Skip to main content

Neurotrophic Factors for Prevention of Alzheimer’s Disease

  • Chapter
Alzheimer’s Disease

Part of the book series: Current Clinical Neurology ((CCNEU))

  • 348 Accesses

Abstract

Synapse loss and cell death are the final common pathways of cognitive decline in Alzheimer’s disease. Neurotrophic factors are substances naturally produced in the nervous system that support neuronal survival during development and support neuronal function throughout adulthood. Notably, in animal models, including primates, neurotrophic factors can also prevent neuronal death after injury and can reverse spontaneous neuronal atrophy in aging. Thus, neurotrophic factor therapy has substantial potential as a means of preventing cell loss in disorders such as AD. The main challenge in clinical testing of these growth factors has been their delivery to the brain in sufficient doses to affect cell function. In this chapter the therapeutic potential of growth factors has been reviewed, as well as a clinical trial of growth factor gene therapy in AD, which currently is in progress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Levi-Montalcini, R.; Hamburger, V.: Selective growth stimulating effects of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo. J Exp Zool 1951; 116: 321–362.

    Article  PubMed  CAS  Google Scholar 

  2. Levi-Montalcini, R.: The nerve growth factor 35 years later. Science 1987; 237: 1154–1162.

    Article  PubMed  CAS  Google Scholar 

  3. Francke, U. et al.: The human gene for the beta subunit of nerve growth factor is located on the short arm of chromosone 1. Science 1983; 222: 1248.

    Article  PubMed  CAS  Google Scholar 

  4. Ullrich, A. et al.: Human beta-nerve growth factor gene sequence highly homologous to that of mouse. Nature 1983; 303: 821–825.

    Article  PubMed  CAS  Google Scholar 

  5. Kaplan, D.R.; Miller, F.D.: Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol 2000; 10: 381–391.

    Article  PubMed  CAS  Google Scholar 

  6. Korsching, S.; Thoenen, H.: Quantitative demonstration of the retrograde axonal transport of endogenous nerve growth factor. Neurosci Lett 1983; 39: 1–4.

    Article  PubMed  CAS  Google Scholar 

  7. Hefti, F.: Nerve growth factor (NGF) promotes survival of septal cholinergic neurons after fimbrial transection. J Neurosci 1986; 6: 2155–2162.

    PubMed  CAS  Google Scholar 

  8. Fischer, W. et al.: Amelioration of cholinergic neuron atrophy and spatial memory impairment in aged rats by nerve growth factor. Nature 1987; 329: 65–68.

    Article  PubMed  CAS  Google Scholar 

  9. Tuszynski, M.H. et al.: Nerve growth factor infusion in primate brain reduces lesion-induced cholinergic neuronal degeneration. J Neurosci 1990; 10: 3604–3614.

    PubMed  CAS  Google Scholar 

  10. Koliatsos, V.E. et al.: Mouse nerve growth factor prevents degeneration of axotomized basal forebrain cholinergic neurons in the monkey. J Neurosci 1990; 10: 3801–3813.

    PubMed  CAS  Google Scholar 

  11. Davis, K.L. et al.: A double-blind, placebo-controlled multicenter study of tacrine for Alzheimer’s disease. The Tacrine Collaborative Study Group. N Engl J Med 1992; 327: 1253–1259.

    Article  PubMed  CAS  Google Scholar 

  12. Dekker, A.J. et al.: NGF increases cortical acetylcholine release in rats with lesions of the nucleus basalis. Neuroreport 1991; 2: 577–580.

    Article  PubMed  CAS  Google Scholar 

  13. Mufson, E.J.: Conner, J.M.; Kordower, J.H.: Nerve growth factor in Alzheimer’s disease: defective retrograde transport to nucleus basalis. Neuroreport 1995; 6: 1063–1066.

    Article  PubMed  CAS  Google Scholar 

  14. Scott, S.A. et al.: Nerve growth factor in Alzheimer’s disease: increased levels throughout the brain coupled with declines in nucleus basalis. J Neurosci 1995; 15: 6213–6221.

    PubMed  CAS  Google Scholar 

  15. Crutcher, K.A. et al.: Detection of NGF-like activity in human brain tissue: increased levels in Alzheimer’s disease. J Neurosci 1993; 13: 2540–2550.

    PubMed  CAS  Google Scholar 

  16. Williams, L.R.: Hypophagia is induced by intracerebroventricular administration of nerve growth factor. Exp Neurol 1991; 113: 31–37.

    Article  PubMed  CAS  Google Scholar 

  17. Crutcher, K.A.: Sympathetic sprouting in the central nervous system: a model for studies of axonal growth in the mature mammalian brain. Brain Res Rev 1987; 12: 203–233.

    Article  CAS  Google Scholar 

  18. Winkler, J. et al.: Reversible Schwann cell hyperplasia and sprouting of sensory and sympathetic neurites after intraventricular administration of nerve growth factor. Ann Neurol 1997; 41: 82–93.

    Article  PubMed  CAS  Google Scholar 

  19. Eriksdotter Jonhagen, M. et al.: Intracerebroventricular infusion of nerve growth factor in three patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 1998; 9: 246–257.

    Article  Google Scholar 

  20. Rosenberg, M.B. et al.: Grafting genetically modified cells to the damaged brain: restorative effects of NGF expression. Science 1988; 242: 1575–1578.

    Article  PubMed  CAS  Google Scholar 

  21. Chen, K.; Gage, F.H.: Recovery of mnemonic function in cognitively impaired, aged rats by grafts of fibroblasts genetically modified to produce nerve growth factor. Soc Neurosci Abstr 1993.

    Google Scholar 

  22. Kordower, J.H. et al.: The aged monkey basal forebrain: rescue and sprouting of axotomized basal forebrain neurons after grafts of encapsulated cells secreting human nerve growth factor. Proc Natl Acad Sci USA 1994; 91: 10898–10902.

    Article  PubMed  CAS  Google Scholar 

  23. Tuszynski, M.H. et al.: Gene therapy in the adult primate brain: intraparenchymal grafts of cells genetically modified to produce nerve growth factor prevent cholinergic neuronal degeneration. Gene Therapy 1996; 3: 305–314.

    PubMed  CAS  Google Scholar 

  24. Smith, D.E. et al.: Age-associated neuronal atrophy occurs in the primate brain and is reversible by growth factor gene therapy. Proc Natl Acad Sci USA 1999; 96: 10893–10898.

    Article  PubMed  CAS  Google Scholar 

  25. Conner, J.M. et al.: Non-tropic actions of neurotrophins: subcortical NGF gene delivery reverses age-related degeneration of primate cortical cholinergic innervation. Proc Natl Acad Sci USA 2001; 98: 1941–1946.

    Article  PubMed  CAS  Google Scholar 

  26. Miller, D.A.: Retrovirus packaging cells. Hum Gene Ther 1990; 1: 5–14.

    Article  PubMed  CAS  Google Scholar 

  27. Naldini, L. et al.: In vivo gene delivery and stable transduction of non-dividing cells by a lentiviral vector. Science 1996; 272: 263–267.

    Article  PubMed  CAS  Google Scholar 

  28. Rabinowitz, 7.E.; Samulski, R.J.: Building a better vector: the manipulation of AAV virions. Virology 2000; 278: 301–308.

    Article  PubMed  CAS  Google Scholar 

  29. Bartus, R. et al.: The cholinergic hypothesis of geriatric memory dysfunction. Science 1982; 217: 408–417.

    Article  PubMed  CAS  Google Scholar 

  30. Coyle, 7.T.; Price, P.H.; Delong, M.R.: Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science 1983; 219: 1184–1189.

    Article  PubMed  CAS  Google Scholar 

  31. Terry, R.D. et al.: Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991; 30: 572–580.

    Article  PubMed  CAS  Google Scholar 

  32. Everitt, B.7.; Robbins, T.W.: Central cholinergic systems and cognition. Ann Rev Psychol 1997; 48: 649–684.

    Article  CAS  Google Scholar 

  33. Voytko, M.L. et al.: Basal forebrain lesions in monkeys disrupt attention but not learning and memory. J Neurosci 1994; 14: 167–186.

    PubMed  CAS  Google Scholar 

  34. Mandel, R.J. et al.: Nerve growth factor expressed in the medial septum following in vivo gene delivery using a recombinant adeno-associated viral vector protects cholinergic neurons from fimbria-fornix lesion-induced degeneration. Exp Neurol 1999; 155: 59–64.

    Article  PubMed  CAS  Google Scholar 

  35. Tetzlaff, W. et al.: Response of rubrospinal and corticospinal neurons to injury and neurotrophins. Prog Brain Res 1994; 103: 271–286.

    Article  PubMed  CAS  Google Scholar 

  36. Lu, P.; Blesch, A.; Tuszynski, M.H.: Neurotrophism without neurotropism: BDNF promotes survival but not growth of lesioned corticospinal neurons. J Comp Neurol 2001; 436: 456–470.

    Article  PubMed  CAS  Google Scholar 

  37. Gomez-Pinilla, F.; Lee, 7.W.; Cotman, C.W.: Basic fibroblast growth factor in adult rat brain: cell distribution and response to entorhinal lesion and fimbria-fornix transection. J Neurosci 1992; 12: 345–355.

    PubMed  CAS  Google Scholar 

  38. Peterson, D.A. et al.: Fibroblast growth factor-2 protects entorhinal layer II glutamatergic neurons from axotomy-induced death. J Neurosci 1996; 16: 886–898.

    PubMed  CAS  Google Scholar 

  39. Blesch, A.; Conner, J.M.; Tuszynski, M.H.: Modulation of neuronal survival and axonal growth in vivo by tetracycline-regulated neurotrophin expression. Gene Ther 2001; 8: 954–960.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tuszynski, M.H. (2004). Neurotrophic Factors for Prevention of Alzheimer’s Disease. In: Richter, R.W., Richter, B.Z. (eds) Alzheimer’s Disease. Current Clinical Neurology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-661-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-661-4_28

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-4485-9

  • Online ISBN: 978-1-59259-661-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics