Advertisement

Alphaviral-Based Strategies for the Immunotherapy of Cancer

  • Edward L. Nelson
  • Jonathan Smith
Part of the Cancer Drug Discovery and Development book series (CDD&D)

Abstract

Alphavirus-based vectors have been developed over the past 13 yr (1–3). Alphaviruses, formerly known as group A arboviruses, are small, enveloped, positivestrand RNA viruses that constitute one of two genera within the Togaviridae family (4,5). The alphaviruses infect a wide range of hosts being able to replicate in both arthropod and vertebrate hosts (avian and mammalian). The structure, biology, and replication strategy of these viruses have been well characterized over the past three decades (5,6). This characterization has resulted in the recognition of advantages and disadvantages for vectors derived from alphaviruses along with the identification of critical elements of the alphavirus genome that must be retained in the vector for various functional capabilities. The bulk of investigations using these vector systems have been focused on prophylactic vaccination against infectious-disease processes. Fewer studies have evaluated alphavirus vectors for their antitumor immunotherapy potential and all are preclinical. In contrast, DNA viruses, such as adenovirus or the pox viruses, have progressed to human cancer clinical trials, despite alphavirus vectors having distinct potential advantages. This is owing in part to studies with DNA viruses being initiated well before those of the alphaviruses along with the technical and regulatory demands of good manufacturing practices (GMP) production for RNA viruses. Three of the alphaviruses have been adapted to immunotherapeutic vectors and evaluated in various tumor models; see Table 1. The exact mechanisms by which these alphavirus-derived vectors elicit robust antitumor immune responses are unclear.

Keywords

Human Papilloma Virus Semliki Forest Virus Prostate Specific Membrane Antigen Sindbis Virus Venezuelan Equine Encephalitis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pushko P, Parker M, Ludwig GV, Davis NL, Johnston RE, Smith JF. Replicon-helper systems from attenuated Venezuelan equine encephalitis virus: expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo. Virology 1997; 239:389–401.PubMedCrossRefGoogle Scholar
  2. 2.
    Liljestrom P, Garoff H. A new generation of animal cell expression vectors based on the Semliki Forest virus replicon. Biotech (NY) 1991; 9:1356–1361.CrossRefGoogle Scholar
  3. 3.
    Xiong C, Levis R, Shen P, Schlesinger S, Rice CM, Huang HV. Sindbis virus: an efficient, broad host range vector for gene expression in animal cells. Science 1989; 243:1188–1191.PubMedCrossRefGoogle Scholar
  4. 4.
    Powers AM, Brault AC, Shirako Y, Strauss EG, Kang W, Strauss JH, Weaver SC. Evolutionary relationships and systematics of the alphaviruses. J Virol 2001; 75:10118–10131.PubMedCrossRefGoogle Scholar
  5. 5.
    Strauss JH, Strauss EG. The alphaviruses: gene expression, replication, and evolution. Microbiol Rev 1994; 58:491–562.PubMedGoogle Scholar
  6. 6.
    Frolov I, Hoffman TA, Pragai BM, Dryga SA, Huang HV, Schlesinger S, Rice CM. Alphavirus-based expression vectors: strategies and applications. Proc Natl Acad Sci USA 1996; 93:11371–11377.PubMedCrossRefGoogle Scholar
  7. 7.
    Willems WR, Kaluza G, Boschek CB, Bauer H, Hager H, Schutz HJ, Feistner H. Semliki forest virus: cause of a fatal case of human encephalitis. Science 1979; 203:1127–1129.PubMedCrossRefGoogle Scholar
  8. 8.
    Bres P. Impact of arboviruses on human and animal health. In: Monath TP (ed.). The arboviruses: epidemiology and ecology. Vol. 1. Boca Raton, FL: CRC Press, 1988:1–18.Google Scholar
  9. 9.
    Mathiot CC, Grimaud G, Garry P, Bouquety JC, Mada A, Daguisy AM, Georges AJ. An outbreak of human Semliki Forest virus infections in Central African Republic. Am J Trop Med Hyg 1990; 42: 386–393.PubMedGoogle Scholar
  10. 10.
    Shirako Y, Niklasson B, Dalrymple JM, Strauss EG, Strauss JH. Structure of the Ockelbo virus genome and its relationship to other Sindbis viruses. Virology 1991; 182:753–764.PubMedCrossRefGoogle Scholar
  11. 11.
    Weaver SC. Vector biology in arboviral pathogenesis. In: Nathanson N (ed.). Viral pathogenesis. Philadelphia, PA: Lippincott-Raven, 1997:329–352.Google Scholar
  12. 12.
    Turunen M, Kuusisto P, Uggeldahl PE, Toivanen A. Pogosta disease: clinical observations during an outbreak in the province of North Karelia, Finland. Br J Rheumatol 1998; 37:1177–1180.PubMedCrossRefGoogle Scholar
  13. 13.
    Autio P, Niemi KM, Kariniemi AL. An eruption associated with alphavirus infection. Er J Dermatol 1996; 135:320–323.Google Scholar
  14. 14.
    Murphy FA, Nathanson N. An atlas of viral disease pathogenesis. In: Nathanson N (ed.). Viral pathogenesis. Philadelphia, PA: Lippincott-Raven, 1997:433–463.Google Scholar
  15. 15.
    Johnston LJ, Halliday GM, King NJ. Phenotypic changes in Langerhans’ cells after infection with arboviruses: a role in the immune response to epidermally acquired viral infection? J Virol 1996; 70:4761–4766.PubMedGoogle Scholar
  16. 16.
    Paredes AM, Brown DT, Rothnagel R, Chiu W, Schoepp RJ, Johnston RE, Prasad BV. Three-dimensional structure of a membrane-containing virus. Proc Natl Acad Sci USA 1993; 90:9095–9099.PubMedCrossRefGoogle Scholar
  17. 17.
    Grieder FB, Davis NL, Aronson JF, Charles PC, Sellon DC, Suzuki K, Johnston RE. Specific restrictions in the progression of Venezuelan equine encephalitis virus-induced disease resulting from single amino acid changes in the glycoproteins. Virology 1995; 206:994–1006.PubMedCrossRefGoogle Scholar
  18. 18.
    Tucker PC, Griffin DE. Mechanism of altered Sindbis virus neurovirulence associated with a singleamino-acid change in the E2 glycoprotein. J Virol 1991; 65:1551–1557.PubMedGoogle Scholar
  19. 19.
    Wang, KS, Kuhn RJ, Strauss EG, Ou S, Strauss JH. High-affinity laminin receptor is a receptor for Sindbis virus in mammalian cells. J Virol 1992; 66:4992–5001.PubMedGoogle Scholar
  20. 20.
    Ludwig GV, Kondig JP, Smith JF. A putative receptor for Venezuelan equine encephalitis virus from mosquito cells. J Virol 1996; 70:5592–5599.PubMedGoogle Scholar
  21. 21.
    Bernard KA, Klimstra WB, and Johnston RE. Mutations in the E2 glycoprotein of Venezuelan equine encephalitis virus confer heparan sulfate interaction, low morbidity, and rapid clearance from blood of mice. Virology 2000; 276:93–103.PubMedCrossRefGoogle Scholar
  22. 22.
    Byrnes AP, Griffin DE. Binding of Sindbis virus to cell surface heparan sulfate. J Virol 1998; 72:7349–7356.PubMedGoogle Scholar
  23. 23.
    Byrnes AP, Griffin DE. Large-plaque mutants of Sindbis virus show reduced binding to heparan sulfate, heightened viremia, and slower clearance from the circulation. J Virol 2000; 74:644–651.PubMedCrossRefGoogle Scholar
  24. 24.
    Klimstra WB, Ryman KD, Johnston RE. Adaptation of Sindbis virus to BHK cells selects for use of heparan sulfate as an attachment receptor. J Virol 1998; 72:7357–7366.PubMedGoogle Scholar
  25. 25.
    Sawicki D, Barkhimer DB, Sawicki SG, Rice CM, Schlesinger S. Temperature sensitive shut-off of alphavirus minus strand RNA synthesis maps to a nonstructural protein, nsP4. Virology 1990; 174: 43–52.PubMedCrossRefGoogle Scholar
  26. 26.
    Froshauer S, KartenbeckJ, Helenius A. Alphavirus RNA replicase is located on the cytoplasmic surface of endosomes and lysosomes. J Cell Biol 1998; 107:2075–2086.CrossRefGoogle Scholar
  27. 27.
    Karpf AR, Brown DT. Comparison of Sindbis virus-induced pathology in mosquito and vertebrate cell cultures. Virology 1998; 240:193–201.PubMedCrossRefGoogle Scholar
  28. 28.
    Lundstrom K, Ziltener P, Hermann D, Schweitzer C, Richards JG, Jenck F. Improved Semliki Forest virus vectors for receptor research and gene therapy. J Recept Signal Transduct Res 2001; 21:55–70.PubMedCrossRefGoogle Scholar
  29. 29.
    Khromykh AA. Replicon-based vectors of positive strand RNA viruses. Curr Opin Mol Ther 2000; 2:555–569.PubMedGoogle Scholar
  30. 30.
    Perri S, Driver DA, Gardner JP, Sherrill S, Belli BA, Dubensky TW Jr, Polo JM. Replicon vectors derived from Sindbis virus and Semliki forest virus that establish persistent replication in host cells. J Virol 2000; 74:9802–9807.PubMedCrossRefGoogle Scholar
  31. 31.
    Datwyler DA, Eppenberger HM, Koller D, Bailey JE, Magyar JP. Efficient gene delivery into adult cardiomvocytes by recombinant Sindbis virus. J Mol Med 1999; 77:859–864.PubMedCrossRefGoogle Scholar
  32. 32.
    Frolov I, Agapov E, Hoffman TA Jr, Pragai BM, Lippa M, Schlesinger S, Rice CM. Selection of RNA replicons capable of persistent noncytopathic replication in mammalian cells. J Virol 1999;7 3:3854–3865.Google Scholar
  33. 33.
    Lundstrom K. Alphavirus vectors for gene therapy applications. Curr Gene Ther 2001; 1:19–29.PubMedCrossRefGoogle Scholar
  34. 34.
    Agapov EV, Frolov I, Lindenbach BD, Pragai BM, Schlesinger S, Rice CM. Noncytopathic Sindbis virus RNA vectors for heterologous gene expression. Proc Natl Acad Sci USA 1998; 95:12989–12994.PubMedCrossRefGoogle Scholar
  35. 35.
    MacDonald GH, Johnston RE. Role of dendritic cell targeting in Venezuelan equine encephalitis virus pathogenesis. J Virol 2000; 74:914–922.PubMedCrossRefGoogle Scholar
  36. 36.
    Kamrud KI, Hooper JW, Elgh F, Schmaljohn CS. Comparison of the protective efficacy of naked DNA, DNA-based Sindbis replicon, and packaged Sindbis replicon vectors expressing Hantavirus structural genes in hamsters. Virology 1999; 263:209–219.PubMedCrossRefGoogle Scholar
  37. 37.
    Schlesinger S. Alphavirus vectors: development and potential therapeutic applications. Expert Opin Biol Ther 2001; 1:177–191.PubMedCrossRefGoogle Scholar
  38. 38.
    Houghton AN. Cancer antigens: immune recognition of self and altered self. J Exp Med 1994; 180:1–4.PubMedCrossRefGoogle Scholar
  39. 39.
    Allsopp TE, Scallan MF, Williams A, Fazakerley JK. Virus infection induces neuronal apoptosis: a comparison with trophic factor withdrawal. Cell Death Differ 1998; 5:50–59.PubMedCrossRefGoogle Scholar
  40. 40.
    Fazakerley JK, Allsopp TE. Programmed cell death in virus infections of the nervous system. Curr Top Microbiol Immunol 2001; 253:95–119.PubMedGoogle Scholar
  41. 41.
    Glasgow GM, McGee MM, Sheahan BJ, Atkins GJ. Death mechanisms in cultured cells infected by Semliki Forest virus. J Gen Virol 1997; 78:1559–1563.PubMedGoogle Scholar
  42. 42.
    Grandgirard D, Studer E, Monney L, Belser T, Fellay I, Borner C, Michel MR. Alphaviruses induce apoptosis in Bc1–2-overexpressing cells: evidence for a caspase-mediated, proteolytic inactivation of Bd-2. EMBO J 1998; 17:1268–1278.PubMedCrossRefGoogle Scholar
  43. 43.
    Griffin DE. The Gordon Wilson lecture: unique interactions between viruses, neurons and the immune system. Trans Am Clin Climatol Assoc 1995; 107:89–98.Google Scholar
  44. 44.
    Hardy PA, Mazzini MJ, Schweitzer C, Lundstrom K, Glode LM. Recombinant Semliki Forest virus infects and kills human prostate cancer cell lines and prostatic duct epithelial cells ex vivo. Int J Mol Med 2000; 5:241–245.PubMedGoogle Scholar
  45. 45.
    Jackson, A. C. and Rossiter, J. P. Apoptotic cell death is an important cause of neuronal injury in experimental Venezuelan equine encephalitis virus infection of mice. Acta Neuropathol (Berl) 1997; 93:349–353.CrossRefGoogle Scholar
  46. 46.
    Jan JT, Griffin DE. Induction of apoptosis by Sindbis virus occurs at cell entry and does not require virus replication. J Virol 1999; 73:10296–10302.PubMedGoogle Scholar
  47. 47.
    Jan JT, Chatterjee S, Griffin DE. Sindbis virus entry into cells triggers apoptosis by activating sphingomyelinase, leading to the release of ceramide. J Virol 2000; 74:6425–6432.PubMedCrossRefGoogle Scholar
  48. 48.
    Mastrangelo AJ, Zou S, Hardwick JM, Betenbaugh MJ. Antiapoptosis chemicals prolong productive lifetimes of mammalian cells upon Sindbis virus vector infection. Biotechnol Bioeng 1999; 65: 298–305.PubMedCrossRefGoogle Scholar
  49. 49.
    Murphy AM, Morris-Downes MM, Sheahan BJ, Atkins GJ. Inhibition of human lung carcinoma cell growth by apoptosis induction using Semliki Forest virus recombinant particles. Gene Ther 2000; 7:1477–1482.PubMedCrossRefGoogle Scholar
  50. 50.
    Murphy AM, Sheahan BJ, Atkins GJ. Induction of apoptosis in BCL-2-expressing rat prostate cancer cells using the Semliki Forest virus vector. Int J Cancer 2001; 94:572–578.PubMedCrossRefGoogle Scholar
  51. 51.
    Nargi-Aizenman JL, Griffin, DE. Sindbis virus-induced neuronal death is both necrotic and apoptotic and is ameliorated by N-methyl-D-aspartate receptor antagonists. J Virol 2001; 75:7114–7121.PubMedCrossRefGoogle Scholar
  52. 52.
    Nava VE, Rosen A, Veliuona MA, Clem RJ, Levine B, Hardwick JM. Sindbis virus induces apoptosis through a caspase-dependent, CrmA-sensitive pathway. J Virol 1998; 72:452–459.PubMedGoogle Scholar
  53. 53.
    Rosen A, Casciola-Rosen L, Ahearn J. Novel packages of viral and self-antigens are generated during apoptosis. JExp Med 1995; 181:1557–1561.CrossRefGoogle Scholar
  54. 54.
    Yamanaka R, Zullo SA, Tanaka R, Blaese M, Xanthopoulos KG. Enhancement of antitumor immune response in glioma models in mice by genetically modified dendritic cells pulsed with Semliki forest virus-mediated complementary DNA. J Neurosurg 2001; 94:474–481.PubMedCrossRefGoogle Scholar
  55. 55.
    Zrachia A, Dobroslav M, Blass M, Kazimirsky G, Kronfeld I, Blumberg PM, Kobiler D, Lustig S, Brodie C. Infection of glioma cells with Sindbis virus induces selective activation and tyrosine phosphorylation of protein kinase C delta. Implications for Sindbis virus-induced apoptosis. J Biol Chem 2002; 277:23693–23701.PubMedCrossRefGoogle Scholar
  56. 56.
    Ferguson TA, Herndon J, Elzey B, Griffith TS, Schoenberger S, Green DR. Uptake of apoptotic antigen-coupled cells by lymphoid dendritic cells and cross-priming of CD8(+) T cells produce active immune unresponsiveness. J Immunol 2002; 168:5589–5595.PubMedGoogle Scholar
  57. 57.
    Sauter B, Albert ML, Francisco L, Larsson M, Somersan S, Bhardwaj N. Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J Exp Med 2000; 191:423–434.PubMedCrossRefGoogle Scholar
  58. 58.
    Steinman RM, Turley S, Mellman I, Inaba K. The induction of tolerance by dendritic cells that have captured apoptotic cells. J Exp Med 2000; 191:411–416.PubMedCrossRefGoogle Scholar
  59. 59.
    Chernysheva AD, Kirou KA, Crow MK. T cell proliferation induced by autologous non-T cells is a response to apoptotic cells processed by dendritic cells. J Immunol 2002; 169:1241–1250.PubMedGoogle Scholar
  60. 60.
    Spisek R, Chevallier P, Morineau N, Milpied N, Avet-Loiseau H, Harousseau JL, Meflah K, Gregoire M. Induction of leukemia-specific cytotoxic response by cross-presentation of late-apoptotic leukemic blasts by autologous dendritic cells of nonleukemic origin. Cancer Res 2002; 62:2861–2868.PubMedGoogle Scholar
  61. 61.
    Schnurr M, Scholz C, Rothenfusser S, Galambos P, Dauer M, Robe J, Endres S, Eigler A. Apoptotic pancreatic tumor cells are superior to cell lysates in promoting cross-priming of cytotoxic T cells and activate NK and gammadelta T cells. Cancer Res 2002; 62:2347–2352.PubMedGoogle Scholar
  62. 62.
    Strome SE, Voss S, Wilcox R, Wakefield TL, Tamada K, Flies D, Chapoval A, Lu J, Kasperbauer JL, Padley D, Vile R, Gastineau D, Wettstein P, Chen L. Strategies for antigen loading of dendritic cells to enhance the antitumor immune response. Cancer Res 2002; 62:1884–1889.PubMedGoogle Scholar
  63. 63.
    Kotera Y, Shimizu K, Mule JJ. Comparative analysis of necrotic and apoptotic tumor cells as a source of antigen(s) in dendritic cell-based immunization. Cancer Res 2001; 61:8105–8109.PubMedGoogle Scholar
  64. 64.
    Paczesny S, Beranger S, Salzmann JL, Klatzmann D, Colombo BM. Protection of mice against leukemia after vaccination with bone marrow-derived dendritic cells loaded with apoptotic leukemia cells. Cancer Res 2001; 61:2386–2389.PubMedGoogle Scholar
  65. 65.
    Bellone M. Apoptosis, cross-presentation, and the fate of the antigen specific immune response. Apoptosis 2000; 5:307–314.PubMedCrossRefGoogle Scholar
  66. 66.
    Ferlazzo G, Semino C, Spaggiari GM, Meta M, Mingari MC, Melioli G. Dendritic cells efficiently cross-prime HLA class I-restricted cytolytic T lymphocytes when pulsed with both apoptotic and necrotic cells but not with soluble cell-derived lysates. Int Immunol 2000; 12:1741–1747.PubMedCrossRefGoogle Scholar
  67. 67.
    Jenne L, Arrighi JF, Jonuleit H, Saurat JH, Hauser C. Dendritic cells containing apoptotic melanoma cells prime human CD8+ T cells for efficient tumor cell lysis. Cancer Res 2000; 60:4446–4452.PubMedGoogle Scholar
  68. 68.
    Hoffmann TK, Meidenbauer N, Dworacki G, Kanaya H, Whiteside TL. Generation of tumor-specific T-lymphocytes by cross-priming with human dendritic cells ingesting apoptotic tumor cells. Cancer Res 2000; 60:3542–3549.PubMedGoogle Scholar
  69. 69.
    Henry F, Bretaudeau L, Hequet A, Barbieux I, Lieubeau B, Meflah K, Gregoire M. Role of antigenpresenting cells in long-term antitumor response based on tumor-derived apoptotic body vaccination. Pathobiology 1999; 67:306–310.PubMedCrossRefGoogle Scholar
  70. 70.
    Rovere P, Sabbadini MG, Vallinoto C, Fascio U, Zimmermann VS, Bondanza A, Ricciardi-Castagnoli P, Manfredi AA. Delayed clearance of apoptotic lymphoma cells allows cross-presentation of intracellular antigens by mature dendritic cells. J Leukoc Biol 1999; 66:345–349.PubMedGoogle Scholar
  71. 71.
    Rovere P, Vallinoto C, Bondanza A, Crosti MC, Rescigno M, Ricciardi-Castagnoli P, Rugarli C, Manfredi AA. Bystander apoptosis triggers dendritic cell maturation and antigen-presenting function. J Immunol 1998; 161:4467–4471.PubMedGoogle Scholar
  72. 72.
    Albert ML, Sauter B, Bhardwaj N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 1998; 392:86–89.PubMedCrossRefGoogle Scholar
  73. 73.
    Wagner EK, Hewlett MJ. Basic virology, ist ed. Malden, MA: Blackwell Science, 1999.Google Scholar
  74. 74.
    Davis NL, Brown KW, Johnston RE. A viral vaccine vector that expresses foreign genes in lymph nodes and protects against mucosal challenge. J Virol 1996; 70:3781–3787.PubMedGoogle Scholar
  75. 75.
    Berglund P, Sjoberg M, Garoff H, Atkins GJ, Sheahan BJ, Liljestrom P. Semliki Forest virus expression system: production of conditionally infectious recombinant particles. Biotech (NY) 1993; 11: 916–920.CrossRefGoogle Scholar
  76. 76.
    Bredenbeek PJ, Frolov I, Rice CM, Schlesinger S. Sindbis virus expression vectors: packaging of RNA replicons by using defective helper RNAs. J Virol 1993; 67:6439–6446.PubMedGoogle Scholar
  77. 77.
    Huang HV, Rice CM, Xiong C, Schlesinger S. RNA viruses as gene expression vectors. Virus Genes 1989; 3:85–91.PubMedCrossRefGoogle Scholar
  78. 78.
    Liljestrom P. Alphavirus expression systems. Curr Opin Biotechnol 1994; 5:495–500.PubMedCrossRefGoogle Scholar
  79. 79.
    Raju R, Subramaniam SV, Hajjou M. Genesis of Sindbis virus by in vivo recombination of nonreplicative RNA precursors. J Virol 1995; 69:7391–7401.PubMedGoogle Scholar
  80. 80.
    Weiss BG, Schlesinger S. Recombination between Sindbis virus RNAs. J Virol 1991; 65:4017–4025.PubMedGoogle Scholar
  81. 81.
    Smerdou C, Liljestrom P. Two-helper RNA system for production of recombinant Semliki forest virus particles. J Virol 1999; 73:1092–1098.PubMedGoogle Scholar
  82. 82.
    Polo JM, Belli BA, Driver DA, Frolov I, Sherrill S, Hariharan MJ, Townsend K, Perri S, Mento SJ, Jolly DJ, Chang SM, Schlesinger S, Dubensky TW, Jr. Stable alphavirus packaging cell lines for Sindbis virus and Semliki Forest virus-derived vectors. Proc Natl Acad Sci USA 1999; 96:4598–4603.PubMedCrossRefGoogle Scholar
  83. 83.
    Hsu KF, Hung CF, Cheng WF, He L, Slater LA, Ling M, Wu TC. Enhancement of suicidal DNA vaccine potency by linking Mycobacterium tuberculosis heat shock protein 70 to an antigen. Gene Ther 2001; 8:376–383.PubMedCrossRefGoogle Scholar
  84. 84.
    Andersson C, Vasconcelos NM, Sievertzon M, Haddad D, Liljeqvist S, Berglund P, Liljestrom P, Ahlborg N, Stahl S, Berzins K. Comparative immunization study using RNA and DNA constructs encoding a part of the Plasmodium falciparum antigen Pf332. Scand J Immunol 2001; 54:117–124.PubMedCrossRefGoogle Scholar
  85. 85.
    Leitner WW, Ying H, Driver DA, Dubensky TW, Restifo NP. Enhancement of tumor-specific immune response with plasmid DNA replicon vectors. Cancer Res 2000; 60:51–55.PubMedGoogle Scholar
  86. 86.
    DiCiommo DP, Bremner R. Rapid, high level protein production using DNA-based Semliki Forest virus vectors. J Biol Chem 1998; 273:18060–18066.PubMedCrossRefGoogle Scholar
  87. 87.
    Kohno A, Emi N, Kasai M, Tanimoto M, Saito H. Semliki Forest virus-based DNA expression vector: transient protein production followed by cell death. Gene Ther 1998; 5:415–418.PubMedCrossRefGoogle Scholar
  88. 88.
    Dubensky TW Jr, Driver DA, Polo JM, Belli BA, Latham EM, Ibanez CE, Chada S, Brumm D, Banks TA, Mento SJ, Jolly DJ, Chang SM. Sindbis virus DNA-based expression vectors: utility for in vitro and in vivo gene transfer. J Virol 1996; 70:508–519.PubMedGoogle Scholar
  89. 89.
    Johanning FW, Conry RM, LoBuglio AF, Wright M, Sumerel LA, Pike MJ, Curiel DT. A Sindbis virus mRNA polynucleotide vector achieves prolonged and high level heterologous gene expression in vivo. Nucleic Acids Res 1995; 23:1495–1501.PubMedCrossRefGoogle Scholar
  90. 90.
    Lundstrom K, Schweutzer C, Richards JG, Ehrengruber MU, Jenck F, Mulhardt, C. Semliki Forest virus vectors for in vitro and in vivo applications. Gene Ther Mol Biol 1999; 4:23–31.Google Scholar
  91. 91.
    Morris-Downes MM, Phenix KV, Smyth J, Sheahan BJ, Lileqvist S, Mooney DA, Liljestrom P, Todd D, Atkins GJ. Semliki Forest virus-based vaccines: persistence, distribution and pathological analysis in two animal systems. Vaccine 2001; 19:1978–1988.PubMedCrossRefGoogle Scholar
  92. 92.
    Klimp AH, van der Vaart E, Lansink PO, Withoff S, de Vries EG, Scherphof GL, Wilschut J, Daemen T. Activation of peritoneal cells upon in vivo transfection with a recombinant alphavirus expressing GM-CSF. Gene Ther 2001; 8:300–307.PubMedCrossRefGoogle Scholar
  93. 93.
    Roks AJ, Pinto YM, Paul M, Pries F, Stula M, Eschenhagen T, Orzechowski HD, Gschwendt S, Wilschut J, van Gilst WH. Vectors based on Semliki Forest virus for rapid and efficient gene transfer into non-endothelial cardiovascular cells: comparison to adenovirus. Cardiovasc Res 1997; 35:498–504.PubMedCrossRefGoogle Scholar
  94. 94.
    Withoff S, Glazenburg KL, van Veen ML, Kraak MM, Hospers GA, Storkel S, de Vries EG, Wilschut J, Daemen T. Replication-defective recombinant Semliki Forest virus encoding GM-CSF as a vector system for rapid and facile generation of autologous human tumor cell vaccines. Gene Ther 2001; 8:1515–1523.PubMedCrossRefGoogle Scholar
  95. 95.
    Daemen T, Pries F, Bungener L, Kraak M, Regts J, Wilschut J. Genetic immunization against cervical carcinoma: induction of cytotoxic T lymphocyte activity with a recombinant alphavirus vector expressing human papillomavirus type 16 E6 and E7. Gene Ther 2000; 7:1859–1866.PubMedCrossRefGoogle Scholar
  96. 96.
    Daemen T, Regts J, Holtrop M, Wilschut J. Immunization strategy against cervical cancer involving an alphavirus vector expressing high levels of a stable fusion protein of human papillomavirus 16 E6 and E7. Gene Ther 2002; 9:85–94.PubMedCrossRefGoogle Scholar
  97. 97.
    Cheng WF, Hung CF, Chai CY, Hsu KF, He L, Rice CM, Ling M, Wu TC. Enhancement of Sindbis virus self-replicating RNA vaccine potency by linkage of Mycobacterium tuberculosis heat shock protein 70 gene to an antigen gene. J Immunol 2001; 166:6218–6226.PubMedGoogle Scholar
  98. 98.
    Gileadi U, Moins-Teisserenc HT, Correa I, Booth BL Jr, Dunbar PR, Sewell AK, Trowsdale J, Phillips RE, Cerundolo V. Generation of an immunodominant CTL epitope is affected by proteasome subunit composition and stability of the antigenic protein. J Immunol 1999; 163:6045–6052.PubMedGoogle Scholar
  99. 99.
    Wu Y, Kipps TJ. Deoxyribonucleic acid vaccines encoding antigens with rapid proteasome-dependent degradation are highly efficient inducers of cytolytic T lymphocytes. J Immunol 1997; 159:6037–6043.PubMedGoogle Scholar
  100. 100.
    Grant EP, Michalek MT, Goldberg AL, Rock KL. Rate of antigen degradation by the ubiquitinproteasome pathway influences MHC class I presentation. J Immunol 1995; 155:3750–3758.PubMedGoogle Scholar
  101. 101.
    Falo LD Jr, Kovacsovics-Bankowski M, Thompson K, Rock KL. Targeting antigen into the phagocytic pathway in vivo induces protective tumour immunity. Nat Med 1995; 1:649–653.PubMedCrossRefGoogle Scholar
  102. 102.
    Goldberg AL, Rock KL. Proteolysis, proteasomes and antigen presentation. Nature 1992; 357:375–379.PubMedCrossRefGoogle Scholar
  103. 103.
    Townsend A, Bastin J, Gould K, Brownlee G, Andrew M, Coupar B, Boyle D, Chan S, Smith G. Defective presentation to class I-restricted cytotoxic T lymphocytes in vaccinia-infected cells is overcome by enhanced degradation of antigen. J Exp Med 1988; 168:1211–1224.PubMedCrossRefGoogle Scholar
  104. 104.
    Yewdell JW. Not such a dismal science: the economics of protein synthesis, folding, degradation and antigen processing. Trends Cell Biol 2001; 11:294–297.PubMedCrossRefGoogle Scholar
  105. 105.
    Heikema A, Agsteribbe E, Wilschut J, Huckriede A. Generation of heat shock protein-based vaccines by intracellular loading of gp96 with antigenic peptides. Immunol Lett 1997; 57:69–74.PubMedCrossRefGoogle Scholar
  106. 106.
    Van den Eynde B, Lethe B, Van Pel A, De Plaen E, Boon T. The gene coding for a major tumor rejection antigen of tumor P815 is identical to the normal gene of syngeneic DBA/2 mice. J Exp Med 1991; 173:1373–1384.PubMedCrossRefGoogle Scholar
  107. 107.
    Colmenero P, Liljestrom P, Jondal M. Induction of P815 tumor immunity by recombinant Semliki Forest virus expressing the 13 1 A gene. Gene Ther 1999; 6:1728–1733.PubMedCrossRefGoogle Scholar
  108. 108.
    Colmenero P, Chen M, Castanos-Velez E, Liljestrom P, Jondal M. Immunotherapy with recombinant SFV-replicons expressing the P815A tumor antigen or IL-12 induces tumor regression. Int J Cancer 2002; 98:554–560.PubMedCrossRefGoogle Scholar
  109. 109.
    Colmenero P, Berglund P, Kambayashi T, Biberfeld P, Liljestrom P, Jondal M. Recombinant Semliki Forest virus vaccine vectors: the route of injection determines the localization of vector RNA and subsequent T cell response. Gene Ther 2001; 8:1307–1314.PubMedCrossRefGoogle Scholar
  110. 110.
    Osterroth F, Garbe A, Fisch P, Veelken H. Stimulation of cytotoxic T cells against idiotype immunoglobulin of malignant lymphoma with protein-pulsed or idiotype-transduced dendritic cells. Blood 2000; 95:1342–1349.PubMedGoogle Scholar
  111. 111.
    Ying H, Zaks TZ, Wang RF, Irvine KR, Kammula US, Marincola FM, Leitner WW, Restifo NP. Cancer therapy using a self-replicating RNA vaccine. Nat Med 1999; 5:823–827.PubMedCrossRefGoogle Scholar
  112. 112.
    Schirrmacher V, Forg P, Dalemans W, Chlichlia K, Zeng Y, Fournier P, von Hoegen P. Intra-pinna antitumor vaccination with self-replicating infectious RNA or with DNA encoding a model tumor antigen and a cytokine. Gene Ther 2000; 7:1137–1147.CrossRefGoogle Scholar
  113. 113.
    Lu X, Silver J. Transmission of replication-defective Sindbis helper vectors encoding capsid and envelope proteins. J Virol Methods 2001; 91:59–65.PubMedCrossRefGoogle Scholar
  114. 114.
    Wahlfors JJ, Zullo SA, Loimas S, Nelson DM, Morgan RA. Evaluation of recombinant alphaviruses as vectors in gene therapy. Gene Ther 2000; 7:472–480.PubMedCrossRefGoogle Scholar
  115. 115.
    Frolov I, Frolova E, Schlesinger S. Sindbis virus replicons and Sindbis virus: assembly of chimeras and of particles deficient in virus RNA. J Virol 1997; 71:2819–2829.PubMedGoogle Scholar
  116. 116.
    Strauss JH, Wang KS, Schmaljohn AL, Kuhn RJ, Strauss EG. Host-cell receptors for Sindbis virus. Arch Virol Suppl 1994; 9:473–484.PubMedGoogle Scholar
  117. 117.
    Gardner JP, Frolov I, Perri S, Ji Y, MacKichan ML, zur Megede J, Chen M, Belli BA, Driver DA, Sherrill S, Greer CE, Otten GR, Barnett SW, Liu MA, Dubensky TW, Polo JM. Infection of human dendritic cells by a sindbis virus replicon vector is determined by a single amino acid substitution in the E2 glycoprotein. J Virol 2000; 74:11849–11857.PubMedCrossRefGoogle Scholar
  118. 118.
    Lundstrom K. Alphaviruses as tools in neurobiology and gene therapy. J Recept Signal Transduct Res 1999; 19:673–686.PubMedCrossRefGoogle Scholar
  119. 119.
    Tucker PC, Lee SH, Bui N, Martinie D, Griffin DE. Amino acid changes in the Sindbis virus E2 glycoprotein that increase neurovirulence improve entry into neuroblastoma cells. J Virol 1997; 71:6106–6112.PubMedGoogle Scholar
  120. 120.
    Symington J, Schlesinger MJ. Characterization of a Sinbis virus variant with altered host range. Arch Virol 1978; 58:127–136.PubMedCrossRefGoogle Scholar
  121. 121.
    Symington J, Schlesinger MJ. Isolation of a Sindbis virus variant by passage on mouse plasmacytoma cells. J Virol 1975; 15:1037–1041.PubMedGoogle Scholar
  122. 122.
    Ehrengruber MU, Lundstrom K, Schweitzer C, Heuss C, Schlesinger S, Gahwiler BH. Recombinant Semliki Forest virus and Sindbis virus efficiently infect neurons in hippocampal slice cultures. Proc Natl Acad Sci USA 1999; 96:7041–7046.PubMedCrossRefGoogle Scholar
  123. 123.
    Cheng WF, Hung CF, Hsu KF, Chai CY, He L, Ling M, Slater LA, Roden RB, Wu TC. Enhancement of sindbis virus self-replicating RNA vaccine potency by targeting antigen to endosomal/lysosomal compartments. Hum Gene Ther 2001; 12:235–252.PubMedCrossRefGoogle Scholar
  124. 124.
    Albert ML, Pearce SF, Francisco LM, Sauter B, Roy P, Silverstein RL, Bhardwaj N. Immature dendritic cells phagocytose apoptotic cells via alphavbeta5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J Exp Med 1998; 188:1359–1368.PubMedCrossRefGoogle Scholar
  125. 125.
    Cheng WF, Hung CH, Chai CY, Hsu KF, He L, Ling M, Wu TC. Enhancement of sindbis virus selfreplicating RNA vaccine potency by linkage of herpes simplex virus type 1 VP22 protein to antigen. J Virol 2001; 75:2368–2376.PubMedCrossRefGoogle Scholar
  126. 126.
    Cheng WF, Hung CF, Hsu KF, Chai CY, He L, Polo JM, Slater LA, Ling M, Wu TC. Cancer immunotherapy using Sindbis virus replicon particles encoding a VP22-antigen fusion. Hum Gene Ther 2002; 13:553–568.PubMedCrossRefGoogle Scholar
  127. 127.
    Lachman LB, Rao XM, Kremer RH, Ozpolat B, Kiriakova G, Price JE. DNA vaccination against neu reduces breast cancer incidence and metastasis in mice. Cancer Gene Ther 2001; 8:259–268.PubMedCrossRefGoogle Scholar
  128. 128.
    Hariharan MJ, Driver DA, Townsend K, Brumm D, Polo JM, Belli BA, Catton DJ, Hsu D, Mittelstaedt D, McCormack JE, Karavodin L, Dubensky TW Jr, Chang SM, Banks TA. DNA immunization against herpes simplex virus: enhanced efficacy using a Sindbis virus-based vector. J Virol 1998; 72:950–958.PubMedGoogle Scholar
  129. 129.
    Caley IJ, Betts MR, Irlbeck DM, Davis NL, Swanstrom R, Frelinger JA, Johnston RE. Humoral, mucosal, and cellular immunity in response to a human immunodeficiency virus type 1 immunogen expressed by a Venezuelan equine encephalitis virus vaccine vector. J Virol 1997; 71:3031–3038.PubMedGoogle Scholar
  130. 130.
    Velders MP, McElhiney S, Cassetti MC, Eiben GL, Higgins T, Kovacs GR, Elmishad AG, Kast WM, Smith LR. Eradication of established tumors by vaccination with Venezuelan equine encephalitis virus replicon particles delivering human papillomavirus 16 E7 RNA. Cancer Res 2001; 61:7861–7867.PubMedGoogle Scholar
  131. 131.
    Gardner JP, Donovan G, Morrissey D, Caley I, Durso RJ, Cohen M, et al. A novel alphavirus replicon vaccine encoding PSMA for immunotherapy of prostate cancer. Proc Am Assoc Cancer Res 2002; 43:609 (abst 3017).Google Scholar
  132. 132.
    Donovan GP, Gardner JP, Morrissey DM, Schulke N, Zhan C, Durso RJ, et al. Clinical development of immunotherapies targeting prostate specific membrane antigen (PSMA). Proc Am Soc Clin Oncol 2002; 21:25b (abstract 1909).Google Scholar
  133. 133.
    Joe AK, Foo HH, Kleeman L, Levine B. The transmembrane domains of Sindbis virus envelope glycoproteins induce cell death. J Virol 1998; 72:3935–3943.PubMedGoogle Scholar
  134. 134.
    Langenkamp A, Messi M, Lanzavecchia A, Sallusto F. Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nat Immunol 2000; 1:311–316.PubMedCrossRefGoogle Scholar
  135. 135.
    Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 2001; 413:732–738.PubMedCrossRefGoogle Scholar
  136. 136.
    Zeng Y, Cullen BR. RNA interference in human cells is restricted to the cytoplasm. RNA 2002; 8: 855–860.PubMedCrossRefGoogle Scholar
  137. 137.
    Carmichael GG. Medicine: silencing viruses with RNA. Nature 2002; 418:379–380.PubMedCrossRefGoogle Scholar
  138. 138.
    Boehm M, Yoshimoto T, Crook MF, Nallamshetty S, True A, Nabel GJ, Nabel EG. A growth factordependent nuclear kinase phosphorylates p27(Kip 1) and regulates cell cycle progression. EMBO J 2002; 21:3390–3401.PubMedCrossRefGoogle Scholar
  139. 139.
    Cullen BR. RNA interference: antiviral defense and genetic tool. Nat Immunol 2002; 3:597–599.PubMedCrossRefGoogle Scholar
  140. 140.
    Gitlin L, Karelsky S, Andino R. Short interfering RNA confers intracellular antiviral immunity in human cells. Nature 2002; 418:430–434.PubMedCrossRefGoogle Scholar
  141. 141.
    Lee NS, Dohjima T, Bauer G, Li H, Li MJ, Ehsani A, Salvaterra P, Rossi, J. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol 2002; 20:500–505.PubMedGoogle Scholar
  142. 142.
    Smith SM, Maldarelli F, Jeang KT. Efficient expression by an alphavirus replicon of a functional ribozyme targeted to human immunodeficiency virus type 1. J Virol 1997; 71:9713–9721.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Edward L. Nelson
  • Jonathan Smith

There are no affiliations available

Personalised recommendations