Skip to main content

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

The recent clinical experience with melanoma vaccines reflects a historical dichotomy. Current phase III trials have employed cellular vaccine strategies developed in the 1970s and have shown some hints of clinical benefit, whereas less developed but more rigorously derived strategies employing peptides, viral vectors encoding peptide sequences, and dendritic cells pulsed with peptides are still undergoing proof of concept phase I and II pilot trials and will not advance to the point of randomized phase III trials for some years to come. Over the next 5 yr, several large randomized cell vaccine trials will mature as we pursue newer ideas with peptide vaccines for melanoma based on molecular genetics and immunology. In this chapter I will describe recent evidence suggesting that a cell vaccine may generate a class I-restricted immune response to melanoma antigen peptides and may have utility in the adjuvant therapy of intermediate- and high-risk melanoma. This is followed by a description of the some of the most promising of the multitude of new peptide vaccine approaches available to patients with resected and metastatic melanoma today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mitchell MS, Kan-Mitchell J, Kempf RA, Harel W, Shau HY, Lind S. Active specific immunotherapy for melanoma: phase I trial of allogeneic lysates and a novel adjuvant. Cancer Res 1988; 48:5883–5893.

    PubMed  CAS  Google Scholar 

  2. Mitchell MS, Harel W, Kempf RA, Hu E, Kan-Mitchell J, Boswell WD, Dean G, Stevenson L. Activespecific immunotherapy for melanoma. J Clin Oncol 1990; 8:856–869.

    PubMed  CAS  Google Scholar 

  3. Mitchell MS, Harel W, Kan-Mitchell J, LeMay LG, Goedegebuure P, Huang XQ, Hofman F, Groshen S. Active specific immunotherapy of melanoma with allogeneic cell lysates. Rationale, results, and possible mechanisms of action. Ann N Y Acad Sci 1993; 690:153–166.

    Article  PubMed  CAS  Google Scholar 

  4. Mitchell MS, Liggett PE, Green RL, Kan-Mitchell J, Murphree AL, Dean G, Spears L, Walonker F. Sustained regression of a primary choroidal melanoma under the influence of a therapeutic melanoma vaccine. J Clin Oncol 1994; 12:396–401.

    PubMed  CAS  Google Scholar 

  5. Mitchell MS, Harel W, Groshen S. Association of HLA phenotype with response to active, specific immunotherapy of melanoma. J Clin Oncol 1992; 10:1158–1164.

    PubMed  CAS  Google Scholar 

  6. Sondak VK, Liu PY, Tuthill RJ, Kempf RA, Unger JM, Sosman JA, Thompson JA, Weiss GR, Redman BG, Jakowatz JG, Noyes RD, Flaherty LE. Adjuvant immunotherapy of resected, intermediate-thickness, node-negative melanoma with an allogeneic tumor vaccine: overall results of a randomized trial of the Southwest Oncology Group. J Clin Oncol 2002; 20:2058–2066.

    Article  PubMed  CAS  Google Scholar 

  7. Sosman JA, Unger JM, Liu PY, Flaherty LE, Park MS, Kempf RA, Thompson JA, Terasaki PI, Sondak VK. Adjuvant immunotherapy of resected, intermediate-thickness, node-negative melanoma with an allogeneic tumor vaccine: impact of HLA class I antigen expression on outcome. J Clin Oncol 2002; 20:2067–2075.

    Article  PubMed  CAS  Google Scholar 

  8. Kan-Mitchell J, Huang XQ, Steinman L, Oksenberg JR, Harel W, Parker JW, Goedegebuure PS, Darrow TL, Mitchell MS. Clonal analysis of in vivo activated CD8+ cytotoxic T lymphocytes from a melanoma patient responsive to active specific immunotherapy. Cancer Immunol Immunother 1993; 37:15–25.

    Article  PubMed  CAS  Google Scholar 

  9. Hsueh EC, Essner R, Foshag LJ, Ollila DW, Gammon G, O’Day SJ, Boasberg PD, Stern SL, Ye X, Morton DL. Prolonged survival after complete resection of disseminated melanoma and active immunotherapy with a therapeutic cancer vaccine. J Clin Oncol 2002; 20:4549–4554.

    Article  PubMed  CAS  Google Scholar 

  10. DiFronzo LA, Gupta RK, Essner R, Foshag LJ, O’Day SJ, Wanek LA, Stern SL, Morton DL. Enhanced humoral immune response correlates with improved disease-free and overall survival in American Joint Committee on Cancer stage II melanoma patients receiving adjuvant polyvalent vaccine. J Clin Oncol 2002; 20:3242–3248.

    PubMed  Google Scholar 

  11. Hsueh EC, Nathanson L, Foshag U, Essner R, Nizze JA, Stern SL, Morton DL. Active specific immunotherapy with polyvalent melanoma cell vaccine for patients with in-transit melanoma metastases. Cancer 1999; 85:2160–2169.

    Article  PubMed  CAS  Google Scholar 

  12. Tsioulias GJ, Gupta RK, Tisman G, Hsueh EC, Essner R, Wanek LA, Morton DL. Serum TA90 antigenantibody complex as a surrogate marker for the efficacy of a polyvalent allogeneic whole-cell vaccine (CancerVax) in melanoma. Ann Surg Oncol 2001; 8:198–203.

    Article  PubMed  CAS  Google Scholar 

  13. Reynolds SR, Oratz R, Shapiro RL, Hao P, Yun Z, Fotino M, Vukmanovic S, Bystryn JC. Stimulation of CD8+ T cell responses to MAGE-3 and Melan-A/MART-1 by immunization with a polyvalent melanoma vaccine Int J Cancer 1997; 72:972–976.

    Article  PubMed  CAS  Google Scholar 

  14. Bystryn JC, Zeleniuch-Jacquotte A, Oratz R, Shapiro RL, Harris MN, Roses DF. Double-blind trial of a polyvalent, shed-antigen, melanoma vaccine. Clin Cancer Res 2001; 7:1882–1887.

    PubMed  CAS  Google Scholar 

  15. Rosenberg SA. Identification of cancer antigens: impact on development of cancer immunotherapies. Cancer J 2000; 6(Suppl 3):200s-207s.

    Google Scholar 

  16. Van Der Bruggen P, Traversari C, Chomez P, et al A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 1991; 254:1643–1647.

    Article  PubMed  Google Scholar 

  17. Traversari C, van der Bruggen P, Luescher I, et al. A nonapeptide encoded by human gene MAGE-1 is recognized on HLA-A1 by cytolytic T lymphocytes directed against tumor antigen MZ2-E. J Exp Med 1992; 176:1453–1457.

    Article  PubMed  CAS  Google Scholar 

  18. Marchand M, van Baren N, Weynants P, Brichard V, Dreno B, Tessier MH, Rankin E, Parmiani G, Arienti F, Humblet Y, Bourlond A, Vanwijck R, Lienard D, Beauduin M, Dietrich PY, Russo V, Kerger J, Masucci G, Jager E, De Greve J, Atzpodien J, Brasseur F, Coulie PG, van der Bruggen P, Boon T. Tumor regressions observed in patients with metastatic melanoma treated with an antigenic peptide encoded by gene MAGE-3 and presented by HLA-Al. Int J Cancer 1999; 80:219–230.

    Article  PubMed  CAS  Google Scholar 

  19. Coulie PG, Karanikas V, Colau D, Lurquin C, Landry C, Marchand M, Dorval T, Brichard V, Boon T. A monoclonal cytolytic T cell response observed in a melanoma patient vaccinated with a tumor-sepcific antigenic nentide encoded by gene MAGE-3. Proc Natl Acad Sci USA 2001; 98:10290–10295

    Article  PubMed  CAS  Google Scholar 

  20. Weber JS, Hua FL, Spears L, Marty V, Kuniyoshi C, Celis E. A phase I trial of a HLA-A 1 restricted MAGE-3 epitope peptide with incomplete Freund’ s adjuvant in patients with resected high-risk melanoma. J Immunother 1999; 22:431–440.

    Article  PubMed  CAS  Google Scholar 

  21. Kawakami Y, Eliyahu S, Delgado CH, Robbins PF, Rivoltini L, Topalian SL, Miki T, Rosenberg SA. Cloning of the gene coding for a shared melanoma antigen recognized by autologous T cells infiltrating into tumor. Proc Natl Acad Sci USA 1994; 96:3515–3519.

    Article  Google Scholar 

  22. Coulie PG, Brichard V, Van Pel A, Wolfe! T, Schneider J, Traversari C, et al. A new gene coding for a differentiation antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J Exp Med 1994; 180:35–42.

    Article  PubMed  CAS  Google Scholar 

  23. Kawakami, Y, Eliyahu, S, Sakaguchi, K, et al. Identification of the immunodominant peptides of the MART-1 human melanoma antigen recognized by the majority of HLA-A2-restricted tumor infiltrating lymphocytes. J Exp Med 1994; 180:347–352.

    Article  PubMed  CAS  Google Scholar 

  24. Bakker AB, Schreurs MW, Tafazzul G, de Boer AJ, Kawakami Y, Adema GJ, Figdor CG. Identification of a novel peptide derived from the melanocyte-specific gp100 antigen as the dominant epitope recognized by an HLA-A2.1-restricted anti-melanoma CTL line. Int J Cancer 1995; 62:97–102.

    Article  PubMed  CAS  Google Scholar 

  25. Kawakami Y, Eliyahu S, Delgado CH, Robbins PF, Sakaguchi K, Appella E, Yannelli JR, Adema GJ, Miki T, Rosenberg SA. Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection. Proc Nat! Acad Sci USA 1994; 91:6458–6462.

    Article  CAS  Google Scholar 

  26. Wolfel T, Van Pel A, Brichard V, et al. Two tyrosinase nonapeptides recognized on HLA-A2 melanomas by autologous cvtolvtic T lymphocytes. Eur J Immunol 1994; 24:759–764.

    Article  PubMed  CAS  Google Scholar 

  27. Wang R-F, Appella E, Kawakami Y, Kang X, et al. Identification of TRP-2 as a human tumor antigen recognized by cytotoxic T lymphocytes. J Exp Med 1996; 184: 2207–2214.

    Article  PubMed  CAS  Google Scholar 

  28. Wang R-F, Parkhurst MR, Kawakami Y, Robbins PF, et al. Utilization of an alternative open reading frame of a normal gene in generating a human cancer antigen. J Exp Med 1996; 183:1131–1138.

    Article  PubMed  CAS  Google Scholar 

  29. Rivoltini L, Kawakami Y, Sakaguchi K, et al. Induction of tumor reactive CTL from peripheral blood and tumor-infiltrating lymphocytes of melanoma patients by in vitro stimulation with an immunodominant peptide of the human melanoma antigen MART-1. J Immunol 1995; 154:2257–2265.

    PubMed  CAS  Google Scholar 

  30. Marincola FM, Rivoltini L, Salgaller ML, Player M, Rosenberg SA. Differential anti-MART-1/MelanA CTL activity in peripheral blood of HLA-A2 melanoma patients in comparison to healthy donors: evidence of in vivo priming by tumor cells. J Immunother 1996; 19:266–277.

    Article  CAS  Google Scholar 

  31. Parkhurst MR, Salgaller ML, Southwood S, Robbins PF, et al. Improved induction of melanoma reactive CTL with peptides from melanoma antigen gp100 modified at HLA-A0201 binding residues. J Immunol 1996; 157:2536–2548.

    Google Scholar 

  32. Cormier JN, Salgaller ML, Prevette T, Barracchini KC, Rivoltini L, Restifo NP, Rosenberg SA, Marincola FM. Enhancement of cellular immunity in melanoma patients immunized with a peptide from MART-1/Melan A. Cancer J Sci Am 1997: 3:37–44.

    PubMed  CAS  Google Scholar 

  33. Romero P, Gervois N, Schneider J, Escobar P, Valmori D, Pannetier C, Steinle A, Wolfel T, Lienard D, Brichard V, van Pel A, Jotereau F, Cerottini JC. Cytolytic T lymphocyte recognition of the immunodominant HLA-A*0201-restricted Melan-A/MART-1 antigenic peptide in melanoma. J Immunol 1997; 159:2366–2374.

    PubMed  CAS  Google Scholar 

  34. Romero P, Dunbar PR, Valmori D, Pittet M, et al. Ex vivo staining of metastatic lymph nodes by class I major histocompatibility complex tetramers reveals high numbers of antigen-experienced tumor specific cytolytic T lymphocytes. J Exp Med 1998; 188:1641–1650.

    Article  PubMed  CAS  Google Scholar 

  35. Rubio-Godoy V, Dutoit V, Rimoldi D, Lienard D, Lejeune F, Speiser D, Guillaume P, Cerottini JC, Romero P, Valmori D. Discrepancy between ELISPOT IFN-gamma secretion and binding of A2/ peptide multimers to TCR reveals interclonal dissociation of CTL effector function from TCR-peptide/ MHC complex half-life. Proc Natl Acad Sci USA 2001; 98:10302–10307.

    Article  PubMed  CAS  Google Scholar 

  36. Pittet MJ, Speiser DE, Lienard D, Valmori D, Guillaume P, Dutoit V, Rimoldi D, Lejeune F, Cerottini, JC, Romero P. Expansion and functional maturation of human tumor antigen-specific CD8+ T cells after vaccination with antigenic peptide Clin Can Res 2001; 7(Suppl):796s-803s.

    Google Scholar 

  37. Saleh, FH, Crotty KA, Hersey P, Menzies SW. Primary melanoma tumor regression associated with an immune response to the tumor associated antigen melan-A/MART-1. Int J Cancer 2001; 94:551–557.

    Article  PubMed  CAS  Google Scholar 

  38. Wang F, Bade E, Kuniyoshi C, Spear L, et al. Phase I trial of a MART-1 peptide vaccine with incomplete Freund’ s adjuvant for resected high-risk melanoma. Clin Cancer Res 1999; 5:2756–2765.

    PubMed  CAS  Google Scholar 

  39. Salgaller MM, Marincola FM, Cormier JN, et al. Immunization against epitopes in the human melanoma antigen gp100 following patient immunization with synthetic peptides. Cancer Res 1996; 56: 4749–4757.

    PubMed  CAS  Google Scholar 

  40. Rosenberg SA, Yang JC, Schwartzentruber DJ, Hwu P, Marincola FM, Topalian SL, Restifo NP, Dudley ME, Schwarz SL, Spiess PJ, Wunderlich JR, Parkhurst MR, Kawakami Y, Seipp CA, Einhorn JH, White DE. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med 1998; 4:321–327.

    Article  PubMed  CAS  Google Scholar 

  41. Dudley ME, Nishimura MI, Holt AK, Rosenberg SA. Antitumor immunization with a minimal peptide epitope (G9–209–2M) leads to a functionally heterogenous CTL response. J Immunother 1999; 22: 288–298.

    Article  PubMed  CAS  Google Scholar 

  42. Lee KH, Wang E, Nielsen MB, Wundrelich J, Migueles S, Connors M, Steinberg SM, Rosenberg SA, Marincola FM. Increased vaccine-specific T cell frequency after peptide-based vaccination correlates with increased susceptibility to in vitro stimulation but does not lead to tumor regression. J Immunol 1999; 163:6292–6300.

    PubMed  CAS  Google Scholar 

  43. Nielsen MB, Monsurro V, Migueles SA, Wang E, Perez-Diez A, Le KH, Kammula U, Rosenberg SA, Matincola FM. Status of activation of circulating vaccine-elicited CD8+ T cells. J Immunol 2000; 165:2287–2296.

    PubMed  CAS  Google Scholar 

  44. Stewart JH 4th, Rosenberg SA. Long term survival of anti-tumor lymphocytes generated by vaccination of patients with melanoma with a peptide vaccine. J Immunother 2000; 23:401–404.

    Article  PubMed  CAS  Google Scholar 

  45. Monsurro V, Nagorsen D, Wang E, Provenzano M, Dudley ME, Rosenberg SA, Marincola FM. Functional heterogeneity of vaccine-induced CD8(+) T cells. J Immunol 2002; 168:5933–5942.

    PubMed  CAS  Google Scholar 

  46. Rosenberg SA, Yang JC, Schwartzentruber DJ, Hwu P, Marincola FN, Topalian SL, Restifo NP, Sznol M, Schwarz SL, Speiss PJ, Wunderlich JR, Seipp CA, Einhorn JH, Rogers-Freezer L, White DE. Impact of cytokine administration on the generation of anti-tumor immunity in patients with metastatic melanoma receiving a peptide vaccine. J Immunol 1999; 163:1690–1695.

    PubMed  CAS  Google Scholar 

  47. Lally KM, Mocellin S, Ohnmacht GA, Nielsen MB, Bettinnotti M, Panelli MC, Monsurro V, Marincola FM. Unmasking cryptic epitopes after loss of immunodominant tumor antigen expression through epitope spreading. Int J Cancer 2001; 93:841–847.

    Article  PubMed  CAS  Google Scholar 

  48. Monsurro V, Nielsen MB, Perez-Diez A, Dudley ME, Wang E, Rosenberg SA, Marincola FM. Kinetics of TCR use in response to repeated epitope-specific immunizations. J Immunol 2001; 166:5817–5825.

    PubMed  CAS  Google Scholar 

  49. Panelli MC, Riker A, Kammula U, Wang E, Lee KH, Rosenberg SA, Marincola FM. Expansion of tumor-T cell pairs from fine needle aspirates of melanoma metastases. J Immunol 2000; 164:495–504.

    PubMed  CAS  Google Scholar 

  50. Lee P, Wang F, Kuniyoshi J, Rubio V, Stuges T, Groshen S, Gee C, Lau R, Jeffery G, Margolin K, Marty V, Weber J. Effects of interleukin-12 on the immune response to a multipeptide vaccine for resected metastatic melanoma. J Clin Oncol 2001; 19:3836–3847.

    PubMed  CAS  Google Scholar 

  51. Weber J, Sondak VK, Scotland R, Phillip R, Wang F, Rubio V, Stuge TB, Groshen SG, Gee C, Jeffery GG, Sian S, Lee PP. Granulocyte-macrophage-colony-stimulating factor added to a multipeptide vaccine for resected Stage II melanoma. Cancer 2003; 97:186–200.

    Article  PubMed  CAS  Google Scholar 

  52. Slingluff CL Jr, Yamshchikov G, Neese P, Galavotti H, Eastham S, Engelhard VH, Kittlesen D, Deacon D, Hibbitts S, Grosh WW, Petroni G, Cohen R, Wiemasz C, Patterson JW, Conway BP, Ross WG. Phase I trial of a melanoma vaccine with gp100 280–288 peptide and tetanus helper peptide in adjuvant: immunologic and clinical outcome. Clin Can Res 2001; 7:3012–3024.

    CAS  Google Scholar 

  53. Yamshchikov GV, Barrd DL, Eastham S, Galavotti H, Patterson JW, Deacon DH, Teates D, Neese P, Grosh WW, Petroni G, Engelhard VH, Slingluff CL Jr. Evaluation of peptide vaccine immunoegnicity in draining lymph nodes and peripheral blood of melanoma patients. Int J Cancer 2001; 92:703–711.

    Article  PubMed  CAS  Google Scholar 

  54. Bettinotti MP, Kim CJ, Lee KH, Roden M, Cormier JN, Panelli M, Parker KK, Marincola FM. Stringent allele/epitope requirements for MART-1/Melan A immunodominance: implications for peptide-based immunotherapv. J Immunol 1998; 161:877–889.

    PubMed  CAS  Google Scholar 

  55. Jager E, Bernhard H, Romero P, et al. Generation of cytotoxic T cell responses with synthetic melanomaassociated peptides in vivo: implications for tumor vaccines with melanoma associated antigens. Int J Cancer Res 1996; 66:162–169.

    Article  Google Scholar 

  56. Jager E, Ringhoofer M, Karbac J, et al. Inverse relationship of melanoma differentiation antigen expression in melanoma tissues and CD8+ cytotoxic T cell responses: evidence for immunoselection of antigen loss variants in vivo. Int J Cancer 1996; 66:470–476.

    Article  PubMed  CAS  Google Scholar 

  57. Ohnmacht GA, Wang E, Mocellin S, Abati A, Filie A, Fetsch P, Riker AI, Kammula US, Rosenberg SA, Marincola FM. Short-term kinetics of tumor antigen expression in response to vaccination. J Immunol 2001; 167:1809–1820.

    PubMed  CAS  Google Scholar 

  58. Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S. Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol 2000; 74:181–273.

    Article  PubMed  CAS  Google Scholar 

  59. Benlalam H, Labarriere N, Linard B, Derre L, Diez E, Pandolfino MC, Bonneville M, Jotereau F. Comprehensive analysis of the frequency of recognition of melanoma-associated antigen (MAA) by CD8 melanoma infiltrating lymphocytes (TIL): implications for immunotherapy. Eur J Immunol 2001; 31:2007–2015.

    Article  PubMed  CAS  Google Scholar 

  60. Jager E, Ringhoffer M, Dienes HP, Arand M, Karbach J, Jager D, Ilsemann C, Hagedorn M, Oesch F, Knuth A. Granulocyte-macrophage-colony-stimulating factor enhances immune responses to melanoma-associated peptides in vivo. Int J Cancer 1996; 67:54–62.

    Article  PubMed  CAS  Google Scholar 

  61. Jager E, Maeurer M, Hohn H, Karbach J, Jager D, Zidianakis Z, Bakhshandeh-Bath A, Orth J, Neukirch C, Necker A, Reichert TE, Knuth A. Clonal expansion of Melan A-specific cytotoxic T lymphocytes in a melanoma patient responding to continued immunization with melanoma-associated peptides. Int J Cancer 2000; 86:538–547.

    Article  PubMed  CAS  Google Scholar 

  62. Lewis JJ, Janetzki S, Scjaed S, Panageas KS, Wang S, Williams L, Meyers M, Butterworth L, Livingston PO, Chapman PB, Houghton AN. Evaluation of CD8(+) T cell frequencies by the ELISPOT assay in normal individuals and in patients with metastatic melanoma immunized with tyrosinase peptide. Int J Cancer 2000; 87:391–398.

    Article  PubMed  CAS  Google Scholar 

  63. Scheibenbogen C, Schmittel A, Keilholz U, Allgauer T, Hoffman U, Max R, Thiel E, Schadendorf D. Phase II trial of vaccination with tyrosinase peptides and granulocyte macrophage colony stimulating factor in patients with metastatic melanoma. J Immunother 2000; 23:275–281.

    Article  PubMed  CAS  Google Scholar 

  64. Scheibenbogen C, Nagorsen D, Seliger B, Schmittel A, Letsch A, Bauer S, Max N, Bock M, Atkins D, Thiel E, Keilholz U. Long-term freedom from recurrence in 2 stage IV melanoma patients following vaccination with tvrosinase peptides. Int J Cancer 2002; 99:403–408.

    Article  PubMed  CAS  Google Scholar 

  65. Jager E, Chen Y-T, Drijfhout JW, Karbach J, et al. Simulataneous humoral and cellular immune response against cancer testis antigen NY-ESO-1: definition of human histocompatibility leucocyte antigen (HLM-A2 bindina peptide epitopes. J Exp Med 1998; 187:265–274.

    Article  PubMed  CAS  Google Scholar 

  66. Jager E, Nagata Y, Gnjatic S, Wada H, Stockert E, Karbach J, Dunbar PR, Lee SY, Jungbluth A, Jager D, Arand M, Ritter G, Cerundolo V, Dupont B, Chen YT, Old LJ, Knuth A. Monitoring CD8 T cell responses to NY-ESO-1: correlation of humoral and cellular immune responses. Proc Natl Acad Sci USA 2000: 97:4760–4765.

    Article  PubMed  CAS  Google Scholar 

  67. Jager E, Gnjatic S, Nagata Y, Stockert E, Jager D, Karbach J, Neumann A, Rieckenberg J, Chen YT, Ritter G, Hoffman E, Arand M, Old LJ, Knuth A. Induction of primary NY-ESO-1 immunity: CD8(+)T lymphocyte and antibody responses in peptide vaccinated patients with NY-ESO-1 cancers. Proc Natl Acad Sci USA 2000; 97:12198–12203

    Article  PubMed  CAS  Google Scholar 

  68. .

    Google Scholar 

  69. Gnjatic S, Jager E, Chen W, Altorki NK, Matsui M, Lee SY, Chen Q, Nagata Y, Atanackovic D, Chen YT, Ritter G, Cebon J, Knuth A, Old U. CD8(+) T cell responses against a cryptic HLA-A2 epitope after NY-ESO-1 peptide immunization of cancer patients. Proc Natl Acad Sci USA 2002; 99:11813–11818.

    Article  PubMed  CAS  Google Scholar 

  70. Chaux P, Vantomme V, Stroobant V, Thielemans K, Corthals J, Luiten R, Eggermant AM, Boon T, Van der Bruggen P. Identification of MAGE-3 epitopes presented by HLA-DR molecules to CD4(+) T lymphocytes. J Exp Med 1999; 189:767–778.

    Article  PubMed  CAS  Google Scholar 

  71. Toulokian CE, Leitner WW, Topalian SL, Li YF, Robbins PF, Rosenberg SA, Restifo NP. Identification of a MHC class II restricted human gp100 epitope using DR4-IE transgenic mice. J Immunol 2000; 164:3535–3542.

    Google Scholar 

  72. Zeng G, Wang X, Robbins PF, Rosenberg SA, Wang RF. CD4(+) T cell recognition of MHC class IIrestricted epitopes from NY-ESO-1 presented by a prevalent HLA DP4 allele: association with NYESO-1 antibody production. Proc Natl Acad Sci USA 2001; 98:3964–3969.

    Article  PubMed  CAS  Google Scholar 

  73. Kierstead LS, Ranieri E, Olson W, Brusic V, Sidney J, Sette A, Kasamon YL, Slingluff CL Jr, Kirkwood JM, Storkus WJ. gp100/pmel 1 7 and tyrosinase encode multiple epitopes recognized by Th1 typr CD4(+) T cells. Br J Cancer 2001; 85:1738–1745.

    Article  PubMed  CAS  Google Scholar 

  74. Zeng G, Li Y, El-Gamil M, Sidney J, Sette A, Wang RF, Rosenberg SA, Robbins PF. Generation of NYES0–1-specific CD4+ and CD8+ T cells by a single peptide with dual MHC class I and class II specificities: a new strategy for vaccine design. Cancer Res 2002; 62:3630–3635.

    PubMed  CAS  Google Scholar 

  75. Scheibenbogen C, Lee KH, Mayer S, Stevanovic S, Moebius U, Herr W, Ramensee HG, Keilholz U. A sensitive ELISPOT assay for detection of CD8+ lymphocytes specific for HLA class I binding peptide epitopes derived from influenza proteins in the blood of healthy donors and melanoma patients. Clin Cancer Res 1997; 3:221–226.

    PubMed  CAS  Google Scholar 

  76. Pass HA, Schwarz SL, Wunderlich JR, Rosenberg SA. Immunization of patients with melanoma peptide vaccines: immunologic assessment using the ELISPOT assay. Cancer J Sci Am 1998; 4:316–323.

    PubMed  CAS  Google Scholar 

  77. Schmittel A, Keilholz U, Bauer S, Kuhne U, Stevanovic S, Thiel E, Scheibenbogen C. Application of the IFN-gamma ELISPOT assay to quantify T cell responses against proteins. J Immunol Methods 2001; 247:17–24.

    Article  PubMed  CAS  Google Scholar 

  78. Asemissen AM, Nagorsen D, Keilholz U, Letsch A, Schmittel A, Thiel E, Scheibenbogen C. Flow cytometric determination of intracellular or secreted IFNgamma for the quantification of antigen reactive T cells. J Immunol Methods 2001; 251:101–108.

    Article  PubMed  CAS  Google Scholar 

  79. Altman J, Moss PAH, Goulder P, Barouch D, et al. Direct visualization and phenotypic analysis of virusspecific T lymphocytes in HIV infected individuals. Science 1998; 274:94–96.

    Article  Google Scholar 

  80. Lee PP, Yee C, Savage PA, Fong L, et al. Characterization of circulating T cells specific for tumorassociated antigens in melanoma patients. Nat Med 1999; 5:677–685.

    Article  PubMed  CAS  Google Scholar 

  81. Keilholz U, Weber J, Finke JH, Gabrilovich DI, Kast WM, Disis ML, Kirkwood JM, Scheibenbogen C, Schlom J, Maino VC, Lyerly HK, Lee PP, Storkus W, Marincola F, Worobec A, Atkins MB. Immunologic monitoring of cancer vaccine therapy: results of a workshop sponsored by the Society for Biological Therapy. J Immunother 2002; 25:97–138.

    Article  PubMed  Google Scholar 

  82. Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 1998; 4:328–332.

    Article  PubMed  CAS  Google Scholar 

  83. Thurner B, Haendle I, Roder C, Dieckmann D, Keikavoussi P, Jonuleit H, Bender A, Maczek C, Schreiner D, von den Driesch P, Brocker EB, Steinman RM, Enk A, Kampgen E, Schuler G. Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med 1999; 190:1669–1678.

    Article  PubMed  CAS  Google Scholar 

  84. Schuler-Thurner B, Dieckmann D, Keikavoussi P, Bender A, Maczek C, Jonuleit H, Roder C, Haendle I, Leisgang W, Dunbar R, Cerundolo V, von Den Driesch P, Knop J, Brocker EB, Enk A, Kampgen E, Schuler G. Mage-3 and influenza-matrix peptide-specific cytotoxic T cells are inducible in terminal stage HLA-A2.1+ melanoma patients by mature monocyte-derived dendritic cells. J Immunol 2000; 165:3492–3496.

    PubMed  CAS  Google Scholar 

  85. Schuler-Thurner B, Schultz ES, Berger TG, Weinlich G, Ebner S, Woerl P, Bender A, Feuerstein B, Fritsch PO, Romani N, Schuler G. Rapid induction of tumor-specific type 1 T helper cells in metastatic melanoma patients by vaccination with mature, cryopreserved, peptide-loaded monocyte-derived dendritic cells. J Exp Med 2002; 195:1279–1288.

    Article  PubMed  CAS  Google Scholar 

  86. Gajewski TF, Fallarino F, Ashikari A, Sherman M. Immunization of HLA-A2+ melanoma patients with MAGE-3 or MelanA peptide-pulsed autologous peripheral blood mononuclear cells plus recombinant human interleukin 12. Clin Cancer Res 2001; 7(Suppl 3):895s-901s.

    Google Scholar 

  87. Banchereau J, Palucka AK, Dhodapkar M, Burkeholder S, Taquet N, Rolland A, Taquet S, Coquery S, Wittkowski KM, Bhardwaj N, Pineiro L, Steinman R, Fay J. Immune and clinical responses in patients with metastatic melanoma to CD34(+) progenitor-derived dendritic cell vaccine. Cancer Res 2001; 61:6451–6458.

    PubMed  CAS  Google Scholar 

  88. Jonuleit H, Giesecke-Tuettenberg A, Tuting T, Thurner-Schuler B, Stuge TB, Paragnik L, Kandemir A, Lee PP, Schuler G, Knop J, Enk AH. A comparison of two types of dendritic cell as adjuvants for the induction of melanoma-specific T-cell responses in humans following intranodal injection. Int J Cancer 2001: 93:243–251.

    Article  PubMed  CAS  Google Scholar 

  89. De Vries IJ, Eggert AA, Scharenborg NM, Vissers JL, Lesterhuis WJ, Boerman OC, Punt CJ, Adema GJ, Figdor CG. Phenotypical and functional characterization of clinical grade dendritic cells. J Immunother 2002; 25:429–438.

    Article  PubMed  Google Scholar 

  90. Morse MA, Coleman RE, Akabani G, Niehaus N, Coleman D, Lyerly HK. Migration of human dendritic cells after injection in patients with metastatic malignancies. Cancer Res 1999; 59:56–58.

    PubMed  CAS  Google Scholar 

  91. Kirkwood JM, Ibrahim JG, Sosman JA, Sondak VK, Agarwala SS, Ernstoff MS, Rao U. High-dose interferon alfa-2b significantly prolongs relapse-free and overall survival compared with the GM2KLH/QS-21 vaccine in patients with resected stage JIB-Ill melanoma: results of intergroup trial E1694/ 59512/C509801. J Clin Oncol 2001; 19:2370–2380.

    PubMed  CAS  Google Scholar 

  92. Kirkwood JM, Ibrahim J, Lawson DH, Atkins MB, Agarwala SS, Collins K, Mascari R, Morrissey DM, Chapman PB. High-dose interferon alfa-2b does not diminish antibody response to GM2 vaccination in patients with resected melanoma: results of the Multicenter Eastern Cooperative Oncology Group Phase II Trial E2696. J Clin Oncol 2001; 19:1430–1436.

    PubMed  CAS  Google Scholar 

  93. Belli F, Testori A, Rivoltini L, Maio M, Andreola G, Sertoli MR, Gallino G, Pins A, Cattelan A, Lazzari I, Carrabba M, Scita G, Santantonio C, Pilla L, Tragni G, Lombardo C, Arienti F, Marchiano A, Queirolo P, Bertolini F, Cova A, Lamaj E, Ascani L, Camerini R, Corsi M, Cascinelli N, Lewis JJ, Srivastava P, Parmiani G. Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96-peptide complexes: clinical and immunologic findings. J Clin Oncol 2002; 20:4169–4180.

    Article  PubMed  CAS  Google Scholar 

  94. Escudier BJ, Dorval T, Angevin E, Boccacio C, Robert C, Avril MF, Lantz O, Bonnerot C, Tursz T, Dhelin O, Serra V, Valente N, LePecq J-B, Zitvogel L. Novel approach to immunotherapy of cancer: phase I trial of dexosome vaccine for patients with advanced melanoma. Proc Am Soc Clin Oncol 2002; 21:12b(Abstr 1857).

    Google Scholar 

  95. Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM, Robinson MR, Raffeld M, Duray P, Seipp CA, Rogers-Freezer L, Morton KE, Mavroukakis SA, White DE, Rosenberg SA. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 2002; 298:850–854.

    Article  PubMed  CAS  Google Scholar 

  96. Perez-Diez A, Spiess PJ, Restifo NP, Matzinger P, Marincola FM. Intensity of the vaccine-elicited immune response determines tumor clearance. J Immunol 2002; 168:338–347.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this chapter

Cite this chapter

Weber, J. (2004). Melanoma Vaccines. In: Morse, M.A., Clay, T.M., Lyerly, H.K. (eds) Handbook of Cancer Vaccines. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-680-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-680-5_25

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9818-9

  • Online ISBN: 978-1-59259-680-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics