Skip to main content

Molecular Pharmacology of the Metabotropic Glutamate Receptors

  • Chapter

Abstract

(S)-Glutamate (Glu) is the major excitatory neurotransmitter in the central nervous system (CNS), where it plays a key role in a wide range of brain functions, such as neural plasticity, memory formation, and neural development (1). On the other hand, Glu can also act as a neurotoxin under certain conditions, especially when energy supply is reduced. Excessive glutamatergic signaling has been implicated in acute neurotoxic insults such as ischemia, stroke, and epilepsy, and in multiple chronic neurodegenerative states like Parkinson’s disease, amyotrophic lateral sclerosis (ALS), Huntington’s chorea, and dementia. Furthermore, glutamatergic mechanisms have been proposed to contribute to psychiatric disorders like schizophrenia and anxiety, and modulation of glutamatergic transmission has been shown to be beneficial on certain forms of pain (2–4).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dingledine, R. and McBain, C. J. (1999) Glutamate and aspartate, in Basic Neurochemistry ( Siegel, G. J., Agranoff, B. W., Albers, R. W., Fisher, S. K., and Uhler, M. D., eds.), Lippencott-Raven, Philadelphia, pp. 315–333.

    Google Scholar 

  2. Bräuner-Osborne, H., Egebjerg, J., Nielsen, E. O., Madsen, U., and Krogsgaard-Larsen, P. (2000) Ligands for glutamate receptors: design and therapeutic prospects. J. Med. Chem. 43, 2609–2645.

    Article  PubMed  CAS  Google Scholar 

  3. Conn, P. J. and Pin, J.-P. (1997) Pharmacology and functions of metabotropic glutamate receptors. Annu. Rev. Pharmacol. Toxicol. 37, 205–237.

    Article  PubMed  CAS  Google Scholar 

  4. Dingledine, R., Borges, K., Bowie, D., and Traynelis, S. F. (1999) The glutamate receptor ion channels. Pharmacol. Rev. 51, 7–61.

    PubMed  CAS  Google Scholar 

  5. Hohmann, M. and Heinemann, S. (1994) Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31–108.

    Article  Google Scholar 

  6. Nakanishi, S. (1994) Metabotropic glutamate receptors: synaptic transmission, modulation, and plasticity. Neuron 13, 1031–1037.

    Article  PubMed  CAS  Google Scholar 

  7. Brown, E. M. (1999) Physiology and patophysiology of the extracellular calcium sensing receptor. Am. J. Med. 106, 238–253.

    Article  PubMed  CAS  Google Scholar 

  8. Möhler, H. and Fritschy, J.-M. (1999) GABAB receptors make it to the top-as dimers. Trends Pharmacol. Sci. 20, 87–89.

    Article  PubMed  Google Scholar 

  9. Nelson, G., Hoon, M. A., Chandrashekar, J., Zhang, Y., Ryba, N. J., and Zuker, C. S. (2001) Mammalian sweet taste receptors. Cell 106, 381–390.

    Article  PubMed  CAS  Google Scholar 

  10. Schoepp, D. D., Jane, D. E., and Monn, J. A. (1999) Pharmacological agents acting at subtypes of metabotropic glutamate receptors. Neuropharmacology 38, 1431–1476.

    Article  PubMed  CAS  Google Scholar 

  11. Pin, J.-P., de Colle, C., Bessis, A. S., and Acher, F. (1999) New perspectives for the development of selective metabotropic glutamate receptor ligands. Eur. J. Pharmacol. 375, 277–294.

    Article  PubMed  CAS  Google Scholar 

  12. Anwyl, R. (1999) Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. Brain Res. Brain Res. Rev. 29, 83–120.

    Article  PubMed  CAS  Google Scholar 

  13. Heuss, C., Scanziani, M., Gahwiler, B. H., and Gerber, U. (1999) G protein-independent signaling mediated by metabotropic glutamate receptors. Nat. Neurosci. 2, 1070–1077.

    Article  PubMed  CAS  Google Scholar 

  14. Lujan, R., Nusser, Z., Roberts, J. D., Shigemoto, R., and Somogyi, P. (1996) Perisynaptic location of metabotropic glutamate receptors mGluR 1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus. Eur. J. Neurosci. 8, 1488–1500.

    Article  PubMed  CAS  Google Scholar 

  15. Shigemoto, R., Kinoshita, A., Wada, E., et al. (1997) Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J. Neurosci. 17, 7503–7522.

    PubMed  CAS  Google Scholar 

  16. Bordi, F. and Ugolini, A. (1999) Group I metabotropic glutamate receptors: implications for brain diseases. Prog. Neurobiol. 59, 55–79.

    Article  PubMed  CAS  Google Scholar 

  17. Hermans, E. and Challiss, R. A. (2001) Structural, signalling and regulatory properties of the group I metabotropic glutamate receptors: prototypic family C G protein-coupled receptors. Biochem. J. 359, 465–484.

    Article  PubMed  CAS  Google Scholar 

  18. Schoepp, D. D. (2001) Unveiling the functions of presynaptic metabotropic glutamate receptors in the central nervous system. J. Pharmacol. Exp. Ther. 299, 12–20.

    PubMed  CAS  Google Scholar 

  19. Cartmell, J. and Schoepp, D. D. (2000) Regulation of neurotransmitter release by metabotropic glutamate receptors. J. Neurochem. 75, 889–907.

    Article  PubMed  CAS  Google Scholar 

  20. Shigemoto, R., Kulik, A., Roberts, J. D., Ohishi, H., Nusser, Z., Kaneko, T., and Somogyi, P. (1996) Target-cell-specific concentration of a metabotropic glutamate receptor in the presynaptic active zone. Nature 381, 523–525.

    Article  PubMed  CAS  Google Scholar 

  21. Nakanishi, S., Nakajima, Y., Masu, M., et al. (1998) Glutamate receptors: brain function and signal transduction. Brain Res. Rev. 26, 230–235.

    Article  PubMed  Google Scholar 

  22. Romano, C., Yang, W.-L., and O’Malley, K. L. (1996) Metabotropic glutamate receptor 5 is a disulfide-linked dimer. J. Biol. Chem. 271, 28612–28616.

    Article  PubMed  CAS  Google Scholar 

  23. Bai, M., Trivedi, S., and Brown, E. M. (1998) Dimerization of the extracellular calcium-sensing receptor (CaR) on the cell surface of CaR-transfected HEK293. J. Biol. Chem. 273, 23605–23610.

    Article  PubMed  CAS  Google Scholar 

  24. Pace, A. J., Gama, L., and Breitwieser, G. E. (1999) Dimerization of the calcium-sensing receptor occurs within the extracellular domain and is eliminated by Cys-Ser mutations at Cys161 and Cys236. J. Biol. Chem. 274, 11629–11634.

    Article  PubMed  CAS  Google Scholar 

  25. Tsuji, Y., Shimada, Y., Takeshita, T., et al. (2000) Cryptic dimer interface and domain organization of the extracellular region of metabotropic glutamate receptor subtype 1. J. Biol. Chem. 275, 28144–28151.

    PubMed  CAS  Google Scholar 

  26. Ray, K., Hauschild, B. C., Steinbach, P. J., Goldsmith, P. K., Hauache, O., and Spiegel, A. M. (1999) Identification of the cysteine residues in the amino-terminal extracellular domain of the human Cat+ receptor critical for dimerization. J. Biol. Chem. 274, 27642–27650.

    Article  PubMed  CAS  Google Scholar 

  27. Ray, K. and Hauschild, B. C. (2000) Cys-140 is critical for metabotropic glutamate receptor-1 (mGluR-1) dimerization. J. Biol. Chem. 275, 34245–34251.

    Article  PubMed  CAS  Google Scholar 

  28. Romano, C., Miller, J. K., Hyrc, K., et al. (2000) Covalent and noncovalent interactions mediate metabotropic glutamate teceptor mG1u5 dimerization. Mol. Pharmacol. 59, 46–53.

    Google Scholar 

  29. Takahashi, K., Tsuchida, K., Tanabe, Y., Masayuki, M., and Nakanishi, S. (1993) Role of the large extracellular domain of metabotropic glutamate receptors in agonist selectivity determination. J. Biol. Chem. 268, 19341–19345.

    PubMed  CAS  Google Scholar 

  30. O’Hara, P. J., Sheppard, P. O., Thögersen, H., et al. (1993) The ligand-binding domain in metabotropic glutamate receptor is related to bacterial periplasmic binding proteins. Neuron 11, 41–52.

    Article  PubMed  Google Scholar 

  31. Tones, M. A., Bendali, N., Flor, P. J., Knöpfel, T., and Kuhn, R. (1995) The agonist selectivity of a class III metabotropic glutamate receptor, human mGluR4a, is determined by the N-terminal extracellular domain. NeuroReport 7, 117–120.

    PubMed  CAS  Google Scholar 

  32. Bräuner-Osborne, H., Jensen, A. A., Sheppard, R O., O’Hara, R, and Krogsgaard-Larsen, P. (1999) The agonist-binding domain of the calcium-sensing receptor is located at the amino-terminal domain. J. Biol. Chem. 274, 18382–18386.

    Article  PubMed  Google Scholar 

  33. Hammerland, L. G., Krapcho, K. J., Garrett, J. E., Alasti, N., Hung, B. C. R, Simin, R. T., et al. (1999) Domains determing ligand specificity for Cat+ receptors. Mol. Pharmacol. 55, 642–648.

    PubMed  CAS  Google Scholar 

  34. Malitschek, B., Schweizer, C., Keir, M., et al. (1999) The N-terminal domain of yaminobutyric acidB receptors is sufficient to specify agonist and antagonist binding. Mol. Pharmacol. 56, 448–454.

    PubMed  CAS  Google Scholar 

  35. Quiocho, F. A. and Ledvina, P. S. (1996) Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: variation of common themes. Mol. Microbiol. 20, 17–25.

    Article  PubMed  CAS  Google Scholar 

  36. Hampson, D. R., Huang, X.-P., Pekhletski, R., Peltekova, V., Hornby, G., Thomsen, C., and Tht gersen, H. (1999) Probing the ligand-binding domain of the mGluR4 subtype of metabotropic glutamate receptor. J. Biol. Chem. 274, 33488–33495.

    Article  PubMed  CAS  Google Scholar 

  37. Galvez, T., Parmentier, M.-L., Joly, C., et al. (1999) Mutagenesis and modeling of the GABAB receptor extracellular domain support a Venus Flytrap mechanism for ligand binding. J. Biol. Chem. 274, 13362–13369.

    Article  PubMed  CAS  Google Scholar 

  38. Stern-Bach, Y., Bettler, B., Hartley, M., Sheppard, P. 0., O’Hara, P. J., and Heinemann, S. F. (1994) Agonist selectivity of glutamate receptors is specified by two domains structurally related to bacterial amino acid-binding proteins. Neuron 13, 1345–1357.

    Article  PubMed  CAS  Google Scholar 

  39. Kunishima, N., Shimada, Y., Tsuji, Y., et al. (2000) Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature 407, 971–976.

    Article  PubMed  CAS  Google Scholar 

  40. Tsuchiya, D., Kunishima, N., Kamiya, N., Jingami, H., and Morikawa, K. (2002) Structural views of the ligand-binding cores of a metabotropic glutamate receptor complexed with an antagonist and both glutamate and Gd3+. Proc. Natl. Acad. Sci. USA 99, 2660–2665.

    Article  PubMed  CAS  Google Scholar 

  41. Okamoto, T., Sekiyama, N., Otsu, M., Shimada, Y., Sato, A., Nakanishi, S., and Jingami, H. (1998) Expression and purification of the extracellular ligand binding region of metabotropic glutamate receptor subtype 1. J. Biol. Chem. 273, 13089–13096.

    Article  PubMed  CAS  Google Scholar 

  42. Han, G. and Hampson, D. R. (1999) Ligand binding of the amino-terminal domain of the mGluR4 subtype of metabotropic glutamate receptor. J. Biol. Chem. 274, 10008–10013.

    Article  PubMed  CAS  Google Scholar 

  43. Peltekova, V., Han, G., Soleymanlou, N., and Hampson, D. R. (2000) Constraints on proper folding of the amino terminal domains of group III metabotropic glutamate receptors. Mol. Brain. Res. 76, 180–190.

    Article  PubMed  CAS  Google Scholar 

  44. Lefkowitz, R. J., Cotecchia, S., Samama, P., and Costa, T. (1993) Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins. Trends Pharmacol. Sci. 14, 303–307.

    Article  PubMed  CAS  Google Scholar 

  45. Jensen, A. A., Greenwood, J. R., and Bräuner-Osborne, H. (2002) The dance of the clams: twists and turns in the family C GPCR homodimer. Trends Pharmacol Sci. 23, 491–493.

    Article  PubMed  CAS  Google Scholar 

  46. Bertrand, H.-O., Bessis, A.-S., Pin, J.-P., and Acher, F. C. (2002) Common and selective molecular determinants involved in metabotopic glutamate receptor agonist activity. J. Med. Chem. 45, 3171–3183.

    Article  PubMed  CAS  Google Scholar 

  47. Jensen, A. A., Sheppard, P. O., O’Hara, P. J., Krogsgaard-Larsen, P., and Bräuner-Osborne, H. (2000) The role of Arg78 in the metabotropic glutamate receptor mGlu1 for agonist binding and selectivity. Eur. J Pharmacol. 397, 247–253.

    Google Scholar 

  48. Sato, T., Shimada, Y., Nagasawa, N., Nakanishi, S., and Jingami, H. (2003) Amino acid mutagenesis of the ligand binding site and the dimer interface of the metabotropic glutamate receptor 1: Identification of crucial residues for setting the activated state. J. Biol. Chem. 278, 4314–4321.

    Article  PubMed  CAS  Google Scholar 

  49. Malherbe, P., Knoflach, F., Broger, C., et al. (2001) Identification of essential residues involved in the glutamate binding pocket of the group II metabotropic glutamate receptor. Mol. Pharmacol. 60, 944–954.

    PubMed  CAS  Google Scholar 

  50. Rosemond, E., Peltekova, V., Naples, M., ThOgersen, H., and Hampson, D. R. (2002) Molecular determinants of high affinity binding to group III metabotropic glutamate receptors. J. Biol. Chem. 277, 7333–7340.

    Article  PubMed  CAS  Google Scholar 

  51. Bessis, A. S., Rondard, P., Gaven, F., et al. (2002) Closure of the Venus flytrap module of mGlu8 receptor and the activation process: insights from mutations converting antagonists into agonists. Proc. Natl. Acad. Sci. USA 99, 11097–11102.

    Article  PubMed  CAS  Google Scholar 

  52. Armstrong, N., Sun, Y., Chen, G.-Q., and Goaux, E. (1998) Structure of a glutamate-receptor ligand-binding core in complex with kainate. Nature 395, 913–917.

    Article  PubMed  CAS  Google Scholar 

  53. Armstrong, N. and Gouaux, E. (2000) Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: crystal structures of the GluR2 ligand binding core. Neuron 28, 165–181.

    Article  PubMed  CAS  Google Scholar 

  54. Zhang, Z., Sun, S., Quinn, S. J., Brown, E. M., and Bai, M. (2001) The extracellular calcium-sensing receptor dimerizes through multiple types of intermolecular interactions. J. Biol. Chem. 276, 5316–5322.

    Article  PubMed  CAS  Google Scholar 

  55. Jensen, A. A., Spalding, T. A., Burstein, E. S., et al. (2000) Functional importance of the Ala16-Pro136 region in the calcium-sensing receptor: constitutive activity and inverse agonism in a family C G protein coupled receptor. J. Biol. Chem. 275, 29547–29555.

    Article  PubMed  CAS  Google Scholar 

  56. Reyes-Cruz, G., Hu, J., Goldsmith, P. K., Steinbach, P. J., and Spiegel, A. M. (2001) Human Cat+ receptor extracellular domain. Analysis of function of lobe I loop deletion mutants. J. Biol. Chem. 276, 32145–32151.

    Article  PubMed  CAS  Google Scholar 

  57. Kubo, Y., Miyashita, T., and Murata, Y. (1998) Structural basis for a Cat+-sensing function of the metabotropic glutamate receptors. Science 279, 1722–1725.

    Article  PubMed  CAS  Google Scholar 

  58. Nash, M. S., Saunders, R., Young, K. W., Challiss, R. A., and Nahorski, S. R. (2001) Reassessment of the Cat+ sensing property of a type I metabotropic glutamate receptor by simultaneous measurement of inositol 1,4,5-trisphosphate and Cat+ in single cells. J. Biol. Chem. 276, 19286–19293.

    Article  PubMed  CAS  Google Scholar 

  59. Jensen, A. A., Sheppard, P. O., Jensen, L. B., O’Hara, P. J., and Bräuner-Osborne, H. (2001) Construction of a high affinity zinc binding site in the metabotropic glutamate receptor mGluR1. Noncompetitive antagonism from the amino-terminal domain of a family C G protein-coupled receptor. J. Biol. Chem. 276, 10110–10118.

    Article  PubMed  CAS  Google Scholar 

  60. Hu, J., Hauache, O., and Spiegel, A. M. (2000) Human Cat+ receptor cysteine rich-domain. J. Biol. Chem. 275, 16382–16389.

    Article  PubMed  CAS  Google Scholar 

  61. Fan, G.-F., Ray, K., Zhao, X., Goldsmith, P. K., and Spiegel, A. M. (1998) Mutational analysis of the cysteines in the extracellular domian of the human Cat+ receptor: effects on cell surface expression, dimerization and signal transduction. FEBS Lett. 436, 353–356.

    Article  PubMed  CAS  Google Scholar 

  62. Hu, J., Reyes-Cruz, G., Goldsmith, P. K., and Spiegel, A. M. (2001) The Venus’s-flytrap and cystein-rich domains of the human Cat+ receptor are not linked by disulfide bonds. J. Biol. Chem. 276, 6901–6904.

    Article  PubMed  CAS  Google Scholar 

  63. Gether, U. (2000) Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr. Rev. 21, 90–113.

    Article  PubMed  CAS  Google Scholar 

  64. Palczewski, K., Kumasaka, T., Hori, T., et al. (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289, 739–745.

    Article  PubMed  CAS  Google Scholar 

  65. Carroll, F. Y., Stolle, A., Beart, P. M., et al. (2001) BAY36–7620: a potent non-competitive mGlul receptor antagonist with inverse agonist activity. Mol. Pharmacol. 59, 965–973.

    PubMed  CAS  Google Scholar 

  66. Litschig, S., Gasparini, F., Rueegg, D., et al. (1999) CPCCOEt, a noncompetitive metabotropic glutamate receptor 1 antagonist, inhibits receptor signaling without affecting glutamate binding. Mol. Pharmacol. 55, 453–461.

    PubMed  CAS  Google Scholar 

  67. Pagano, A., Rüegg, D., Litschig, S., et al. (2000) The non-competitive antagonists MPEP and CPCCOEt interact with overlapping binding pockets in the transmembrane region of group-I glutamate receptors. J. Biol. Chem. 275, 35750–35758.

    Article  Google Scholar 

  68. Knoflach, F., Mutel, V., Jolidon, S., et al. (2001) Positive allosteric modulators of metabotropic glutamate 1 receptor: characterization, mechanism of action, and binding site. Proc. Natl. Acad. Sci. USA 98, 13402–13407.

    Article  PubMed  CAS  Google Scholar 

  69. Malherbe, P. N. K., Knoflach, F., Zenner, M. T., et al. (2003) Mutational analysis and molecular modeling of the allosteric binding site of a novel, selective, non-competitive antagonist of the metabotropic glutamate 1 receptor. J. Biol. Chem. 278, 8340–8347.

    Article  PubMed  CAS  Google Scholar 

  70. Flor, P. J., Maj, M., Dragic, Z., et al. (2002) Positive allosteric modulators of metabotropic glutamate receptor subtype 4: pharmacological and molecular characterization. Neuropharmacology 43, 286.

    Google Scholar 

  71. Mathiesen, J. M., Svendsen, N., Bräuner-Osborne, H., Thomsen, C., and Ramirez, M. T. (2003) Positive allosteric modulation of human metabotropic glutamate receptor 4 (hmGluR4) by SIB-1893 and MPEP. Br. J. Pharmacol. 138, 1026–1030.

    Article  PubMed  CAS  Google Scholar 

  72. Tucek, S. and Proska, J. (1995) Allosteric modulation of muscarinic acetylcholine receptors. Trends Pharmacol. Sci. 16, 205–212.

    Article  PubMed  CAS  Google Scholar 

  73. Wess, J. (1998) Molecular basis of receptor/G protein-coupling selectivity. Pharmacol. Ther. 80, 231–264.

    Article  PubMed  CAS  Google Scholar 

  74. Pin, J.-P., Joly, C., Heinemann, S. F., and Bockaert, J. (1994) Domains involved in the specificity of G protein activation in phospholipase C-coupled metabotropic glutamate receptors. EMBO J. 13, 342–348.

    PubMed  CAS  Google Scholar 

  75. Gomeza, J., Joly, C., Kuhn, R., Knöpfel, T., Bockaert, J., and Pin, J.-P. (1996) The second intracellular loop of metabotropic glutamate receptor 1 cooperates with the other intracellular domains to control coupling to G proteins. J. Biol. Chem. 271, 2199–2205.

    Article  PubMed  CAS  Google Scholar 

  76. Francesconi, A. and Duvoisin, R. M. (1998) Role of the second and third intracellular loops of metabotropic glutamate receptors in mediating dual signal transduction activation. J. Biol. Chem. 273, 5615–5624.

    Article  PubMed  CAS  Google Scholar 

  77. Mary, S., Gomeza, J., Prézeau, L., Bockaert, J., and Pin, J.-P. (1998) A cluster of basic residues in the carboxyl-terminal tail of the short metabotropic glutamate receptor 1 variants impairs their coupling to phospholipase C../. Biol. Chem. 273, 425–432.

    Article  CAS  Google Scholar 

  78. Parmentier, M. L., Joly, C., Restituito, S., Bockaert, J., Grau, Y., and Pin, J.-P. (1998) The G protein-coupling profile of metabotropic glutamate receptors, as determined with exogenous G proteins, is independent of their ligand recognition domain. Mol. Pharmacol. 53, 778–786.

    PubMed  CAS  Google Scholar 

  79. Joly, C., Gomeza, J., Brabet, I., Curry, K., Bockaert, J., and Pin, J.-P. (1995) Molecular, functional, and pharmacological characterization of the metabotropic glutamate receptor type 5 splice variants: comparison with mGluRl. J. Neurosci. 15, 3970–3981.

    PubMed  CAS  Google Scholar 

  80. Pin, J.-P., Waeber, C., Prezeau, L., Bockaert, J., and Heinemann, S. F. (1992) Alternative splicing generates metabotropic glutamate receptors inducing different patterns of calcium release in Xenopus oocytes. Proc. Natl. Acad. Sci. USA 89, 10331–10335.

    Article  PubMed  CAS  Google Scholar 

  81. Flor, P. J., Gomeza, J., Tones, M. A., Kuhn, R., Pin, J.-P., and Knöpfel, T. (1996) The C-terminal domain of the mGluR1 metabotropic glutamate receptor affects sensitivity to agonists. J. Neurochem. 67, 58–63.

    Article  PubMed  CAS  Google Scholar 

  82. Prézeau, L., Gomeza, J., Ahern, S., Mary, S., Galvez, T., Bockaert, J., and Pin, J.-P. (1996) Changes in the carboxyl-terminal of metabotropic glutamate receptor 1 by alternative splicing generate receptors with differing agonist-independent activity. Mol. Pharmacol. 49, 422–429.

    PubMed  Google Scholar 

  83. Chan, W. Y., Soloviev, M. M., Ciruela, F., and Mcllhenney, R. A. J. (2001) Molecular determinants of metabotropic glutamate lb trafficking. Mol. Cell. Neurosci. 17, 577–588.

    Article  PubMed  CAS  Google Scholar 

  84. Francesconi, A. and Duvoisin, R. (2002) Alternative splicing unmasks dendritic and axonal targeting signals in metabotropic glutamate receptor 1. J. Neurosci. 22, 2196–2205.

    PubMed  CAS  Google Scholar 

  85. Gouldson, P. R., Higgs, C., Smith, R. E., Dean, M. K., Gkoutos, G. V., and Reynolds, C. A. (2000) Dimerization and domain swapping in G protein-coupled receptors. A computational study. Neuropsychopharmacology 23, S60 - S77.

    Article  PubMed  CAS  Google Scholar 

  86. Zhao, X., Hauache, O., Goldsmith, P. K., Collins, R., and Spiegel, A. M. (1999) A mis-sense mutation in the seventh transmembrane domain constitutively activates the human Cat+ receptor. FEBS Lett. 448, 180–184.

    Article  PubMed  CAS  Google Scholar 

  87. Hu, J., Reyes-Cruz, G., Chen, W., Jacobson, K. A., and Spiegel, A. M. (2002) Identification of acidic residues in the extracellular loops of the seven-transmembrane domain of the human Cat+ receptor critical for response to Cat+ and a positive allosteric modulator. J. Biol. Chem. 277, 46622–46631.

    Article  PubMed  CAS  Google Scholar 

  88. Margeta-Mitrovic, M., Jan, Y. N., and Jan, L. Y. (2001) Ligand-induced signal transduction within heterodimeric GABAB receptor. Proc. Natl. Acad. Sci. USA 98, 14643–14648.

    Article  PubMed  CAS  Google Scholar 

  89. Bai, M., Trivedi, S., Kifor, O., Quinn, S. J., and Brown, E. M. (1999) Intermolecular interactions between dimeric calcium-sensing receptor monomers are important for its normal function. Proc. Natl. Acad. Sci. USA 96, 2834–2839.

    Article  PubMed  CAS  Google Scholar 

  90. Parmentier, M. L., Prezeau, L., Bockaert, J., and Pin, J. R. (2002) A model for the functioning of family 3 GPCRs. Trends Pharmacol. Sci. 23, 268–274.

    Article  PubMed  CAS  Google Scholar 

  91. Ango, F., Prezeau, L., Muller, T., et al. (2001) Agonist-independent activation of metabotropic glutamate receptors by the intracellular protein Homer. Nature 411, 962–965.

    Article  PubMed  CAS  Google Scholar 

  92. Alagarsamy, S., Sorensen, S. D., and Conn, R. J. (2001) Coordinate regulation of metabotropic glutamate receptors. Curr. Opin. Neurobiol. 11, 357–362.

    Article  PubMed  CAS  Google Scholar 

  93. De Blasi, A., Conn, P. J., Pin, J.-P., and Nicoletti, F. (2001) Molecular determinants of metabotropic glutamate receptor signaling. Trends Pharmacol. Sci. 22, 114–120.

    Article  PubMed  Google Scholar 

  94. Dale, L. B., Babwah, A. V., and Ferguson, S. S. (2001) Mechanisms of metabotropic glutamate receptor desensitization: role in the patterning of effector enzyme activation. Neurochem. Int. 41, 319–326.

    Article  Google Scholar 

  95. Catania, M. V., Aronica, E., Sortino, M. A., Canonico, P. L., and Nicoletti, F. (1991) Desensitization of metabotropic glutamate receptors in neuronal cultures. J. Neurochem. 56, 1329–1335.

    Article  PubMed  CAS  Google Scholar 

  96. Schoepp, D. D. and Johnson, B. G. (1988) Selective inhibition of excitatory amino acid-stimulated phosphoinositide hydrolysis in the rat hippocampus by activation of protein kinase C. Biochem. Pharmacol. 37, 4299–4305.

    Article  PubMed  CAS  Google Scholar 

  97. Balazs, R., Miller, S., Romano, C., de Vries, A., Chun, Y., and Cotman, C. W. (1997) Metabotropic glutamate receptor mGluR5 in astrocytes: pharmacological properties and agonist regulation. J. Neurochem. 69, 151–163.

    Article  PubMed  CAS  Google Scholar 

  98. Alaluf, S., Mulvihill, E. R., and Mcllhinney, R. A. J. (1995) Rapid agonist mediated phosphorylation of the metabotropic glutamate receptor la by protein kinase C in permanently transfected BHK cells. FEBS Lett. 367, 301–305.

    Article  PubMed  CAS  Google Scholar 

  99. Gereau, R. W. and Heinemann, S. F. (1998) Role of protein kinase C phosphorylation in rapid desensitization of metabotropic glutamate receptor 5. Neuron 20, 143–151.

    Article  PubMed  CAS  Google Scholar 

  100. Ciruela, F., Giacometti, A., and Mcllhinney, R. A. (1999) Functional regulation of metabotropic glutamate receptor type lc: a role for phosphorylation in the desensitization of the receptor. FEBS Lett. 462, 278–282.

    Article  PubMed  CAS  Google Scholar 

  101. Francesconi, A. and Duvoisin, R. (2000) Opposing effects of protein kinase C and protein kinase A on metabotropic glutamate receptor signaling: selective desensitization of the inositol trisphosphate/Ca2+ pathway by phosphorylation of the receptor-G protein-coupling domain. Proc. Natl. Acad. Sci. USA 97, 6185–6190.

    Article  PubMed  CAS  Google Scholar 

  102. Rodriguez-Moreno, A., Sistiaga, A., Lerma, J., and Sanchez-Prieto, J. (1998) Switch from facilitation to inhibition of excitatory synaptic transmission by group I mGluR desensitization. Neuron 21, 1477–1486.

    Article  PubMed  CAS  Google Scholar 

  103. Mundell, S. J., Pula, G., Carswell, K., Roberts, P. J., and Kelly, E. (2003) Agonist-induced internalization of metabotropic glutamate receptor 1A: structural determinants for protein kinase C- and G protein-coupled receptor kinase-mediated internalization. J. Neurochem. 84, 294–304.

    Article  PubMed  CAS  Google Scholar 

  104. Minakami, R., Jinnai, N., and Sugiyama, H. (1997) Phosphorylation and calmodulin binding of the metabotropic glutamate receptor subtype 5 (mGluR5) are antagonistic in vitro. J. Biol. Chem. 272, 20291–20298.

    Article  PubMed  CAS  Google Scholar 

  105. Alagarsamy, S., Marino, M. J., Rouse, S. T., Gereau IV, R. W., Heinemann, S. F., and Conn, P. J. (1999) Activation of NMDA receptors reverses desensitization of mGluR5 in native and recombinant systems. Nat. Neurosci. 2, 234–240.

    Article  PubMed  CAS  Google Scholar 

  106. Kawabata, S., Tsutsumi, R., Kohara, A., Yamaguchi, T., Nakanishi, S., and Okada, M. (1996) Control of calcium oscillations by phosphorylation of metabotropic glutamate receptors. Nature 383, 89–92.

    Article  PubMed  CAS  Google Scholar 

  107. Swartz, K. J., Merritt, A., Bean, B. P., and Lovinger, D. M. (1993) Protein kinase C modulates glutamate receptor inhibition of Ca2+ channels and synaptic transmission. Nature 361, 165–168.

    Article  PubMed  CAS  Google Scholar 

  108. Macek, T. A., Schaffhauser, H., and Conn, R. J. (1998) Protein kinase C and A3 adenosine receptor activation inhibit presynaptic metabotropic glutamate receptor (mGluR) function and uncouple mGluRs from GTP-binding proteins. J. Neurosci. 18, 6138–6146.

    PubMed  CAS  Google Scholar 

  109. Schaffhauser, H., Cai, Z., Hubalek, F., Macek, T. A., Pohl, J., Murphy, T. J., and Conn, P. J. (2000) cAMP-dependent protein kinase inhibits mGluR2 coupling to G proteins by direct receptor phosphorylation. J. Neurosci. 20, 5663–5670.

    Google Scholar 

  110. Dale, L. B., Bhattacharya, M., Anborgh, R. H., Murdoch, B., Bhatia, M., Nakanishi, S., and Ferguson, S. S. (2000) G protein-coupled receptor kinase-mediated desensitization of metabotropic glutamate receptor IA protects against cell death. J. Biol. Chem. 275, 38213–38220.

    Article  PubMed  CAS  Google Scholar 

  111. Sallese, M., Salvatore, L., D’Urbano, E., et al. (2000) The G protein-coupled receptor kinase GRK4 mediates homologous desensitization of metabotropic glutamate receptor 1. FASEB J. 14, 2569–2580.

    Article  PubMed  CAS  Google Scholar 

  112. Doherty, A. J., Coutinho, V., Collingridge, G. L., and Henley, J. M. (1999) Rapid internalization and surface expression of a functional, fluorescently tagged G protein coupled glutamate receptor. Biochem. J. 341, 415–422.

    CAS  Google Scholar 

  113. Stowell, J. N. and Craig, A. M. (1999) Axon/dendrite targeting of metabotropic glutamate receptors by their cytoplasmic carboxy-terminal domains. Neuron 22, 525–536.

    Article  PubMed  CAS  Google Scholar 

  114. McCarthy, J. B., Lim, S. T., Elkind, N. B., Trimmer, J. S., Duvoisin, R. M., RodriguezBoulan, E., and Caplan, M. J. (2001) The C-terminal tail of the metabotropic glutamate receptor subtype 7 is necessary but not sufficient for cell surface delivery and polarized targeting in neurons and epithelia. J. Biol. Chem. 276, 9133–9140.

    Article  PubMed  CAS  Google Scholar 

  115. O’Connor, V., El Far, O., Bofill-Cardona, E., et al. (1999) Calmodulin dependence of presynaptic metabotropic glutamate receptor signaling. Science 286, 1180–1184.

    Article  PubMed  Google Scholar 

  116. Fagni, L., Chavis, P., Ango, F., and Bockaert, J. (2000) Complex interactions between mGluRs, intracellular Cat+ stores and ion channels in neurons. Trends Neurosci. 23, 80–88.

    Article  PubMed  CAS  Google Scholar 

  117. Perroy, J., Prezeau, L. M. D. W., Shigemoto, R., Bockaert, J., and Fagni, L. (2000) Selective blockade of P/Q-type calcium channels by the metabotropic glutamate receptor type 7 involves a phospholipase C pathway in neurons. J. Neurosci. 20, 7896–7904.

    PubMed  CAS  Google Scholar 

  118. Nakajima, Y., Yamamoto, T., Nakayama, T., and Nakanishi, S. (1999) A relationship between protein kinase C phosphorylation and calmodulin binding to the metabotropic glutamate receptor subtype 7. J. Biol. Chem. 274, 27573–27577.

    Article  PubMed  CAS  Google Scholar 

  119. El Far, O., Bofill-Cardona, E., Airas, J. M., O’Connor, V., Boehm, S., Freissmuth, M., et al. (2001) Mapping of calmodulin and G(3y binding domains within the C-terminal region of the metabotropic glutamate receptor 7A. J. Biol. Chem. 276, 30662–30669.

    Article  PubMed  Google Scholar 

  120. Sorensen, S. D., Macek, T. A., Cai, Z., Saugstad, J. A., and Conn, P. J. (2002) Dissociation of protein kinase-mediated regulation of metabotropic glutamate receptor 7 (mGluR7) interactions with calmodulin and regulation of mGluR7 function. Mol. Pharmacol. 61, 1303–1312.

    Article  PubMed  CAS  Google Scholar 

  121. Airas, J. M., Betz, H., and El Far, O. (2001) PKC phosphorylation of a conserved serine residue in the C-terminus of group III metabotropic glutamate receptors inhibits calmodulin binding. FEBS Lett. 494, 60–63.

    Article  PubMed  CAS  Google Scholar 

  122. Staudinger, J., Zhou, J., Burgess, R., Elledge, S. J., and Olson, E. N. (1995) PICK1: a perinuclear binding protein and substrate for protein kinase C isolated by the yeast two-hybrid system. J. Cell Biol. 128, 263–271.

    Article  PubMed  CAS  Google Scholar 

  123. Dev, K. K., Nakajima, Y., Kitano, J., Braithwaite, S. P., Henley, J. M., and Nakanishi, S. (2000) PICK1 interacts with and regulates PKC phosphorylation of mGLUR7. J. Neurosci. 20, 7252–7257.

    PubMed  CAS  Google Scholar 

  124. Boudin, H., Doan, A., Xia, J., Shigemoto, R., Huganir, R. L., Worley, P., and Craig, A. M. (2000) Presynaptic clustering of mGluR7a requires the PICK1 PDZ domain binding site. Neuron 28, 485–497.

    Article  PubMed  CAS  Google Scholar 

  125. El Far, O., Airas, J., Wischmeyer, E., Nehring, R. B., Karschin, A., and Betz, H. (2000) Interaction of the C-terminal tail region of the metabotropic glutamate receptor 7 with the protein kinase C substrate PICK1. Eur. J. Neurosci. 12, 4215–4221.

    PubMed  Google Scholar 

  126. Boudin, H. and Craig, A. M. (2001) Molecular determinants for PICK1 synaptic aggregation and mGluR7a receptor coclustering: role of the PDZ, coiled-coil, and acidic domains. J. Biol. Chem. 276, 30270–30276.

    Article  PubMed  CAS  Google Scholar 

  127. Perroy, J., El Far, O., Bertaso, F., Pin, J., Betz, H., Bockaert, J., and Fagni, L. (2002) PICK1 is required for the control of synaptic transmission by the metabotropic glutamate receptor 7. EMBO J. 21, 2990–2999.

    Article  PubMed  CAS  Google Scholar 

  128. Hirbec, H., Perestenko, O., Nishimune, A., Meyer, G., Nakanishi, S., Henley, J. M., and Dev, K. K. (2002) The PDZ proteins PICK1, GRIP, and syntenin bind multiple glutamate receptor subtypes. Analysis of PDZ binding motifs. J. Biol. Chem. 277, 15221–15224.

    Article  PubMed  CAS  Google Scholar 

  129. Enz, R. and Croci, C. (2003) Different binding motifs in the metabotropic glutamate receptor type 7b for filamin-A, PP1C, PICK1 and syntenin allow the formation of multimeric protein complexes. Biochem. J. 372, 183–191.

    Article  PubMed  CAS  Google Scholar 

  130. Dong, H., O’Brien, R. J., Fung, E. T., Lanahan, A. A., Worley, P. F., and Huganir, R. L. (1997) GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors. Nature 386, 279–284.

    Article  PubMed  CAS  Google Scholar 

  131. Brakeman, P. R., Lanahan, A. A., O’Brien, R., Roche, K., Barnes, C. A., Huganir, R. L., and Worley, R. F. (1997) Homer: a protein that selectively binds metabotropic glutamate receptors. Nature 386, 279–284.

    Article  Google Scholar 

  132. Kato, A., Ozawa, F., Saitoh, Y., Hirai, K., and Inokuchi, K. (1997) vesl, a gene encoding VASP/Ena family related protein, is upregulated during seizure, long-term potentiation and synaptogenesis. FEBS Lett. 412, 183–189.

    Google Scholar 

  133. Xiao, B., Tu, J. C., Petralia, R. S., et al. (1998) Homer regulates the association of group I metabotropic glutamate receptors with multivalent complexes of homer-related, synaptic proteins. Neuron 21, 707–716.

    Article  PubMed  CAS  Google Scholar 

  134. Kato, A., Ozawa, F., Saitoh, Y., Fukazawa, Y., Sugiyama, H., and Inokuchi, K. (1998) Novel members of the Vesl/Homer Family of PDZ proteins that bind metabotropic glutamate receptors. J. Biol. Chem. 273, 23969–23975.

    Article  PubMed  CAS  Google Scholar 

  135. Beneken, J., Tu, J. C., Xiao, B., Nuriya, M., Yuan, J. P., Worley, P. F., and Leahy, D. J. (2000) Structure of the Homer EVH1 domain-peptide complex reveals a new twist in polyproline recognition. Neuron 26, 143–154.

    Article  PubMed  CAS  Google Scholar 

  136. Naisbitt, S., Kim, E., Tu, J. C., et al. (1999) Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 23, 569–582.

    Article  PubMed  CAS  Google Scholar 

  137. Tu, J. C., Xiao, B., Naisbitt, S., et al. (1999) Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. Neuron 23, 583–592.

    Article  PubMed  CAS  Google Scholar 

  138. Tu, J. C., Xiao, B., Yuan, J. P., et al. (1998) Homer binds a novel proline-rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors. Neuron 21, 717–726.

    Article  PubMed  CAS  Google Scholar 

  139. Kammermeier, P. J., Xiao, B., Tu, J. C., Worley, P. F., and Ikeda, S. R. (2000) Homer proteins regulate coupling of group I metabotropic glutamate receptors to N-type calcium and M-type potassium channels. J. Neurosci. 20, 7238–7245.

    PubMed  CAS  Google Scholar 

  140. Roche, K. W., Tu, J. C., Petralia, R. S., Xiao, B., Wenthold, R. J., and Worley, P. F. (1999) Homer lb regulates the trafficking of Group I metabotropic glutamate receptors. J. Biol. Chem. 274, 25953–25957.

    Article  PubMed  CAS  Google Scholar 

  141. Ango, F., Robbe, D., Tu, J. C., Xiao, B., Worley, P. F., Pin, J. P., Bockaert, J., and Fagni, L. (2002) Homer-dependent cell surface expression of metabotropic glutamate receptor type 5 in neurons. Mol. Cell. Neurosci. 20, 323–329.

    Article  PubMed  CAS  Google Scholar 

  142. Ciruela, F., Soloviev, M. M., Chan, W. Y., and Mcllhenney, R. A. (2000) Homer-lc/Vesl1L modulates the cell surface targeting of group I metabotropic glutamate receptor type la: evidence for an anchoring function. Mol. Cell. Neurosci. 15, 36–50.

    Article  PubMed  CAS  Google Scholar 

  143. Tadokoro, S., Tachibana, T., Imanaka, T., Nishida, W., and Sobue, K. (1999) Involvement of unique leucine-zipper motif of PSD-Zip45 (Homer 1c/vesl-1L) in group 1 metabotropic glutamate receptor clustering. Proc. Natl. Acad. Sci. USA 96, 13801–13806.

    Article  PubMed  CAS  Google Scholar 

  144. Ango, F., Pin, J.-P., Tu, J. C., Xiao, B., Worley, P. F., Bockaert, J., and Fagni, L. (2000) Dendritic and axonal targeting of type 5 metabotropic glutamate receptor is regulated by homerl proteins and neuronal excitation. J. Neurosci. 20, 8710–8716.

    PubMed  CAS  Google Scholar 

  145. Garcia, E. P., Mehta, S., Blair, L. A., et al. (1998) SAP90 binds and clusters kainate receptors causing incomplete desensitization. Neuron 21, 727–739.

    Article  PubMed  CAS  Google Scholar 

  146. Ciruela, F., Escriche, M., Burgueno, J., et al. (2001) Metabotropic glutamate la and adenosine Al receptors assemble into functional interacting complexes. J. Biol. Chem. 276, 18345–18351.

    Article  PubMed  CAS  Google Scholar 

  147. Gama, L., Wilt, S. G., and Breitwieser, G. E. (2001) Heterodimerization of calcium sensing receptors with metabotropic glutamate receptors in neurons. J. Biol. Chem. 276, 39053–39059.

    Article  PubMed  CAS  Google Scholar 

  148. El Far, O. and Betz, H. (2002) G protein-coupled receptors for neurotransmitter amino acids: C-terminal tails, crowded signalosomes. Biochem. J. 365, 329–336.

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jensen, A.A. (2004). Molecular Pharmacology of the Metabotropic Glutamate Receptors. In: Schousboe, A., Bräuner-Osborne, H. (eds) Molecular Neuropharmacology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-672-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-672-0_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-384-8

  • Online ISBN: 978-1-59259-672-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics