Skip to main content

AMPA Potentiation as a Treatment Option for Alzheimer’s Disease

  • Chapter
Alzheimer’s Disease

Part of the book series: Current Clinical Neurology ((CCNEU))

  • 361 Accesses

Abstract

Alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid (AMPA) receptor modulators, although still in their infancy from a therapeutic standpoint, have the potential to correct the deficits associated with cognitive disorders such as Alzheimer’s disease (AD). This chapter reviews the AMPA receptor’s role in long-term potentiation and thus in learning and memory, and describes the AMPA potentiators currently under development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bliss, T.P.; Collingridge, G.L.: A synaptic model memory; long-term potentiation in the hippocampus. Nature 1993; 361: 31–39.

    Article  PubMed  CAS  Google Scholar 

  2. Greenmyre, J.T.: The role of glutamate in neurotransmission and in neurologic disease. Arch Neurol 1986; 43: 1058–1062.

    Article  Google Scholar 

  3. Dingledine, R. et al.: The glutamate receptor ion channels. Pharmacol Rev 1999; 51: 7–61.

    PubMed  CAS  Google Scholar 

  4. Burrone, J.; Murthy, V.N.: Synaptic plasticity: rush hour traffic in the AMPA lanes. Curr Biol 2001; 11: R274 - R277.

    Article  PubMed  CAS  Google Scholar 

  5. Nowak, L. et al.: Magnesium gates glutamate-activated channels in mouse central neurons. Nature 1984; 307: 462–465.

    Article  PubMed  CAS  Google Scholar 

  6. Hollmann, M.; Heinemann, S.: Cloned glutamate receptors. Ann Rev Neurosci 1994; 17: 31–108.

    Article  PubMed  CAS  Google Scholar 

  7. Bleakman, D.; Lodge, D.: Neuropharmacology of AMPA and kainate receptors. Neuropharmacology 1998; 37: 1187–1204.

    Article  PubMed  CAS  Google Scholar 

  8. Beattie, E.C. et al.: Regulation of AMPA receptor endocytosis by a signaling mechanism shared with LTD. Nat Neurosci 2000; 3: 12.

    Google Scholar 

  9. Löscher, C.; Frerking, M.: Restless AMPA receptors: implications for synaptic transmission and plasticity. Trends Neurosci 2001; 24: 11.

    Article  Google Scholar 

  10. Ito, I. et al.: Allosteric potentiation of quisqualate receptors by a nootropic drug aniracetam. J Physiol 1990; 424: 533–543.

    PubMed  CAS  Google Scholar 

  11. Copani, A. et al.: Nootropic drugs positively modulate oa-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-sensitive glutamate receptors in neuronal cultures. J Neurochem 1992; 58: 1199–1204.

    Article  PubMed  CAS  Google Scholar 

  12. Zivkovic. I. et al.: 7-Chloro-3-methyl-3–4-dihydro-2H-1,2,4 benzothiadiazine S,S-dioxide (IDRA 21): a benzothiadiazine derivative that enhances cognition by attenuating DL- amino-2,3-dihydro-5-methyl-3-oxo-4-isoxazolepropanoic acid (AMPA) receptor desensitization. J Pharmacol Exp Ther 1995; 272: 300–309.

    PubMed  CAS  Google Scholar 

  13. Yamada, K. et al.: Prolongation of latencies for passive avoidance responses in rats treated with aniracetam or piracetam. Pharmacol Biochem Behav 1985; 22: 645–684.

    Article  PubMed  CAS  Google Scholar 

  14. Senin, U. et al.: Aniracetam (Ro 13–5057) in the treatment of senile dementia of Alzheimer type (SDAT): results of a placebo controlled multicentre clinical trial. Eur Neuropsychopharmacol 1991; 1: 511–517.

    Article  PubMed  CAS  Google Scholar 

  15. Maina, G. et al.: Oxiracetam in the treatment of primary degenerative and multi-infarct dementia: a double-blind, placebo-controlled study. Neuropsychobiology 1989; 21: 141–145.

    Article  PubMed  CAS  Google Scholar 

  16. Petkov, V.D. et al.: Age-related differences in memory and in the memory effects of nootropic drugs. Acta Physiol Pharmacol Bulgarica 1990; 16: 28–36.

    CAS  Google Scholar 

  17. Staubli, U.; Rogers, G.; Lynch, G: Facilitation of glutamate receptors enhances memory. Proc NatlAcad Sci USA 1994; 91: 777–781.

    Article  CAS  Google Scholar 

  18. Thompson, D.M. et al.: 7-Chloro-3-methyl-3–4-dihydro-2H-1,2,4 benzothiadiazine S,S-dioxide (IDRA-21), a cogener of aniracetam, potently abates pharmacologically-induced cognitive impairments in patas monkeys. Proc NatlAcad Sci USA 1995; 92: 7667–7671.

    Article  CAS  Google Scholar 

  19. Gouliaev, A.H.; Senning, A.: Piracetam and other structurally related nootropics. Brain Res Rev. 1994; 19: 180–222.

    Article  PubMed  CAS  Google Scholar 

  20. Szabadits, P.; Mike, A.; Vizi, E.S.: Modulation of agonist-evoked responses of hippocampal AMPA receptors by IDRA 21 and cyclothiazide (abstr 143.8). World Congr Pharmacol 2002.

    Google Scholar 

  21. Yamada, K.A.: AMPA receptor activation potentiated by the AMPA modulator 1-BCP is toxic to cultured rat hippocampal neurons. Neurosci Lett 1998; 249: 119–122.

    Article  PubMed  CAS  Google Scholar 

  22. Granger, R. et al.: A drug that facilitates glutamatergic transmission reduces exploratory activity and improves performance in a learning-dependent task. Synapse 1993; 15: 326–329.

    Article  PubMed  CAS  Google Scholar 

  23. Bahr, B.A. et al.: Survival signaling and selective neuroprotection through glutamatergic neurotransmission. Exp Neurol 2002; 174: 37–47.

    Article  PubMed  CAS  Google Scholar 

  24. Lauterborn, J.C. et al.: Positive modulation of AMPA receptors increases neurotrophin expression by hippocampal and cortical neurons. J Neurosci 2000; 20: 8–21.

    PubMed  CAS  Google Scholar 

  25. Ingvar, M. et al.: Enhancement by an ampakine of memory encoding in humans. Exp Neurol 1997; 146: 553–559.

    Article  PubMed  CAS  Google Scholar 

  26. Lynch, G. et al.: Evidence that a positive modulator of AMPA-type glutamate receptors improves delayed recall in aged humans. Exp Neurobiol 1997; 145: 89–92.

    Article  CAS  Google Scholar 

  27. Urbanics, R.: Neurodegenerative Drug Discovery and Development New Directions. IDDB Meeting Report, July 18–19, 2001, London, UK.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chappell, A.S., Witte, M.M. (2004). AMPA Potentiation as a Treatment Option for Alzheimer’s Disease. In: Richter, R.W., Richter, B.Z. (eds) Alzheimer’s Disease. Current Clinical Neurology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-661-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-661-4_35

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-4485-9

  • Online ISBN: 978-1-59259-661-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics