg SA, Yang JC, Schwartzentruber DJ, Hwu P, Marincola FM, Topalian SL, et al. Impact of cytokine administration on the generation of antitumor reactivity in patients with metastatic melanoma receiving a peptide vaccine. J Immunol 1999; 163:1690–1695.PubMedGoogle Scholar
  28. 28.
    Slingluff CL, Jr, Yamshchikov G, Neese P, Galavotti H, Eastham S, Engelhard VH, et al. Phase I trial of a melanoma vaccine with gp100(280–288) peptide and tetanus helper peptide in adjuvant: immunologic and clinical outcomes. Clin Cancer Res 2001; 7:3012–3024.PubMedGoogle Scholar
  29. 29.
  30. 30.
    Wang F, Bade E, Kuniyoshi C, Spears L, Jeffery G, Marty V, et al. Phase I trial of a MART-1 peptide vaccine with incomplete Freund’s adjuvant for resected high-risk melanoma. Clin Cancer Res 1999; 5:2756–2765.PubMedGoogle Scholar
  31. 31.
    Aucouturier J, Dupuis L, Ganne V. Adjuvants designed for veterinary and human vaccines. Vaccine 2001; 19:2666–2672.PubMedCrossRefGoogle Scholar
  32. 32.
    Toledo H, Baly A, Castro O, Resik S, Laferte J, Rob o F, et al. A phase I clinical trial of a multi-epitope polypeptide TAB9 combined with Montanide ISA 720 adjuvant in non-HIV-1 infected human volunteers. Vaccine 2001; 19:4328–4336.PubMedCrossRefGoogle Scholar
  33. 33.
    Lawrence GW, Saul A, Giddy AJ, Kemp R, Pye D. Phase I trial in humans of an oil-based adjuvant SEPPIC MONTANIDE ISA 720. Vaccine 1997; 15:176–178.PubMedCrossRefGoogle Scholar
  34. 34.
    Saul A, Lawrence G, Smillie A, Rzepczyk CM, Reed C, Taylor D, et al. Human phase I vaccine trials of 3 recombinant asexual stage malaria antigens with Montanide ISA720 adjuvant. Vaccine 1999; 17:3145–3159.PubMedCrossRefGoogle Scholar
  35. 35.
    Scalzo AA, Elliott SL, Cox J, Gardner J, Moss DJ, Suhrbier A. Induction of protective cytotoxic T cells to murine cytomegalovirus by using a nonapeptide and a human-compatible adjuvant (Montanide ISA 720). J Virol 1995; 69:1306–1309.PubMedGoogle Scholar
  36. 36.
    Zbar B, Rapp HJ, Ribi EE. Tumor suppression by cell walls of mycobacterium bovis attached to oil droplets. J Natl Cancer Inst 1972; 48:831–835.PubMedGoogle Scholar
  37. 37.
    Kahn JO, Sinangil F, Baenziger J, Murcar N, Wynne D, Coleman RL, et al. Clinical and immunologic responses to human immunodeficiency virus (HIV) type 15F2 gp120 subunit vaccine combined with MF59 adjuvant with or without muramyl tripeptide dipalmitoyl phosphatidylethanolamine in nonHIV-infected human volunteers. J Infect Dis 1994; 170:1288–1291.PubMedCrossRefGoogle Scholar
  38. 38.
    Langenberg AG, Burke RL, Adair SF, Sekulovich R, Tigges M, Dekker CL, et al. A recombinant glycoprotein vaccine for herpes simplex virus type 2: safety and immunogenicity. Ann Intern Med 1995; 122:889–898.PubMedGoogle Scholar
  39. 39.
    Podda A. The adjuvanted influenza vaccines with novel adjuvants: experience with the MF59adjuvanted vaccine. Vaccine 2001; 19:2673–2680.PubMedCrossRefGoogle Scholar
  40. 40.
    Zbar B, Ribi E, Rapp HJ. An experimental model for immunotherapy of cancer. Natl Cancer Inst Monogr 1973; 39:3–9.PubMedGoogle Scholar
  41. 41.
    Yamamura Y, Azuma I, Taniyama T, Ribi E, Zbar B. Suppression of tumor growth and regression of established tumor with oil-attached mycobacterial fractions. Gann 1974; 65:179–181.PubMedGoogle Scholar
  42. 42.
    Meyer TJ, Ribi EE, Azuma I, Zbar B. Biologically active components from mycobacterial cell walls. II. Suppression and regression of strain-2 guinea pig hepatoma. J Natl Cancer Inst 1974; 52:103–111.PubMedGoogle Scholar
  43. 43.
    Ribi EE, Meyer TJ, Azuma I, Zbar B. Mycobacterial cell wall components in tumor suppression and regression. Natl Cancer Inst Monogr 1973; 39:115–119.PubMedGoogle Scholar
  44. 44.
    Ribi EE, Granger DL, Milner KC, Strain SM. Tumor regression caused by endotoxins and mycobacterial fractions. J Natl Cancer Inst 1975; 55:1253–1257.PubMedGoogle Scholar
  45. 45.
    Ribi E, Parker R, Strain SM, Mizuno Y, Nowotny A, Von Eschen KB, et al. Peptides as requirement for immunotherapy of the guinea-pig line-10 tumor with endotoxins. Cancer Irnmunol Immunother 1979; 7:43–58.Google Scholar
  46. 46.
    Ulrich JT, Myers KR. Monophosphoryl lipid A as an adjuvant. Past experiences and new directions. In: Powell MF, Newman MJ, eds. Vaccine design: the subunit and adjuvant approach. New York: Plenum, 1995:495–524.Google Scholar
  47. 47.
    Poltorak A, He X, Smirnova I, Liu MY, van Huffel C, Du X, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in T1r4 gene. Science 1998; 282:2085–2088.PubMedCrossRefGoogle Scholar
  48. 48.
    Kaminski MS, Kitamura K, Maloney DG, Campbell MJ, Levy R. Importance of antibody isotype in monoclonal anti-idiotype therapy of a murine B cell lymphoma. A study of hybridoma class switch variants. J Immunol 1986; 136:1123–1130.PubMedGoogle Scholar
  49. 49.
    Baldridge JR, Yorgensen Y, Ward JR, Ulrich JT. Monophosphoryl lipid A enhances mucosal and systemic immunity to vaccine antigens following intranasal administration. Vaccine 2000; 18:2416–2425.PubMedCrossRefGoogle Scholar
  50. 50.
    Thoelen S, Van Damme P, Mathei C, Leroux-Roels G, Desombere I, Safary A, et al. Safety and immunogenicity of a hepatitis B vaccine formulated with a novel adjuvant system. Vaccine 1998; 16:708–714.PubMedCrossRefGoogle Scholar
  51. 51.
    Thoelen S, De Clercq N, Tomieporth N. A prophylactic hepatitis B vaccine with a novel adjuvant system. Vaccine 2001; 19:2400–2403.PubMedCrossRefGoogle Scholar
  52. 52.
    Stanberry LR, Spruance SL, Cunningham AL, Bernstein DI, Mindel A, Sacks S, et al. GlycoproteinD-adjuvant vaccine to prevent genital herpes. N Engl J Med 2002; 347:1652–1661.PubMedCrossRefGoogle Scholar
  53. 53.
    Vemacchio L, Bernstein H, Pelton S, Allen C, MacDonald K, Dunn J, et al. Effect of monophosphoryl lipid A (MPL((R)) on T-helper cells when administered as an adjuvant with pneumocococcal-CRM(197) conjugate vaccine in healthy toddlers. Vaccine 2002; 20:3658–3667.CrossRefGoogle Scholar
  54. 54.
    Drachenberg KJ, Wheeler AW, Stuebner P, Horak F. A well-tolerated grass pollen-specific allergy vaccine containing a novel adjuvant, monophosphoryl lipid A, reduces allergic symptoms after only four preseasonal injection. Allergy 2001; 56:498–505.PubMedCrossRefGoogle Scholar
  55. 55.
    Persing DH, Coler RN, Lacy MJ, Johnson DA, Baldridge JR, Hershberg RM, et al. Taking toll: lipid A mimetics as adjuvants and immunomodulators. Trends Microbiol 2002; 10:532–537.CrossRefGoogle Scholar
  56. 56.
    Perico ME, Mezzanzanica D, Luison E, Alberti P, Panza L, Russo G, et al. Development of a new vaccine formulation that enhances the immunogenicity of tumor-associated antigen CaMBr 1 . Cancer Immunol Immunother 2000; 49:296–304.PubMedCrossRefGoogle Scholar
  57. 57.
    Kim SK, Ragupathi G, Musselli C, Choi SJ, Park YS, Livingston PO. Comparison of the effect of different immunological adjuvants on the antibody and T-cell response to immunization with MUC1KLH and GD3-KLH conjugate cancer vaccines. Vaccine 1999; 18:597–603.PubMedCrossRefGoogle Scholar
  58. 58.
    Marchand M, Punt CJ, Aamdal S, Escudier B, Kruit WH, Keilholz U, et al. Immunisation of metastatic cancer patients with MAGE-3 protein combined with adjuvant SBAS-2: a clinical report. Eur J Cancer 2003; 39:70–77.PubMedCrossRefGoogle Scholar
  59. 59.
    Azuma I, Ribi EE, Meyer TJ, Zbar B. Biologically active components from mycobacterial cell walls. I. Isolation and composition of cell wall skeleton and component P3. J Natl Cancer Inst 1974; 52: 95–101.PubMedGoogle Scholar
  60. 60.
    Rudbach JA, Johnson DA, Ulrich JT. Ribi adjuvants: Chemistry, biology and utility in vaccines for human and veterinary medicine. In: Stewart-Tull DES, ed. The theory and practical application of adjuvants. New York: Wiley, 1995:287–313.Google Scholar
  61. 61.
    Means TK, Wang S, Lien E, Yoshimura A, Golenbock DT, Fenton MJ. Human Toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J Immunol 1999; 163:3920–3927.PubMedGoogle Scholar
  62. 62.
    Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 1999; 11:443–451.PubMedCrossRefGoogle Scholar
  63. 63.
    McLaughlin CA, Hargrave SL, Bickel WD, Ribi EE. Synergistic activity of components of mycobacteria and mutant Salmonella in causing regression of line-10 tumors in guinea pigs. Cancer Res 1979; 39:1766–1771.PubMedGoogle Scholar
  64. 64.
    Ribi E, Cantrell JL, Takayama K, Qureshi N, Peterson J, Ribi HO. Lipid A and immunotherapy. Rev Infect Dis 1984; 6:567–572.Google Scholar
  65. 65.
    Holmberg LA, Sandmaier BM. Theratope((R)) vaccine (STn-KLH). Expert Opin Biol Ther 2001; 1:881–891PubMedCrossRefGoogle Scholar
  66. 66.
    Sosman JA, Unger JM, Liu PY, Flaherty LE, Park MS, Kempf RA, et al. Adjuvant immunotherapy of resected, intermediate-thickness, node-negative melanoma with an allogeneic tumor vaccine: impact of HLA class I antigen expression on outcome. J Clin Oncol 2002; 20:2067–2075.PubMedCrossRefGoogle Scholar
  67. 67.
    Reddish MA, MacLean GD, Koganty RR, Kan-Mitchell J, Jones V, Mitchell MS, et al. Anti-MUC1 class I restricted CTLs in metastatic breast cancer patients immunized with a synthetic MUC1 peptide. Int J Cancer 1998; 76:817–823.PubMedCrossRefGoogle Scholar
  68. 68.
    Eton O, Kharkevitch DD, Gianan MA, Ross MI, Itoh K, Pride MW, et al. Active immunotherapy with ultraviolet B-irradiated autologous whole melanoma cells plus DETOX in patients with metastatic melanoma. Clin Cancer Res 1998; 4:619–627.PubMedGoogle Scholar
  69. 69.
    Holmberg LA, Oparin DV, Gooley T, Lilleby K, Bensinger W, Reddish MA, et al. Clinical outcome of breast and ovarian cancer patients treated with high-dose chemotherapy, autologous stem cell rescue and THERATOPE STn-KLH cancer vaccine. Bone Marrow Transplant 2000; 25:1233–1241.PubMedCrossRefGoogle Scholar
  70. 70.
    Mitchell MS, Kan-Mitchell J, Kempf RA, Harel W, Shau H, Lind S. Active specific immunotherapy for melanoma: phase I trial of allogeneic lysates and a novel adjuvant. Cancer Res 1988; 48:5883–5893.PubMedGoogle Scholar
  71. 71.
    Johnson DA, Sowell CG, Johnson CL, Livesay MT, Keegan DS, Rhodes MJ, et al. Synthesis and biological evaluation of a new class of vaccine adjuvants: aminoalkyl glucosaminide 4-phosphates (AGPs). Bioorg Med Chem Lett 1999; 9:2273–2278.PubMedCrossRefGoogle Scholar
  72. 72.
    Dupont J-C, Altclas J, Sigelchifer M, Von Eschen EB, Timmermans I, Wagener A. Efficacy and safety of AgB/RC529: a novel two dose adjuvant vaccine against hepatitis B. 2002; 42nd ICAAC, San Diego, CA (Abstract).Google Scholar
  73. 73.
    Tokunaga T, Yamamoto H, Shimada S, Abe H, Fukuda T, Fujisawa Y, et al. Antitumor activity of deoxyribonucleic acid fraction from Mycobacterium bovis BCG. I. Isolation, physicochemical characterization, and antitumor activity. J Natl Cancer Inst 1984: 72:955–962.PubMedGoogle Scholar
  74. 74.
    Yamamoto S, Kuramoto E, Shimada S, Tokunaga T. In vitro augmentation of natural killer cell activity and production of interferon-alpha/beta and -gamma with deoxyribonucleic acid fraction from Mycobacterium bovis BCG. Jpn J Cancer Res 1988; 79:866–873.PubMedCrossRefGoogle Scholar
  75. 75.
    Krieg AM, Yi AK, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 1995; 374:546–549.PubMedCrossRefGoogle Scholar
  76. 76.
    Hemmi H, Takeuchi Q, Kawai T, Kaisho T, Sato S, Sanjo H, et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000; 408:740–745.PubMedCrossRefGoogle Scholar
  77. 77.
    Jakob T, Walker PS, Krieg AM, Udey MC, Vogel JC. Activation of cutaneous dendritic cells by CpGcontaining oligodeoxynucleotides: a role for dendritic cells in the augmentation of Th 1 responses by immunostimulatory DNA. J Immunol 1998; 161:3042–3049.PubMedGoogle Scholar
  78. 78.
    Warren TL, Bhatia SK, Acosta AM, Dahle CE, Ratliff TL, Krieg AM, et al. APC stimulated by CpG oligodeoxynucleotide enhance activation of MHC class I-restricted T cells. J Immunol 2000; 165:6244–6251.PubMedGoogle Scholar
  79. 79.
    Hartmann G, Weiner GJ, Krieg AM. CpG DNA: a potent signal for growth, activation, and maturation of human dendritic cells. Proc Natl Acad Sci USA 1999; 96:9305–9310.PubMedCrossRefGoogle Scholar
  80. 80.
    Chu RS, Targoni OS, Krieg AM, Lehmann PV, Harding CV. CpG oligodeoxynucleotides act as adjuvants that switch on T helper 1 (Thl) immunity. J Exp Med 1997; 186:1623–1631.PubMedCrossRefGoogle Scholar
  81. 81.
    Davis HL, Weeratna R, Waldschmidt TJ, Tygrett L, Schorr J, Krieg AM, et al. CpG DNA is a potent enhancer of specific immunity in mice immunized with recombinant hepatitis B surface antigen. J Immunol 1998; 160:870–876.PubMedGoogle Scholar
  82. 82.
    Roman M, Martin-Orozco E, Goodman S, Nguyen MD, Sato Y, Ronaghy A, et al. Immunostimulatory DNA sequences function as T helper- 1-promoting adjuvants. Nat Med 1997; 3:849–854.PubMedCrossRefGoogle Scholar
  83. 83.
    Sparwasser T, Vabulas RM, Villmow B, Lipford GB, Wagner H. Bacterial CpG-DNA activates dendritic cells in vivo: T helper cell-independent cytotoxic T cell responses to soluble proteins. Eur J Immunol 2000; 30:3591–3597.PubMedCrossRefGoogle Scholar
  84. 84.
    Cho HJ, Takabayashi K, Cheng PM, Nguyen MD, Corr M, Tuck S, et al. Immunostimulatory DNAbased vaccines induce cytotoxic lymphocyte activity by a T-helper cell-independent mechanism. Nat Biotechnol 2000: 18:509–514.PubMedCrossRefGoogle Scholar
  85. 85.
    Weiner GJ, Liu HM, Wooldridge JE, Dahle CE, Krieg AM. Immunostimulatory oligodeoxynucleotides containing the CpG motif are effective as immune adjuvants in tumor antigen immunization. Proc Natl Acad Sci USA 1997; 94:10833–10837.PubMedCrossRefGoogle Scholar
  86. 86.
    Stern BV, Boehm BO, Tary-Lehmann M. Vaccination with tumor peptide in CpG adjuvant protects via IFN-gamma-dependent CD4 cell immunity. J Immunol 2002; 168:6099–6105.PubMedGoogle Scholar
  87. 87.
    Davila E, Celis E. Repeated administration of cytosine-phosphorothiolated guanine-containing oligonucleotides together with peptide/protein immunization results in enhanced CTL responses with antitumor activity. J Immunol 2000; 165:539–547.PubMedGoogle Scholar
  88. 88.
    Liu HM, Newbrough SE, Bhatia SK, Dahle CE, Krieg AM, Weiner GJ. Immunostimulatory CpG oligodeoxynucleotides enhance the immune response to vaccine strategies involving granulocytemacrophage colony-stimulating factor. Blood 1998; 92:3730–3736.PubMedGoogle Scholar
  89. 89.
    Auf G, Carpentier AF, Chen L, Le Clanche C, Delattre JY. Implication of macrophages in tumor rejection induced by CpG-oligodeoxynucleotides without antigen. Clin Cancer Res 2001; 7:3540–3543.PubMedGoogle Scholar
  90. 90.
    Kawarada Y, Ganss R, Garbi N, Sacher T, Arnold B, Hammerling GJ. NK- and CD8(+) T cell-mediated eradication of established tumors by peritumoral injection of CpG-containing oligodeoxynucleotides. J Immunol 2001; 167:5247–5253.PubMedGoogle Scholar
  91. 91.
    Kensil CR, Wu JY, Soltysik S. Structural and immunological characterization of the vaccine adjuvant QS-21. In: Powell MF, Newman MJ, eds. Vaccine design: the subunit and adjuvant approach. New York: Plenum, 1995:525–541.Google Scholar
  92. 92.
    Dalsgaard K. Saponin adjuvants. 3. Isolation of a substance from Quillaja saponaria Molina with adjuvant activity in food-and-mouth disease vaccines. Arch Gesamte Virusforsch 1974; 44:243–254.PubMedCrossRefGoogle Scholar
  93. 93.
    Kensil CR, Patel U, Lennick M, Marciani D. Separation and characterization of saponins with adjuvant activity from Quillaja saponaria Molina cortex. J Immunol 1991; 146:431–437.PubMedGoogle Scholar
  94. 94.
    Newman MJ, Wu JY, Gardner BH, Munroe JK, Deombruno D, Recchia J, et al. Saponin adjuvant induction of ovalbumin-specific CD8+ cytotoxic T lymphocyte responses. J Immunol 1992;148:2357–2362.PubMedGoogle Scholar
  95. 95.
    Soltysik S, Wu J-Y, Recchia J, Wheeler DA, Newman MJ, Coughlin RT, et al. Structure/function studies of QS-21 adjuvant: assessment of triterpene aldehyde and glucuronic acid roles in adjuvant function. Vaccine 1995: 13:1403–1410.PubMedCrossRefGoogle Scholar
  96. 96.
    Liu G, Anderson C, Scaltreto H, Barbon J, Kensil CR. QS-21 structure/function studies: effect of acylation on adjuvant activity. Vaccine 2002; 20:2808–2815.PubMedCrossRefGoogle Scholar
  97. 97.
    Livingston PO, Adluri S, Helling F, Yao TJ, Kensil CR, Newman MJ, et al. Phase 1 trial of immunological adjuvant QS-21 with a GM2 ganglioside-keyhole limpet haemocyanin conjugate vaccine in patients with malignant melanoma. Vaccine 1994; 12:1275–1280.PubMedCrossRefGoogle Scholar
  98. 98.
    Kudryashov V, Glunz PW, Williams LJ, Hintermann S, Danishefsky SJ, Lloyd KO. Toward optimized carbohydrate-based anticancer vaccines: epitope clustering, carrier structure, and adjuvant all influence antibody responses to Lewis(y) conjugates in mice. Proc Natl Acad Sci USA 2001; 98:3264–3269.PubMedCrossRefGoogle Scholar
  99. 99.
    Chapman PB, Morrissey DM, Panageas KS, Hamilton WB, Zhan C, Destro AN, et al. Induction of antibodies against GM2 ganglioside by immunizing melanoma patients using GM2-keyhole limpet hemocyanin + Q521 vaccine: a dose-response study. Clin Cancer Res 2000; 6:874–879.PubMedGoogle Scholar
  100. 100.
    Virginia CM, Segal-Eiras A. The use of carbohydrate antigens for the preparation of vaccines for therapy in breast cancer. Drugs Today (Barc) 2002; 38:759–768.CrossRefGoogle Scholar
  101. 101.
    Helling F, Zhang S, Shang A, Adluri S, Calves M, Koganty R, et al. GM2-KLH conjugate vaccine: increased immunogenicity in melanoma patients after administration with immunological adjuvant QS-21. Cancer Res 1995; 55:2783–2788.PubMedGoogle Scholar
  102. 102.
    Gilewski T, Adluri S, Ragupathi G, Zhang S, Yao TJ, Panageas K, et al. Vaccination of high-risk breast cancer patients with mucin-1 (MUC1) keyhole limpet hemocyanin conjugate plus QS-21. Clin Cancer Res 2000; 6:1693–1701.PubMedGoogle Scholar
  103. 103.
    Musselli C, Ragupathi G, Gilewski T, Panageas KS, Spinat Y, Livingston PO. Reevaluation of the cellular immune response in breast cancer patients vaccinated with MUCl. Int J Cancer 2002; 97: 660–667.PubMedCrossRefGoogle Scholar
  104. 104.
    Schaed SG, Klimek VM, Panageas KS, Musselli CM, Butterworth L, Hwu WJ, et al. T-cell responses against tyrosinase 368–376(370D) peptide in HLA*A0201+ melanoma patients: randomized trial comparing incomplete Freund’ s adjuvant, granulocyte macrophage colony-stimulating factor, and QS-21 as immunological adjuvants. Clin Cancer Res 2002; 8:967–972.PubMedGoogle Scholar
  105. 105.
    Marciani DJ, Press JB, Reynolds RC, Pathak AK, Pathak V, Gundy LE, et al. Development of semisynthetic triterpenoid saponin derivatives with immune stimulating activity. Vaccine 2000; 18:3141–3151.PubMedCrossRefGoogle Scholar
  106. 106.
    Ragupathi G, Coltart DM, Williams LJ, Foide F, Kagan E, Allen J, et al. On the power of chemical synthesis: immunological evaluation of models for multiantigenic carbonhydrate-based cancer vaccines. Proc Natl Acad Sci USA 2002; 99:13699–13704.PubMedCrossRefGoogle Scholar
  107. 107.
    Kim SK, Ragupathi G, Cappello S, Kagan E, Livingston PO. Effect of immunological adjuvant combinations on the antibody and T-cell response to vaccination with MUC1-KLH and GD3-KLH conjugates. Vaccine 2000; 19:530–537.PubMedCrossRefGoogle Scholar
  108. 108.
    Morein B, Sundquist B, Hoglund S, Dalsgaard K, Osterhaus A. Iscom, a novel structure for antigenic presentation of membrane proteins from enveloped viruses. Nature 1984; 308:457–460.PubMedCrossRefGoogle Scholar
  109. 109.
    Rimmelzwaan GF, Osterhaus ADME. A novel generation of viural vaccines based on the ISCOM matrix. In: Powell MF, Newman MJ, eds. Vaccine design: the subunit and adjuvant approach. New York: Plenum, 1995:543–558.Google Scholar
  110. 110.
    Alileche A. Interleukin-2 and cancer: critical analysis of results, problems and expectations. Med Hypotheses 2003; 60:202–208.PubMedCrossRefGoogle Scholar
  111. 111.
    Colombo MP, Trinchieri G. Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev 2002; 13:155–168.PubMedCrossRefGoogle Scholar
  112. 112.
    Marincola FM, White DE, Wise AP, Rosenberg SA. Combination therapy with interferon alfa-2a and interleukin-2 for the treatment of metastatic cancer. J Clin Oncol 1995;13:1110–1122.PubMedGoogle Scholar
  113. 113.
    G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K, et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA 1993; 90:3539–3543.PubMedCrossRefGoogle Scholar
  114. 114.
    Tao MH, Levy R. Idiotype/granulocyte-macrophage colony-stimulating factor fusion protein as a vaccine for B-cell lymphoma. Nature 1993; 362:755–758.PubMedCrossRefGoogle Scholar
  115. 115.
    Disis ML, Bernhard H, Shiota FM, Hand SL, Gralow JR, Huseby ES, et al. Granulocyte-macrophage colony-stimulating factor: an effective adjuvant for protein and peptide-based vaccines. Blood 1996; 88:202–210.PubMedGoogle Scholar
  116. 116.
    Hunger RE, Brand CU, Streit M, Eriksen JA, Gjertsen MK, Saeterdal I, et al. Successful induction of immune responses against mutant ras in melanoma patients using intradermal injection of peptides and GM-CSF as adjuvant. Exp Dermatol 2001;10:161–167.PubMedCrossRefGoogle Scholar
  117. 117.
    Disis ML, Grabstein KH, Sleath PR, Cheever MA. Generation of immunity to the HER-2/neu oncogenic protein in patients with breast and ovarian cancer using a peptide-based vaccine. Clin Cancer Res 1999; 5:1289–1297.PubMedGoogle Scholar
  118. 118.
    Jager E, Ringhoffer M, Dienes HP, Arand M, Karbach J, Jager D, et al. Granulocyte-macrophagecolony-stimulating factor enhances immune responses to melanoma-associated peptides in vivo. Int J Cancer 1996; 67:54–62.PubMedCrossRefGoogle Scholar
  119. 119.
    Jager E, Gnjatic S, Nagata Y, Stockert E, Jager D, Karbach J, et al. Induction of primary NY-ESO-1 immunity: CD8+ T lymphocyte and antibody responses in peptide-vaccinated patients with NY-ESO1+ cancers. Proc Natl Acad Sci USA 2000; 97:12198–12203.PubMedCrossRefGoogle Scholar
  120. 120.
    Salgia R, Lynch T, Skarin A, Lucca J, Lynch C, Jung K, et al. Vaccination with irradiated autologous tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor augments antitumor immunity in some patients with metastatic non-small-cell lung carcinoma. J Clin Oncol 2003; 21:624–630.PubMedCrossRefGoogle Scholar
  121. 121.
    Soiffer R, Lynch T, Mihm M, Jung K, Rhuda C, Schmollinger JC, et al. Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte-macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma. Proc Natl Acad Sci USA 1998; 95:13141–13146.PubMedCrossRefGoogle Scholar
  122. 122.
    Borrello I, Pardoll D. GM-CSF-based cellular vaccines: a review of the clinical experience. Cytokine Growth Factor Rev 2002; 13:185–193.PubMedCrossRefGoogle Scholar
  123. 123.
    Hill HC, Conway TF, Jr, Sabel MS, Jong YS, Mathiowitz E, Bankert RB, et al. Cancer immunotherapy with interleukin 12 and granulocyte-macrophage colony-stimulating factor-encapsulated microspheres: coinduction of innate and adaptive antitumor immunity and cure of disseminated disease. Cancer Res 2002; 62:7254–7263.PubMedGoogle Scholar
  124. 124.
    Rosenberg SA, Yang JC, Topalian SL, Schwartzentruber DJ, Weber JS, Parkinson DR, et al. Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin 2. JAMA 1994; 271:907–913.PubMedCrossRefGoogle Scholar
  125. 125.
    Rosenberg SA, Yannelli JR, Yang JC, Topalian SL, Schwartzentruber DJ, Weber JS, et al. Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. J Natl Cancer Inst 1994; 86:1159–1166.PubMedCrossRefGoogle Scholar
  126. 126.
    Gee MS, Koch CJ, Evans SM, Jenkins WT, Pletcher CH, Jr, Moore JS, et al. Hypoxia-mediated apoptosis from angiogenesis inhibition underlies tumor control by recombinant interleukin 12. Cancer Res 1999; 59:4882–4889.PubMedGoogle Scholar
  127. 127.
    Lee P, Wang F, Kuniyoshi J, Rubio V, Stuges T, Groshen S, et al. Effects of interleukin-12 on the immune response to a multipeptide vaccine for resected metastatic melanoma. J Clin Oncol 2001; 19:3836–3847.PubMedGoogle Scholar
  128. 128.
    Gajewski TF, Fallarino F, Ashikari A, Sherman M. Immunization of HLA-A2+ melanoma patients with MAGE-3 or MelanA peptide-pulsed autologous peripheral blood mononuclear cells plus recombinant human interleukin 12. Clin Cancer Res 2001; 7:895s-901s.PubMedGoogle Scholar
  129. 129.
    Portielje JE, Lamers CH, Kruit WH, Sparreboom A, Bolhuis RL, Stoter G, et al. Repeated administrations of interleukin (IL)-12 are associated with persistently elevated plasma levels of IL-10 and declining IFN-gamma, tumor necrosis factor-alpha, IL-6, and IL-8 responses. Clin Cancer Res 2003; 9: 76–83.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Jory R. Baldridge
  • Susan Hand Zimmermann
  • Sally P. Mossman

There are no affiliations available

Personalised recommendations