Skip to main content

Angiogenesis Switch Pathways

  • Chapter
Principles of Molecular Oncology
  • 153 Accesses

Abstract

Few of the basic research fields within oncology have experienced such an explosive growth as the area of angiogenesis. Intense effort in the laboratories of both academia and pharmaceutical companies has led to its own translation to the clinical research. The plethora of new and old compounds shown to be either angiogenic or antiangiogenic in several laboratories in in vitro, ex vivo, and in vivo models has led to a parallel increase in the number of new antiangiogenic drugs entering clinical oncology trials (1). Some advanced potential drugs have stumbled in mid-or late clinical phases, however. In addition to these issues, much scientific debate has occurred, which has led to the repositioning of many antiangiogenic targets, clearly illustrating the vast activity in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer. 2002; 2: 727–739.

    Article  PubMed  CAS  Google Scholar 

  2. Folkman J, Long DM, Becker F. Growth and metastasis of tumors in organ culture. Cancer. 1963; 16: 453–467.

    Article  PubMed  CAS  Google Scholar 

  3. Gimbrone MA Jr, Leapman SB, Cotran RS, Folkman J. Tumor dormancy in vivo by prevention of neovascularization. J Exp Med. 1972; 136: 261–276.

    Article  PubMed  Google Scholar 

  4. Gimbrone MA Jr, Leapman SB, Cotran RS, Folkman J. Tumor angiogenesis: iris neovascularization at a distance from experimental intraocular tumors. J Natl Cancer Inst. 1973; 50: 219–228.

    PubMed  Google Scholar 

  5. Folkman J. Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg. 1972; 175: 409–416.

    Article  PubMed  CAS  Google Scholar 

  6. Folkman J. What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst. 1990; 82: 4–6.

    Article  PubMed  CAS  Google Scholar 

  7. Fox SB, Gatter KC, Harris AL. Tumour angiogenesis. J Pathol. 1996; 179: 232–237.

    Article  PubMed  CAS  Google Scholar 

  8. Bicknell R, Lewis C, Ferrara N. In: Tumor Angiogenesis. Oxford University Press, Oxford, UK, 1997.

    Google Scholar 

  9. Folkman J. New perspectives in clinical oncology from angiogenesis research. Eur J Cancer. 1996; 32A: 2534–2539.

    Article  Google Scholar 

  10. Rak J, Kerbel RS. Treating cancer by inhibiting angiogenesis: new hopes and potential pitfalls. Cancer Metastasis Rev. 1996; 15: 231–236.

    Article  PubMed  CAS  Google Scholar 

  11. O’Reilly MS, Holmgren L, Shing Y, et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell. 1994; 79: 315–328.

    Article  PubMed  Google Scholar 

  12. Good DJ, Polverini PJ, Rastinejad F, et al. A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci USA. 1990; 87: 6624–6628.

    Article  PubMed  CAS  Google Scholar 

  13. DiPietro LA. Thrombospondin as a regulator of angiogenesis. EXS. 1997; 79: 295–314.

    PubMed  CAS  Google Scholar 

  14. Dameron KM, Volpert OV, Tainsky MA, Bouck N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science. 1994; 265: 1582–1584.

    Article  PubMed  CAS  Google Scholar 

  15. Gasparini G. Angiogenesis research up to 1996: a commentary on the state of art and suggestions for future studies. Eur J Cancer. 1996; 32A: 2379–2385.

    Article  Google Scholar 

  16. Zucker S, Cao J, Chen WT. Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment. Oncogene. 2000; 19: 6642–6650.

    Article  PubMed  CAS  Google Scholar 

  17. Hanahan D, Christofori G, Naik P, Arbeit J. Transgenic mouse models of tumour angiogenesis: the angiogenic switch, its molecular controls, and prospects for preclinical therapeutic models. Eur J Cancer. 1996; 32A: 2386–2393.

    Article  Google Scholar 

  18. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996; 86: 353–364.

    Article  PubMed  CAS  Google Scholar 

  19. Semenza G. Signal transduction to hypoxia-inducible factor 1. Biochem Pharmacol. 2002; 64: 993–998.

    Article  PubMed  CAS  Google Scholar 

  20. Chun YS, Kim MS, Park JW. Oxygen-dependent and -independent regulation of HIF-1alpha. J Korean Med Sci. 2002; 17: 581–588.

    PubMed  CAS  Google Scholar 

  21. Scharte M, Han X, Bertges DJ, Fink MP, Delude RL. Cytokines induce HIF-1 DNA binding and the expression of HIF-1–dependent genes in cultured rat enterocytes. Am J Physiol Gastrointest Liver Physiol. 2003; 284: G373–G384.

    PubMed  CAS  Google Scholar 

  22. Iervolino A, Trisciuoglio D, Ribatti D, et al. Bcl-2 overexpression in human melanoma cells increases angiogenesis through VEGF mRNA stabilization and HIF-1–mediated transcriptional activity. FASEB J. 2002; 16: 1453–1455.

    PubMed  CAS  Google Scholar 

  23. Gotsch U, Jager U, Dominis M, Vestweber D. Expression of P-selectin on endothelial cells is upregulated by LPS and TNF-alpha in vivo. Cell Adhes Commun. 1994; 2: 7–14.

    Article  PubMed  CAS  Google Scholar 

  24. Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science. 1994; 264: 569–571.

    Article  PubMed  CAS  Google Scholar 

  25. Pasqualini R, Koivunen E, Ruoslahti E. Alpha v integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol. 1997; 15: 542–546.

    Article  PubMed  CAS  Google Scholar 

  26. Rak JW, Hegmann EJ, Lu C, Kerbel RS. Progressive loss of sensitivity to endothelium-derived growth inhibitors expressed by human melanoma cells during disease progression. J Cell Physiol. 1994; 159: 245–255.

    Article  PubMed  CAS  Google Scholar 

  27. Risau W. Mechanisms of angiogenesis. Nature. 1997; 386: 671–674.

    Article  PubMed  CAS  Google Scholar 

  28. Bhushan M, Young HS, Brenchley PE, Griffiths CE. Recent advances in cutaneous angiogenesis. Br J Dermatol. 2002; 147: 418–425.

    Article  PubMed  CAS  Google Scholar 

  29. Sood AK, Fletcher MS, Hendrix MJ. The embryonic-like properties of aggressive human tumor cells. J Soc Gynecol Investig. 2002; 9: 2–9.

    Article  PubMed  Google Scholar 

  30. Hendrix MJ, Seftor EA, Meltzer PS, et al. Expression and functional significance of VE-cadherin in aggressive human melanoma cells: role in vasculogenic mimicry. Proc Natl Acad Sci USA. 2001; 98: 8018–8023.

    Article  PubMed  CAS  Google Scholar 

  31. Shirakawa K, Kobayashi H, Heike Y, et al. Hemodynamics in vasculogenic mimicry and angiogenesis of inflammatory breast cancer xenograft. Cancer Res. 2002; 62: 560–566.

    PubMed  CAS  Google Scholar 

  32. MacDonald IC, Groom AC, Chambers AF. Cancer spread and micrometastasis development: quantitative approaches for in vivo models. Bioessays. 2002; 24: 885–893.

    Article  PubMed  CAS  Google Scholar 

  33. Folkman J. Can mosaic tumor vessels facilitate molecular diagnosis of cancer? Proc Natl Acad Sci USA. 2001; 98: 398–400.

    Article  PubMed  CAS  Google Scholar 

  34. Rafii S, Heissig B, Hattori K. Efficient mobilization and recruitment of marrow-derived endothelial and hematopoietic stem cells by adenoviral vectors expressing angiogenic factors. Gene Ther. 2002; 9: 631–641.

    Article  PubMed  CAS  Google Scholar 

  35. Jakeman LB, Armanini M, Phillips HS, Ferrara N. Developmental expression of binding sites and messenger ribonucleic acid for vascular endothelial growth factor suggests a role for this protein in vasculogenesis and angiogenesis. Endocrinol. 1993; 133: 848–859.

    Article  CAS  Google Scholar 

  36. Carmeliet P, Schoonjans L, Kieckens L, et al. Physiological consequences of loss of plasminogen activator gene function in mice. Nature. 1994; 368: 419–424.

    Article  PubMed  CAS  Google Scholar 

  37. Ferrara N, Carver-Moore K, Chen H, et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature. 1996; 380: 439–442.

    Article  PubMed  CAS  Google Scholar 

  38. Senger DR, Brown LF, Claffey KP, Dvorak HF. Vascular permeability factor, tumor angiogenesis and stroma generation. Invasion Metastasis. 1994; 14: 385–394.

    PubMed  CAS  Google Scholar 

  39. Olofsson B, Pajusola K, Kaipainen A, et al. Vascular endothelial growth factor B, a novel growth factor for endothelial cells. Proc Natl Acad Sci USA. 1996; 93: 2576–2581.

    Article  PubMed  CAS  Google Scholar 

  40. Joukov V, Pajusola K, Kaipainen A, et al. A novel vascular endothelial growth factor, VEGFC, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J. 1996; 15: 1751.

    PubMed  CAS  Google Scholar 

  41. Achen MG, Jeltsch M, Kukk E, et al. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc Natl Acad Sci USA. 1998; 95: 548–553.

    Article  PubMed  CAS  Google Scholar 

  42. Brown LF, Berse B, Jackman RW, et al. Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in breast cancer. Hum Pathol. 1995; 26: 86–91.

    Article  PubMed  CAS  Google Scholar 

  43. Park JE, Keller GA, Ferrara N. The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol Biol Cell. 1993; 4: 1317–1326.

    PubMed  CAS  Google Scholar 

  44. Rak J, Mitsuhashi Y, Bayko L, et al. Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis. Cancer Res. 1995; 55: 4575–4580.

    PubMed  CAS  Google Scholar 

  45. Friesel RE, Maciag T. Molecular mechanisms of angiogenesis: fibroblast growth factor signal transduction. FASEB J. 1995; 9: 919–925.

    PubMed  CAS  Google Scholar 

  46. Yu ZX, Biro S, Fu YM, et al. Localization of basic fibroblast growth factor in bovine endothelial cells: immunohistochemical and biochemical studies. Exp Cell Res. 1993; 204: 247–259.

    Article  PubMed  CAS  Google Scholar 

  47. Montesano R, Vassalli JD, Baird A, Guillemin R, Orci L. Basic fibroblast growth factor induces angiogenesis in vitro. Proc Natl Acad Sci USA. 1986; 83: 7297–7301.

    Article  PubMed  CAS  Google Scholar 

  48. Davis S, Yancopoulos GD. The angiopoietins: Yin and Yang in angiogenesis. Curr Top Microbiol Immunol. 1999; 237: 173–185.

    Article  PubMed  CAS  Google Scholar 

  49. Kim I, Kim JH, Moon SO, Kwak HJ, Kim NG, Koh GY. Angiopoietin-2 at high concentration can enhance endothelial cell survival through the phosphatidylinositol 3’-kinase/Akt signal transduction pathway. Oncogene. 2000; 19: 4549–4552.

    Article  PubMed  CAS  Google Scholar 

  50. Shim WS, Teh M, Bapna A, et al. Angiopoietin 1 promotes tumor angiogenesis and tumor vessel plasticity of human cervical cancer in mice. Exp Cell Res. 2002; 279: 299–309.

    Article  PubMed  CAS  Google Scholar 

  51. Stoeltzing O, Ahmad SA, Liu W, et al. Angiopoietin-1 inhibits tumour growth and ascites formation in a murine model of peritoneal carcinomatosis. Br J Cancer. 2002; 87: 1182–1187.

    Article  PubMed  CAS  Google Scholar 

  52. Loughna S, Sato TN. A combinatorial role of angiopoietin-1 and orphan receptor TIE1 pathways in establishing vascular polarity during angiogenesis. Mol Cell. 2001; 7: 233–239.

    Article  PubMed  CAS  Google Scholar 

  53. Camenisch G, Pisabarro MT, Sherman D, et al. ANGPTL3 stimulates endothelial cell adhesion and migration via integrin alpha vbeta 3 and induces blood vessel formation in vivo. J Biol Chem. 2002; 277:17, 281–17, 290.

    Google Scholar 

  54. Moyon D, Pardanaud L, Yuan L, Breant C, Eichmann A. Selective expression of angiopoietin 1 and 2 in mesenchymal cells surrounding veins and arteries of the avian embryo. Mech Dev. 2001; 106: 133–136.

    Article  PubMed  CAS  Google Scholar 

  55. Lin P, Buxton JA, Acheson A, et al. Antiangiogenic gene therapy targeting the endothelium-specific receptor tyrosine kinase Tie2. Proc Natl Acad Sci USA. 1998; 95: 8829–8834.

    Article  PubMed  CAS  Google Scholar 

  56. Cheng N, Brantley DM, Chen J. The ephrins and Eph receptors in angiogenesis. Cytokine Growth Factor Rev. 2002; 13: 75–85.

    Article  PubMed  CAS  Google Scholar 

  57. Gale NW, Yancopoulos GD. Growth factors acting via endothelial cell-specific receptor tyrosine kinases: VEGFs, angiopoietins, and ephrins in vascular development. Genes Dev. 1999; 13: 1055–1066.

    Article  PubMed  CAS  Google Scholar 

  58. Gale NW, Yancopoulos GD. Ephrins and their receptors: a repulsive topic? Cell Tissue Res. 1997; 290: 227–241.

    Article  PubMed  CAS  Google Scholar 

  59. Brantley DM, Cheng N, Thompson EJ, et al. Soluble Eph A receptors inhibit tumor angiogenesis and progression in vivo. Oncogene. 2002; 21: 7011–7026.

    Article  PubMed  CAS  Google Scholar 

  60. Sporn MB, Roberts AB, Wakefield LM, de Crombrugghe B. Some recent advances in the chemistry and biology of transforming growth factor-beta. J Cell Biol. 1987; 105: 1039–1045.

    Article  PubMed  CAS  Google Scholar 

  61. Leibovich SJ, Polverini PJ, Shepard HM, Wiseman DM, Shively V, Nuseir N. Macrophage-induced angiogenesis is mediated by tumour necrosis factor-alpha. Nature. 1987; 329: 630–632.

    Article  PubMed  CAS  Google Scholar 

  62. Wahl SM, Hunt DA, Wong HL, et al. Transforming growth factor-beta is a potent immunosuppressive agent that inhibits IL-1–dependent lymphocyte proliferation. J Immunol. 1988; 140: 3026–3032.

    PubMed  CAS  Google Scholar 

  63. Sherry B, Cerami A. Cachectin/tumor necrosis factor exerts endocrine, paracrine, and autocrine control of inflammatory responses. J Cell Biol. 1988; 107: 1269–1277.

    Article  PubMed  CAS  Google Scholar 

  64. Leibovich SJ. Role of cytokines in the process of tumor angiogenesis. In: Human Cytokines: Their Role in Cell Disease and Therapy ( Aggarwal B, Puri R, eds.), Blackwell Science, Oxford, UK, 1995; pp. 539–564.

    Google Scholar 

  65. Moghaddam A. Thymidine phosphorylase/platelet endothelial cell derived growth factor: an angiogenic enzyme. In: Tumor Angiogenesis ( Bicknell R, Lewis C, Ferrara N, eds.), Oxford University Press, Oxford, UK, 1997; pp. 251–260.

    Google Scholar 

  66. Schreiber AB, Winkler ME, Derynck R. Transforming growth factor-alpha: a more potent angiogenic mediator than epidermal growth factor. Science. 1986; 232: 1250–1253.

    Article  PubMed  CAS  Google Scholar 

  67. Bikfalvi A. Significance of angiogenesis in tumour progression and metastasis. Eur J Cancer. 1995; 31A: 1101–1104.

    Article  Google Scholar 

  68. Kim SJ, Uehara H, Karashima T, Mccarty M, Shih N, Fidler IJ. Expression of interleukin-8 correlates with angiogenesis, tumorigenicity, and metastasis of human prostate cancer cells implanted orthotopically in nude mice. Neoplasia. 2001; 3: 33–42.

    Article  PubMed  CAS  Google Scholar 

  69. Salven P, Hattori K, Heissig B, Rafii S. Interleukin-1alpha promotes angiogenesis in vivo via VEGFR-2 pathway by inducing inflammatory cell VEGF synthesis and secretion. FASEB J. 2002; 16: 1471–1473.

    PubMed  CAS  Google Scholar 

  70. Numasaki M, Fukushi JI, Ono M, et al. Interleukin-17 promotes angiogenesis and tumor growth. Blood. 2003; 101: 2620–2627.

    Article  PubMed  CAS  Google Scholar 

  71. Park CC, Morel JC, Amin MA, Connors MA, Harlow LA, Koch AE. Evidence of IL-18 as a novel angiogenic mediator. J Immunol. 2001; 167: 1644–1653.

    PubMed  CAS  Google Scholar 

  72. Volpert OV, Fong T, Koch AE, et al. Inhibition of angiogenesis by interleukin 4. J Exp Med. 1998; 188: 1039–1046.

    Article  PubMed  CAS  Google Scholar 

  73. Lee JC, Kim DC, Gee MS, et al. Interleukin-12 inhibits angiogenesis and growth of transplanted but not in situ mouse mammary tumor virus-induced mammary carcinomas. Cancer Res. 2002; 62: 747–755.

    PubMed  CAS  Google Scholar 

  74. Takahashi F, Akutagawa S, Fukumoto H, et al. Osteopontin induces angiogenesis of murine neuroblastoma cells in mice. Int J Cancer. 2002; 98: 707–712.

    Article  PubMed  CAS  Google Scholar 

  75. Tsopanoglou NE, Andriopoulou P, Maragoudakis ME. On the mechanism of thrombin-induced angiogenesis: involvement of alphavbeta3–integrin. Am J Physiol Cell Physiol. 2002; 283: C1501–C1510.

    PubMed  CAS  Google Scholar 

  76. Mehrabi MR, Serbecic N, Tamaddon F, et al. Clinical and experimental evidence of prostaglandin E1–induced angiogenesis in the myocardium of patients with ischemic heart disease. Cardiovasc Res. 2002; 56: 214–224.

    Article  PubMed  CAS  Google Scholar 

  77. Schwartz MA. Nicotine-induced angiogenesis. J Clin Psychiatry. 2002; 63: 949–950.

    Article  PubMed  Google Scholar 

  78. Wakasugi K, Slike BM, Hood J, Ewalt KL, Cheresh DA, Schimmel P. Induction of angiogenesis by a fragment of human tyrosyl-tRNA synthetase. J Biol Chem. 2002; 277:20, 124–20, 126.

    Google Scholar 

  79. Tei K, Kawakami-Kimura N, Taguchi O, et al. Roles of cell adhesion molecules in tumor angiogenesis induced by cotransplantation of cancer and endothelial cells to nude rats. Cancer Res. 2002; 62: 6289–6296.

    PubMed  CAS  Google Scholar 

  80. Nor JE, Peters MC, Christensen JB, et al. Engineering and characterization of functional human microvessels in immunodeficient mice. Lab Invest. 2001; 81: 453–463.

    Article  PubMed  CAS  Google Scholar 

  81. Koch AE, Halloran MM, Haskell CJ, Shah MR, Polverini PJ. Angiogenesis mediated by soluble forms of E-selectin and vascular cell adhesion molecule-1. Nature. 1995; 376: 517–519.

    Article  PubMed  CAS  Google Scholar 

  82. Frenette PS, Mayadas TN, Rayburn H, Hynes RO, Wagner DD. Susceptibility to infection and altered hematopoiesis in mice deficient in both P- and E-selectins. Cell. 1996; 84: 563–574.

    Article  PubMed  CAS  Google Scholar 

  83. Stad RK, Buurman WA. Current views on structure and function of endothelial adhesion molecules. Cell Adhes Commun. 1994; 2: 261–268.

    Article  PubMed  CAS  Google Scholar 

  84. Patey N, Vazeux R, Canioni D, Potter T, Gallatin WM, Brousse N. Intercellular adhesion molecule-3 on endothelial cells: expression in tumors but not in inflammatory responses. Am J Pathol. 1996; 148: 465–472.

    PubMed  CAS  Google Scholar 

  85. Liao F, Doody JF, Overholser J, et al. Selective targeting of angiogenic tumor vasculature by vascular endothelial-cadherin antibody inhibits tumor growth without affecting vascular permeability. Cancer Res. 2002; 62: 2567–2575.

    PubMed  CAS  Google Scholar 

  86. Corada M, Zanetta L, Orsenigo F, et al. A monoclonal antibody to vascular endothelialcadherin inhibits tumor angiogenesis without side effects on endothelial permeability. Blood. 2002; 100: 905–911.

    Article  PubMed  CAS  Google Scholar 

  87. Brooks PC. Cell adhesion molecules in angiogenesis. Cancer Metastasis Rev. 1996; 15: 187–194.

    Article  PubMed  CAS  Google Scholar 

  88. Davis GE, Camarillo CW. An alpha 2 beta 1 integrin-dependent pinocytic mechanism involving intracellular vacuole formation and coalescence regulates capillary lumen and tube formation in three-dimensional collagen matrix. Exp Cell Res. 1996; 224: 39–51.

    Article  PubMed  CAS  Google Scholar 

  89. Senger DR, Claffey KP, Benes JE, Perruzzi CA, Sergiou AP, Detmar M. Angiogenesis promoted by vascular endothelial growth factor: regulation through alpha1beta1 and alpha2beta1 integrins. Proc Natl Acad Sci USA. 1997; 94:13, 612–13, 617.

    Google Scholar 

  90. Enenstein J, Kramer RH. Confocal microscopic analysis of integrin expression on the microvasculature and its sprouts in the neonatal foreskin. J Invest Dermatol. 1994; 103: 381–386.

    Article  PubMed  CAS  Google Scholar 

  91. Nicosia RF, Bonanno E. Inhibition of angiogenesis in vitro by Arg-Gly-Asp-containing synthetic peptide. Am J Pathol. 1991; 138: 829–833.

    PubMed  CAS  Google Scholar 

  92. Highly selective cyclic-RGD peptides block alpha-v integrins and inhibit angiogenesis and tumor growth. Keystone Symposium. 1996.

    Google Scholar 

  93. Cyclic RGD peptides with high selectivity for alpha-v integrins as potent inhibitors of angiogenesis and tumor growth. Gordon Conferences. 1995.

    Google Scholar 

  94. Davis CM, Danehower SC, Laurenza A, Molony JL. Identification of a role of the vitronectin receptor and protein kinase C in the induction of endothelial cell vascular formation. J Cell Biochem. 1993; 51: 206–218.

    Article  PubMed  CAS  Google Scholar 

  95. Gamble JR, Matthias LJ, Meyer G, et al. Regulation of in vitro capillary tube formation by anti-integrin antibodies. J Cell Biol. 1993; 121: 931–943.

    Article  PubMed  CAS  Google Scholar 

  96. Brooks PC, Montgomery AM, Rosenfeld M, G et al. Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell. 1994; 79: 1157–1164.

    Article  PubMed  CAS  Google Scholar 

  97. Friedlander M, Brooks PC, Shaffer RW, Kincaid CM, Varner JA, Cheresh DA. Definition of two angiogenic pathways by distinct alpha v integrins. Science. 1995; 270: 1500–1502.

    Article  PubMed  CAS  Google Scholar 

  98. Hammes HP, Brownlee M, Jonczyk A, Sutter A, Preissner KT. Subcutaneous injection of a cyclic peptide antagonist of vitronectin receptor-type integrins inhibits retinal neovascularization. Nat Med. 1996; 2: 529–533.

    Article  PubMed  CAS  Google Scholar 

  99. Lode HN, Moehler T, Xiang R, et al. Synergy between an antiangiogenic integrin alphav antagonist and an antibody-cytokine fusion protein eradicates spontaneous tumor metastases. Proc Natl Acad Sci USA. 1999; 96: 1591–1596.

    Article  PubMed  CAS  Google Scholar 

  100. Brooks PC, Stromblad S, Klemke R, Visscher D, Sarkar FH, Cheresh DA. Antiintegrin alpha v beta 3 blocks human breast cancer growth and angiogenesis in human skin. J Clin Invest. 1995; 96: 1815–1822.

    Article  PubMed  CAS  Google Scholar 

  101. Varner JA. The role of vascular cell integrins alpha v beta 3 and alpha v beta 5 in angiogenesis. EXS. 1997; 79: 361–390.

    PubMed  CAS  Google Scholar 

  102. Gladson CL, Cheresh DA. Glioblastoma expression of vitronectin and the alpha v beta 3 integrin: adhesion mechanism for transformed glial cells. J Clin Invest. 1991; 88: 1924–1932.

    Article  PubMed  CAS  Google Scholar 

  103. Felding-Habermann B, Mueller BM, Romerdahl CA, Cheresh DA. Involvement of integrin alpha V gene expression in human melanoma tumorigenicity. J Clin Invest. 1992; 89: 2018–2022.

    Article  PubMed  CAS  Google Scholar 

  104. Danen EH, Ten Berge PJ, Van Muijen GN, Van’t Hof-Grootenboer AE, Brocker EB, Ruiter DJ. Emergence of alpha 5 beta 1 fibronectin-and alpha v beta 3 vitronectin-receptor expression in melanocytic tumour progression. Histopathol. 1994; 24: 249–256.

    Article  CAS  Google Scholar 

  105. Natali PG, Hamby CV, Felding-Habermann B, et al. Clinical significance of alpha(v)beta3 integrin and intercellular adhesion molecule-1 expression in cutaneous malignant melanoma lesions. Cancer Res. 1997; 57: 1554–1560.

    PubMed  CAS  Google Scholar 

  106. Mitjans F, Sander D, Adan J, et al. An anti-alpha v-integrin antibody that blocks integrin function inhibits the development of a human melanoma in nude mice. J Cell Sci. 1995; 108: 2825–2838.

    PubMed  CAS  Google Scholar 

  107. Mitjans F, Meyer T, Fittschen C, et al. In vivo therapy of malignant melanoma by means of antagonists of alphav integrins. Int J Cancer. 2000; 87: 716–723.

    Article  PubMed  CAS  Google Scholar 

  108. Marshall JF, Rutherford DC, McCartney AC, Mitjans F, Goodman SL, Hart IR. Alpha v beta 1 is a receptor for vitronectin and fibrinogen, and acts with alpha 5 beta 1 to mediate spreading on fibronectin. J Cell Sci. 1995; 108: 1227–1238.

    PubMed  CAS  Google Scholar 

  109. Petitclerc E, Stromblad S, von Schalscha TL, et al. Integrin alpha(v)beta3 promotes M21 melanoma growth in human skin by regulating tumor cell survival. Cancer Res. 1999; 59: 2724–2730.

    PubMed  CAS  Google Scholar 

  110. Castel S, Pagan R, Mitjans F, et al. RGD peptides and monoclonal antibodies, antagonists of alpha(v)-integrin, enter the cells by independent endocytic pathways. Lab Invest. 2001; 81: 1615–1626.

    Article  PubMed  CAS  Google Scholar 

  111. Castel S, Pagan R, Garcia R, et al. Alpha v integrin antagonists induce the disassembly of focal contacts in melanoma cells. Eur J Cell Biol. 2000; 79: 502–512.

    Article  PubMed  CAS  Google Scholar 

  112. Montgomery AM, Reisfeld RA, Cheresh DA. Integrin alpha v beta 3 rescues melanoma cells from apoptosis in three-dimensional dermal collagen. Proc Natl Acad Sci USA. 1994; 91: 8856–8860.

    Article  PubMed  CAS  Google Scholar 

  113. George JN, Caen JP, Nurden AT. Glanzmann’s thrombasthenia: the spectrum of clinical disease. Blood. 1990; 75: 1383–1395.

    PubMed  CAS  Google Scholar 

  114. Bader BL, Rayburn H, Crowley D, Hynes RO. Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all alpha v integrins. Cell. 1998; 95: 507–519.

    Article  PubMed  CAS  Google Scholar 

  115. Reynolds LE, Wyder L, Lively JC, et al. Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and beta5 integrins. Nat Med. 2002; 8: 27–34.

    Article  PubMed  CAS  Google Scholar 

  116. Hynes RO. A reevaluation of integrins as regulators of angiogenesis. Nat Med. 2002; 8: 918–921.

    Article  PubMed  CAS  Google Scholar 

  117. Cheresh DA, Stupack DG. Integrin-mediated death: an explanation of the integrin-knockout phenotype? Nat Med. 2002; 8: 193–194.

    Article  PubMed  CAS  Google Scholar 

  118. Yeh CH, Peng HC, Yang RS, Huang TF. Rhodostomin, a snake venom disintegrin, inhibits angiogenesis elicited by basic fibroblast growth factor and suppresses tumor growth by a selective alpha(v)beta(3) blockade of endothelial cells. Mol Pharmacol. 2001; 59: 1333–1342.

    PubMed  CAS  Google Scholar 

  119. Burke PA, DeNardo SJ, Miers LA, Lamborn KR, Matzku S, DeNardo GL. Cilengitide targeting of alpha(v)beta(3) integrin receptor synergizes with radioimmunotherapy to increase efficacy and apoptosis in breast cancer xenografts. Cancer Res. 2002; 62: 4263–4272.

    PubMed  CAS  Google Scholar 

  120. Kumar CC, Malkowski M, Yin Z, et al. Inhibition of angiogenesis and tumor growth by SCH221153, a dual alpha(v)beta3 and alpha(v)beta5 integrin receptor antagonist. Cancer Res. 2001; 61: 2232–2238.

    PubMed  CAS  Google Scholar 

  121. Colorado PC, Torre A, Kamphaus G, et al. Anti-angiogenic cues from vascular basement membrane collagen. Cancer Res. 2000; 60: 2520–2526.

    PubMed  CAS  Google Scholar 

  122. Maeshima Y, Manfredi M, Reimer C, et al. Identification of the anti-angiogenic site within vascular basement membrane-derived tumstatin. J Biol Chem. 2001; 276:15, 240–15, 248.

    Google Scholar 

  123. Kamphaus GD, Colorado PC, Panka DJ, et al. Canstatin, a novel matrix-derived inhibitor of angiogenesis and tumor growth. J Biol Chem. 2000; 275: 1209–1215.

    Article  PubMed  CAS  Google Scholar 

  124. Tarui T, Miles LA, Takada Y. Specific interaction of angiostatin with integrin alpha(v)beta(3) in endothelial cells. J Biol Chem. 2001; 276:39, 562–39, 568.

    Google Scholar 

  125. Rehn M, Veikkola T, Kukk-Valdre E, et al. Interaction of endostatin with integrins implicated in angiogenesis. Proc Natl Acad Sci USA. 2001; 98: 1024–1029.

    Article  PubMed  CAS  Google Scholar 

  126. Dormond O, Foletti A, Paroz C, Ruegg C. NSAIDs inhibit alpha V beta 3 integrin-mediated and Cdc42/Rac-dependent endothelial-cell spreading, migration and angiogenesis. Nat Med. 2001; 7: 1041–1047.

    Article  PubMed  CAS  Google Scholar 

  127. Ruegg C, Yilmaz A, Bieler G, Bamat J, Chaubert P, Lejeune FJ. Evidence for the involvement of endothelial cell integrin alphaVbeta3 in the disruption of the tumor vasculature induced by TNF and IFN-gamma. Nat Med. 1998; 4: 408–414.

    Article  PubMed  CAS  Google Scholar 

  128. Ruegg C, Dormond O, Foletti A. Suppression of tumor angiogenesis through the inhibition of integrin function and signaling in endothelial cells: which side to target? Endothelium. 2002; 9: 151–160.

    Article  PubMed  CAS  Google Scholar 

  129. Janssen ML, Oyen WJ, Dijkgraaf I, et al. Tumor targeting with radiolabeled alpha(v)beta(3) integrin binding peptides in a nude mouse model. Cancer Res. 2002; 62: 6146–6151.

    PubMed  CAS  Google Scholar 

  130. Haubner R, Wester HJ, Burkhart F, et al. Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J Nucl Med. 2001; 42: 326–336.

    PubMed  CAS  Google Scholar 

  131. Meyer T, Hart IR. Mechanisms of tumour metastasis. Eur J Cancer. 1998; 34: 214–221.

    Article  PubMed  CAS  Google Scholar 

  132. Seghezzi G, Marelli R, Mandriota SJ, Nolli ML, Mazzieri R, Mignatti P. Tumor cell-conditioned medium stimulates expression of the urokinase receptor in vascular endothelial cells. J Cell Physiol. 1996; 169: 300–308.

    Article  PubMed  CAS  Google Scholar 

  133. Mandriota SJ, Seghezzi G, Vassalli JD, et al. Vascular endothelial growth factor increases urokinase receptor expression in vascular endothelial cells. J Biol Chem. 1995; 270: 9709–9716.

    Article  PubMed  CAS  Google Scholar 

  134. Xue W, Mizukami I, Todd RF, III, Petty HR. Urokinase-type plasminogen activator receptors associate with beta1 and beta3 integrins of fibrosarcoma cells: dependence on extracellular matrix components. Cancer Res. 1997; 57: 1682–1689.

    PubMed  CAS  Google Scholar 

  135. Min HY, Doyle LV, Vitt CR, et al. Urokinase receptor antagonists inhibit angiogenesis and primary tumor growth in syngeneic mice. Cancer Res. 1996; 56: 2428–2433.

    PubMed  CAS  Google Scholar 

  136. Gately S, Twardowski P, Stack MS, et al. The mechanism of cancer-mediated conversion of plasminogen to the angiogenesis inhibitor angiostatin. Proc Natl Acad Sci USA. 1997; 94: 10, 868–10, 872.

    Google Scholar 

  137. Dong Z, Kumar R, Yang X, Fidler IJ. Macrophage-derived metalloelastase is responsible for the generation of angiostatin in Lewis lung carcinoma. Cell. 1997; 88: 801–810.

    Article  PubMed  CAS  Google Scholar 

  138. Patterson BC, Sang QA. Angiostatin-converting enzyme activities of human matrilysin (MMP7) and gelatinase B/type IV collagenase (MMP-9). J Biol Chem. 1997; 272:28, 823–28, 825.

    Google Scholar 

  139. Yoshimoto M, Itoh F, Yamamoto H, Hinoda Y, Imai K, Yachi A. Expression of MMP7(PUMP-1) mRNA in human colorectal cancers. Int J Cancer. 1993; 54: 614–618.

    Article  PubMed  CAS  Google Scholar 

  140. Davies B, Miles DW, Happerfield LC, et al. Activity of type IV collagenases in benign and malignant breast disease. Br J Cancer. 1993; 67: 1126–1131.

    Article  PubMed  CAS  Google Scholar 

  141. Cornelius LA, Nehring LC, Roby JD, Parks WC, Welgus HG. Human dermal microvascular endothelial cells produce matrix metalloproteinases in response to angiogenic factors and migration. J Invest Dermatol. 1995; 105: 170–176.

    Article  PubMed  CAS  Google Scholar 

  142. Taraboletti G, Garofalo A, Belotti D, et al. Inhibition of angiogenesis and murine hemangioma growth by batimastat, a synthetic inhibitor of matrix metalloproteinases. J Natl Cancer Inst. 1995; 87: 293–298.

    Article  PubMed  CAS  Google Scholar 

  143. Wang X, Fu X, Brown PD, Crimmin MJ, Hoffman RM. Matrix metalloproteinase inhibitor BB-94 (batimastat) inhibits human colon tumor growth and spread in a patient-like orthotopic model in nude mice. Cancer Res. 1994; 54: 4726–4728.

    PubMed  CAS  Google Scholar 

  144. Brooks PC, Stromblad S, Sanders LC, et al. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell. 1996; 85: 683–693.

    Article  PubMed  CAS  Google Scholar 

  145. Tokuraku M, Sato H, Murakami S, Okada Y, Watanabe Y, Seiki M. Activation of the precursor of gelatinase A/72 kDa type IV collagenase/MMP-2 in lung carcinomas correlates with the expression of membrane-type matrix metalloproteinase (MT-MMP) and with lymph node metastasis. Int J Cancer. 1995; 64: 355–359.

    Article  PubMed  CAS  Google Scholar 

  146. Plate K. From angiogenesis to lymphangiogenesis. Nat Med. 2001; 7: 151–152.

    Article  PubMed  CAS  Google Scholar 

  147. Skobe M, Hawighorst T, Jackson DG, et al. Induction of tumor lymphangiogenesis by VEGFC promotes breast cancer metastasis. Nat Med. 2001; 7: 192–198.

    Article  PubMed  CAS  Google Scholar 

  148. Makinen T, Jussila L, Veikkola T, et al. Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat Med. 2001; 7: 199–205.

    Article  PubMed  CAS  Google Scholar 

  149. O’Reilly MS, Boehm T, Shing Y, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell. 1997; 88: 277–285.

    Article  PubMed  Google Scholar 

  150. Xiao F, Wei Y, Yang L, et al. A gene therapy for cancer based on the angiogenesis inhibitor, vasostatin. Gene Ther. 2002; 9: 1207–1213.

    Article  PubMed  CAS  Google Scholar 

  151. Madhusudan S, Harris AL. Drug inhibition of angiogenesis. Curr Opin Pharmacol. 2002; 2: 403–414.

    Article  PubMed  CAS  Google Scholar 

  152. Scappaticci FA. Mechanisms and future directions for angiogenesis-based cancer therapies. J Clin Oncol. 2002; 20: 3906–3927.

    Article  PubMed  CAS  Google Scholar 

  153. Chavakis E, Dimmeler S. Regulation of endothelial cell survival and apoptosis during angiogenesis. Arterioscler Thromb Vasc Biol. 2002; 22: 887–893.

    Article  PubMed  CAS  Google Scholar 

  154. Beecken WD, Kramer W, Jonas D. New molecular mediators in tumor angiogenesis. J Cell Mol Med. 2000; 4: 262–269.

    Article  PubMed  CAS  Google Scholar 

  155. Bouck N, Stellmach V, Hsu SC. How tumors become angiogenic. Adv Cancer Res. 1996; 69: 135–174.

    Article  PubMed  CAS  Google Scholar 

  156. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995; 1: 27–31.

    Article  PubMed  CAS  Google Scholar 

  157. Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science. 1999; 284: 808–812.

    Article  PubMed  CAS  Google Scholar 

  158. Moser TL, Stack MS, Wahl ML, Pizzo SV. The mechanism of action of angiostatin: can you teach an old dog new tricks? Thromb Haemost. 2002; 87: 394–401.

    PubMed  CAS  Google Scholar 

  159. Moser TL, Stack MS, Asplin I, et al. Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc Natl Acad Sci USA. 1999; 96: 2811–2816.

    Article  PubMed  CAS  Google Scholar 

  160. Walter JJ, Sane DC. Angiostatin binds to smooth muscle cells in the coronary artery and inhibits smooth muscle cell proliferation and migration in vitro. Arterioscler Thromb Vasc Biol. 1999; 19: 2041–2048.

    Article  PubMed  CAS  Google Scholar 

  161. Chen QR, Kumar D, Stass SA, Mixson AJ. Liposomes complexed to plasmids encoding angiostatin and endostatin inhibit breast cancer in nude mice. Cancer Res. 1999; 59: 3308–3312.

    PubMed  CAS  Google Scholar 

  162. Peroulis I, Jonas N, Saleh M. Antiangiogenic activity of endostatin inhibits C6 glioma growth. Int J Cancer. 2002; 97: 839–845.

    Article  PubMed  CAS  Google Scholar 

  163. Blezinger P, Wang J, Gondo M, et al. Systemic inhibition of tumor growth and tumor metastases by intramuscular administration of the endostatin gene. Nat Biotechnol. 1999; 17: 343–348.

    Article  PubMed  CAS  Google Scholar 

  164. Kim YM, Hwang S, Kim YM, et al. Endostatin blocks vascular endothelial growth factor-mediated signaling via direct interaction with KDR/Flk-1. J Biol Chem. 2002; 277:27, 872–27, 879.

    Google Scholar 

  165. Furumatsu T, Yamaguchi N, Nishida K, et al. Endostatin inhibits adhesion of endothelial cells to collagen I via alpha(2)beta(1) integrin, a possible cause of prevention of chondrosarcoma growth. J Biochem (Tokyo). 2002; 131: 619–626.

    Article  CAS  Google Scholar 

  166. Karumanchi SA, Jha V, Ramchandran R, et al. Cell surface glypicans are low-affinity endostatin receptors. Mol Cell. 2001; 7: 811–822.

    Article  PubMed  CAS  Google Scholar 

  167. Pfeifer A, Kessler T, Silletti S, Cheresh DA, Verma IM. Suppression of angiogenesis by lentiviral delivery of PEX, a noncatalytic fragment of matrix metalloproteinase 2. Proc Natl Acad Sci USA. 2000; 97:12, 227–12, 232.

    Google Scholar 

  168. Ewalt KL, Schimmel P. Activation of angiogenic signaling pathways by two human tRNA synthetases. Biochemistry. 2002; 41:13, 344–13, 349.

    Google Scholar 

  169. Nash GF, Walsh DC, Kakkar AK. The role of the coagulation system in tumour angiogenesis. Lancet Oncol. 2001; 2: 608–613.

    Article  PubMed  CAS  Google Scholar 

  170. Wojtukiewicz MZ, Sierko E, Klement P, Rak J. The hemostatic system and angiogenesis in malignancy. Neoplasia. 2001; 3: 371–384.

    Article  PubMed  CAS  Google Scholar 

  171. Yamaoka M, Yamamoto T, Masaki T, Ikeyama S, Sudo K, Fujita T. Inhibition of tumor growth and metastasis of rodent tumors by the angiogenesis inhibitor O-(chloroacetylcarbamoyl)fumagillol (TNP-470; AGM-1470). Cancer Res. 1993; 53: 4262–4267.

    PubMed  CAS  Google Scholar 

  172. Fotsis T, Pepper M, Adlercreutz H, Hase T, Montesano R, Schweigerer L. Genistein, a dietary ingested isoflavonoid, inhibits cell proliferation and in vitro angiogenesis. J Nutr. 1995; 125: 790S–797S.

    PubMed  CAS  Google Scholar 

  173. Moses MA, Sudhalter J, Langer R. Identification of an inhibitor of neovascularization from cartilage. Science. 1990; 248: 1408–1410.

    Article  PubMed  CAS  Google Scholar 

  174. Brem S, Cotran R, Folkman J. Tumor angiogenesis: a quantitative method for histologic grading. J Natl Cancer Inst. 1972; 48: 347–356.

    PubMed  CAS  Google Scholar 

  175. Fox SB, Harris AL. Markers of tumor angiogenesis: clinical applications in prognosis and anti-angiogenic therapy. Invest N Drugs. 1997; 15: 15–28.

    Article  CAS  Google Scholar 

  176. Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. N Engl J Med. 1991; 324: 1–8.

    Article  PubMed  CAS  Google Scholar 

  177. Weidner N, Folkman J, Pozza F, et al. Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst. 1992; 84: 1875–1887.

    Article  PubMed  CAS  Google Scholar 

  178. Bosari S, Lee AK, DeLellis RA, Wiley BD, Heatley GJ, Silverman ML. Microvessel quantitation and prognosis in invasive breast carcinoma. Hum Pathol. 1992; 23: 755–761.

    Article  PubMed  CAS  Google Scholar 

  179. Fox SB, Leek RD, Weekes MP, Whitehouse RM, Gatter KC, Harris AL. Quantitation and prognostic value of breast cancer angiogenesis: comparison of microvessel density, Chalkley count, and computer image analysis. J Pathol. 1995; 177: 275–283.

    Article  PubMed  CAS  Google Scholar 

  180. Kawaguchi T, Yamamoto S, Kudoh S, Goto K, Wakasa K, Sakurai M. Tumor angiogenesis as a major prognostic factor in stage I lung adenocarcinoma. Anticancer Res. 1997; 17: 3743–3746.

    PubMed  CAS  Google Scholar 

  181. Heimburg S, Oehler MK, Kristen P, Papadopoulos T, Caffier H. The endothelial marker CD 34 in the assessment of tumour vascularisation in ovarian cancer. Anticancer Res. 1997; 17: 3149–3151.

    PubMed  CAS  Google Scholar 

  182. Tanigawa N, Amaya H, Matsumura M, Shimomatsuya T. Association of tumour vasculature with tumour progression and overall survival of patients with non-early gastric carcinomas. Br J Cancer. 1997; 75: 566–571.

    Article  PubMed  CAS  Google Scholar 

  183. Kumar-Singh S, Vermeulen PB, Weyler J, et al. Evaluation of tumour angiogenesis as a prognostic marker in malignant mesothelioma. J Pathol. 1997; 182: 211–216.

    Article  PubMed  CAS  Google Scholar 

  184. Vermeulen PB, Gasparini G, Fox SB, et al. Second international consensus on the methodology and criteria of evaluation of angiogenesis quantification in solid human tumours. Eur J Cancer. 2002; 38: 1564–1579.

    Article  PubMed  CAS  Google Scholar 

  185. Anan K, Morisaki T, Katano M, et al. Preoperative assessment of tumor angiogenesis by vascular endothelial growth factor mRNA expression in homogenate samples of breast carcinoma: fine-needle aspirates vs. resection samples. J Surg Oncol. 1997; 66: 257–263.

    Article  PubMed  CAS  Google Scholar 

  186. Dobbs SP, Hewett PW, Johnson IR, Carmichael J, Murray JC. Angiogenesis is associated with vascular endothelial growth factor expression in cervical intraepithelial neoplasia. Br J Cancer. 1997; 76: 1410–1415.

    Article  PubMed  CAS  Google Scholar 

  187. Eisma RJ, Spiro JD, Kreutzer DL. Vascular endothelial growth factor expression in head and neck squamous cell carcinoma. Am J Surg. 1997; 174: 513–517.

    Article  PubMed  CAS  Google Scholar 

  188. O’Brien T, Cranston D, Fuggle S, Bicknell R, Harris AL. Different angiogenic pathways characterize superficial and invasive bladder cancer. Cancer Res. 1995; 55: 510–513.

    PubMed  Google Scholar 

  189. Toi M, Hoshina S, Takayanagi T, Tominaga T. Association of vascular endothelial growth factor expression with tumor angiogenesis and with early relapse in primary breast cancer. Jpn J Cancer Res. 1994; 85: 1045–1049.

    Article  PubMed  CAS  Google Scholar 

  190. Hlatky L, Hahnfeldt P, Folkman J. Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn’t tell us. J Natl Cancer Inst. 2002; 94: 883–893.

    Article  PubMed  Google Scholar 

  191. Folkman J, Browder T, Palmblad J. Angiogenesis research: guidelines for translation to clinical application. Thromb Haemost. 2001; 86: 23–33.

    PubMed  CAS  Google Scholar 

  192. Folkman J. Looking for a good endothelial address. Cancer Cell. 2002; 1: 113–115.

    Article  PubMed  CAS  Google Scholar 

  193. Dowlati A, Robertson K, Cooney M, et al. A phase I pharmacokinetic and translational study of the novel vascular targeting agent combretastatin a-4 phosphate on a single-dose intravenous schedule in patients with advanced cancer. Cancer Res. 2002; 62: 3408–3416.

    PubMed  CAS  Google Scholar 

  194. Twombly R. First clinical trials of endostatin yield lukewarm results. J Natl Cancer Inst. 2002; 94 (20): 1520–1521.

    Article  PubMed  Google Scholar 

  195. Vacca A, Iurlaro M, Ribatti D, et al. Antiangiogenesis is produced by nontoxic doses of vinblastine. Blood. 1999; 94: 4143–4155.

    PubMed  CAS  Google Scholar 

  196. Kerbel RS, Viloria-Petit A, Klement G, Rak J. ‘Accidental’ anti-angiogenic drugs: anti-oncogene directed signal transduction inhibitors and conventional chemotherapeutic agents as examples. Eur J Cancer. 2000; 36: 1248–1257.

    CAS  Google Scholar 

  197. Hanahan D, Bergers G, Bergsland E. Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J Clin Invest. 2000; 105: 1045–1047.

    Article  PubMed  CAS  Google Scholar 

  198. Workman P. New drug targets for genomic cancer therapy: successes, limitations, opportunities and future challenges. Curr Cancer Drug Targets. 2001; 1: 33–47.

    Article  PubMed  CAS  Google Scholar 

  199. Kerbel RS. Clinical trials of antiangiogenic drugs: opportunities, problems, and assessment of initial results. J Clin Oncol. 2001; 19: 45S–51S.

    PubMed  CAS  Google Scholar 

  200. Taraboletti G, Margosio B. Antiangiogenic and antivascular therapy for cancer. Curr Opin Pharmacol. 2001; 1: 378–384.

    Article  PubMed  CAS  Google Scholar 

  201. Welles L, Saville MW, Lietzau J, et al. Phase II trial with dose titration of paclitaxel for the therapy of human immunodeficiency virus-associated Kaposi’s sarcoma. J Clin Oncol. 1998; 16: 1112–1121.

    PubMed  CAS  Google Scholar 

  202. Horti J, Dixon SC, Logothetis CJ, Guo Y, Reed E, Figg WD. Increased transcriptional activity of prostate-specific antigen in the presence of TNP-470, an angiogenesis inhibitor. Br J Cancer. 1999; 79: 1588–1593.

    Article  PubMed  CAS  Google Scholar 

  203. Berlin J, Tutsch KD, Hutson P, et al. Phase I clinical and pharmacokinetic study of oral carboxyamidotriazole, a signal transduction inhibitor. J Clin Oncol. 1997; 15: 781–789.

    PubMed  CAS  Google Scholar 

  204. Kim KJ, Li B, Winer J, et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 1993; 362: 841–844.

    Article  PubMed  CAS  Google Scholar 

  205. Melnyk O, Shuman MA, Kim KJ. Vascular endothelial growth factor promotes tumor dissemination by a mechanism distinct from its effect on primary tumor growth. Cancer Res. 1996; 56: 921–924.

    PubMed  CAS  Google Scholar 

  206. Borgstrom P, Hillan KJ, Sriramarao P, Ferrara N. Complete inhibition of angiogenesis and growth of microtumors by anti-vascular endothelial growth factor neutralizing antibody: novel concepts of angiostatic therapy from intravital videomicroscopy. Cancer Res. 1996; 56: 4032–4039.

    PubMed  CAS  Google Scholar 

  207. Millauer B, Longhi MP, Plate KH, et al. Dominant-negative inhibition of Flk-1 suppresses the growth of many tumor types in vivo. Cancer Res. 1996; 56: 1615–1620.

    PubMed  CAS  Google Scholar 

  208. Millauer B, Shawver LK, Plate KH, Risau W, Ullrich A. Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature. 1994; 367: 576–579.

    Article  PubMed  CAS  Google Scholar 

  209. Hoekman K. SU6668, a multitargeted angiogenesis inhibitor. Cancer J. 2001; 7:S 134–S138.

    Google Scholar 

  210. McCarty ME, Ellis LM. Mechanisms of anti-angiogenic tyrosine kinase inhibition on wound healing—the obvious and not so obvious. Cancer Biol Ther. 2002; 1: 127–129.

    PubMed  Google Scholar 

  211. Coppola G, Atlas-White M, Katsahambas S, Bertolini J, Hearn MT, Underwood JR. Effect of intraperitoneally, intravenously and intralesionally administered monoclonal anti-beta-FGF antibodies on rat chondrosarcoma tumor vascularization and growth. Anticancer Res. 1997; 17: 2033–2039.

    PubMed  CAS  Google Scholar 

  212. Kobayashi K, Vokes EE, Vogelzang NJ, Janisch L, Soliven B, Ratain MJ. Phase I study of suramin administered by intermittent infusion without adaptive control to cancer patients: update of two expanded dose levels near the maximally tolerated dose. J Clin Oncol. 1996; 14: 2622–2623.

    PubMed  CAS  Google Scholar 

  213. Eder JP Jr, Supko JG, Clark JW, et al. Phase I clinical trial of recombinant human endostatin administered as a short intravenous infusion repeated daily. J Clin Oncol. 2002; 20: 3772–3784.

    Article  PubMed  CAS  Google Scholar 

  214. Herbst RS, Lee AT, Tran HT, Abbruzzese JL. Clinical studies of angiogenesis inhibitors: the University of Texas MD Anderson Center Trial of Human Endostatin. Curr Oncol Rep. 2001; 3: 131–140.

    Article  PubMed  CAS  Google Scholar 

  215. O’Reilly MS, Holmgren L, Chen C, Folkman J. Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat Med. 1996; 2: 689–692.

    Article  PubMed  Google Scholar 

  216. Holmgren L, O’Reilly MS, Folkman J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med. 1995; 1: 149–153.

    Article  PubMed  CAS  Google Scholar 

  217. Boehm T, Folkman J, Browder T, O’Reilly MS. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature. 1997; 390: 404–407.

    Article  PubMed  CAS  Google Scholar 

  218. Cao Y, O’Reilly MS, Marshall B, Flynn E, Ji RW, Folkman J. Expression of angiostatin cDNA in a murine fibrosarcoma suppresses primary tumor growth and produces long-term dormancy of metastases. J Clin Invest. 1998; 101: 1055–1063.

    Article  PubMed  CAS  Google Scholar 

  219. Wang X, Liu FK, Li X, Li JS, Xu GX. Retrovirus-mediated gene transfer of human endostatin inhibits growth of human liver carcinoma cells SMMC7721 in nude mice. World J Gastroenterol. 2002; 8: 1045–1049.

    PubMed  CAS  Google Scholar 

  220. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000; 100: 57–70.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Piulats, J., Mitjans, F. (2004). Angiogenesis Switch Pathways. In: Bronchud, M.H., Foote, M., Giaccone, G., Olopade, O.I., Workman, P. (eds) Principles of Molecular Oncology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-664-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-664-5_12

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-6276-1

  • Online ISBN: 978-1-59259-664-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics