Skip to main content

Sedation and Analgesia in the Critically Ill Neurology and Neurosurgery Patient

  • Chapter

Part of the book series: Current Clinical Neurology ((CCNEU))

Abstract

Sedation of critically ill patients with neurologic or neurosurgical pathology is often a controversial topic, as one of the primary tenants of care of these patients is the capacity to perform repeated neurologic examinations to assess for a change (1). Routine sedation of all intubated patients, for example, is not recommended, as somnolence may be the first indication of a worsening intracranial process. However, there are a number of situations when sedation and analgesia are necessary for either patient safety or comfort. These include patients with traumatic brain injury (TBI), who are often agitated and at risk of injury to self or the medical staff caring for them. Many TBI patients are also withdrawing from chronic alcohol and drug use, and this must be factored in to the choice and duration of sedation. Patients who must remain intubated for either neurologic or systemic reasons, and are at risk of selfextubation or show significant anxiety or discomfort while mechanically ventilated, may also require gentle sedation and analgesia. Patients with severe intracranial hypertension may require deep sedation and analgesia or even general anesthesia to control intracranial pressure (ICP) (see also Chapter 5). Similarly, patients with generalized status epilepticus may require general anesthesia to the point of electrographic burst-suppression to control seizure activity (see also Chapter 25).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mirski MA, Muffelman B, Ulatowski JA, Hanley DF. Sedation for the critically ill neurologic patient. Crit. Care Med. 1995; 23: 2038–2053.

    Article  PubMed  CAS  Google Scholar 

  2. Gehi MM, Rosenthal RH, Fizette NB, Crowe LR, Webb WL Jr. Psychiatric manifestations of hyponatremia. Psychosomatics 1981; 22: 739–743.

    PubMed  CAS  Google Scholar 

  3. Atchison JW, Wachendorf J, Haddock D, Mysiw WJ, Gribble M, Corrigan JD. Hyponatremia-associated cognitive impairment in traumatic brain injury. Brain Inj. 1993; 7: 347–352.

    Article  PubMed  CAS  Google Scholar 

  4. Aldemir M, Ozen S, Kara IH, Sir A, Bac B. Predisposing factors for delirium in the surgical intensive care unit. Crit. Care 2001; 5: 265–270.

    Article  PubMed  CAS  Google Scholar 

  5. Hawkes ND, Thomas GA, Jurewicz A, Williams OM, Hillier CE, McQueen IM, Shortland G. Non-hepatic hyperammonaemia: an important, potentially reversible cause of encephalopathy. Postgrad. Med. J. 2001; 77: 717–722.

    Article  PubMed  CAS  Google Scholar 

  6. Rao KV, Norenberg MD. Cerebral energy metabolism in hepatic encephalopathy and hyperammonemia. Metab. Brain Dis. 2001; 16: 67–78.

    Article  PubMed  CAS  Google Scholar 

  7. Winawer N. Postoperative delirium. Med. Clin. North Am. 2001; 85: 1229–1239.

    Article  PubMed  CAS  Google Scholar 

  8. O’Connel GJ, Campbell PB, Anath JV. Amitriptyline: initial intolerance and subsequent psychosis. Can. Med. Assoc. J. 1972; 106: 115.

    PubMed  Google Scholar 

  9. Malinow KL, Dorsch C. Tricyclic precipitation of steroid psychosis. Psychiatry Med. 1984; 2: 351–354.

    CAS  Google Scholar 

  10. Preda A, MacLean RW, Mazure CM, Bowers MB Jr. Antidepressant-associated mania and psychosis resulting in psychiatric admissions. J. Clin. Psychiatry 2001; 62: 30–33.

    Article  PubMed  CAS  Google Scholar 

  11. Matsuura M. Epileptic psychoses and anticonvulsant drug treatment. J. Neurol. Neurosurg. Psychiatry 1999; 67: 231–233.

    Article  PubMed  CAS  Google Scholar 

  12. Besag FM. Behavioural effects of the new anticonvulsants. Drug Saf. 2001; 24: 513–536.

    Article  PubMed  CAS  Google Scholar 

  13. Kossoff EH, Bergey GK, Freeman JM, Vining EP. Levetiracetam psychosis in children with epilepsy. Epilepsia 2001; 42: 1611–1613.

    Article  PubMed  CAS  Google Scholar 

  14. Sanders LD, Whitehead C, Gildersleve CD, Rosen M, Robinson JO. Interaction of H2-receptor antagonists and benzodiazepine sedation. A double-blind placebo-controlled investigation of the effects of cimetidine and ranitidine on recovery after intravenous midazolam. Anaesthesia 1993; 48: 286–292.

    Article  PubMed  CAS  Google Scholar 

  15. Kim KY, McCartney JR, Kaye W, Boland RJ, Niaura R. The effect of cimetidine and ranitidine on cognitive function in postoperative cardiac surgery patients. Int. J. Psychiatry Med. 1996; 26: 295–307.

    Article  PubMed  CAS  Google Scholar 

  16. Schroeder JA, Wolfe WM, Thomas MH, et al. The effect of intravenous ranitidine and metoclopramide on behavior, cognitive function, and affect. Anesth. Analg. 1994; 78: 359–364.

    Article  PubMed  CAS  Google Scholar 

  17. Hall RC, Popkin MK, Stickney SK, Gardner ER. Presentation of the steroid psychoses. J. Nerv. Ment. Dis. 1979; 167: 229–236.

    Article  PubMed  CAS  Google Scholar 

  18. Patten SB, Neutel CI. Corticosteroid-induced adverse psychiatric effects: incidence, diagnosis and management. Drug Saf. 2000; 22: 111–122.

    Article  PubMed  CAS  Google Scholar 

  19. Jacobson S. Psychotic reaction to penicillin. Am. J. Psychiatry 1968; 124: 999.

    PubMed  CAS  Google Scholar 

  20. Saker BM, Musk AW, Haywood EF, Hurst PE. Reversible toxic psychosis after cephalexin. Med. J. Aust. 1973; 1: 497–498.

    PubMed  CAS  Google Scholar 

  21. Cohen IJ, Weitz R. Psychiatric complications with erythromycin. Drug Intell. Clin. Pharm. 1981; 15: 388.

    PubMed  CAS  Google Scholar 

  22. Vincken W. Psychotic reaction to cefuroxime. Lancet 1984; 1 (8383): 965.

    Article  PubMed  CAS  Google Scholar 

  23. Sternbach H, State R. Antibiotics: neuropsychiatric effects and psychotropic interactions. Harv. Rev. Psychiatry 1997; 5: 214–226.

    Article  PubMed  CAS  Google Scholar 

  24. Gomez-Gil E, Garcia F, Pintor L, Martinez JA, Mensa J, de Pablo J. Clarithromycin-induced acute psychosis in peptic ulcer disease. Eur. J. Clin. Microbiol. Dis. 1999; 18: 70–71.

    Article  CAS  Google Scholar 

  25. Prime K, French P. Neuropsychiatric reaction induced by clarithromycin in a patient on highly active antiretroviral therapy (HAART). Sex. Transm. Infect. 2001; 77: 297–298.

    Article  PubMed  CAS  Google Scholar 

  26. Katz MH. Effect of HIV treatment on cognition, behavior, and emotion. Psychiatry Clin. North Am. 1994; 17: 227–230.

    CAS  Google Scholar 

  27. Buczko GB. Sedation in critically ill patients: a review. Med. Health RI 2001; 84: 321–323.

    CAS  Google Scholar 

  28. Gutstein HB, Akil H. Opioid analgesics. In Hardman, JG, Limbird, LE, eds. Goodman and Gilman’s The Pharmacological Basis of Therapeutics, 10th ed. New York: McGraw-Hill, 2001: 569–619.

    Google Scholar 

  29. Paterson SJ, Robson LE, Kosterlitz HW. Classification of opioid receptors. Br. Med. Bull. 1983; 39: 31–36.

    PubMed  CAS  Google Scholar 

  30. Satoh M, Kubota A, Iwama T, et al. Comparison of analgesic potencies of mu, delta and kappa agonists locally applied to various CNS regions relevant to analgesia in rats. Life Sci. 1983; 33: 689–692.

    Article  PubMed  CAS  Google Scholar 

  31. Altura BT, Altura BM, Quirion R. Identification of benzomorphan-kappa opiate receptors in cerebral arteries which subserve relaxation. Br. J. Pharmacol. 1984; 82: 459–466.

    Article  PubMed  CAS  Google Scholar 

  32. Porreca F, Mosberg HI, Hurst R, Hruby VJ, Burks TF. Roles of mu, delta and kappa opioid receptors in spinal and supraspinal mediation of gastrointestinal transit effects and hot-plate analgesia in the mouse. J. Pharmacol. Exp. Ther. 1984; 230: 341–348.

    PubMed  CAS  Google Scholar 

  33. Pfeiffer A, Brantl V, Herz A, Emrich HM. Psychotomimesis mediated by kappa opiate receptors. Science 1986; 233: 774–776.

    Article  PubMed  CAS  Google Scholar 

  34. Mansour A, Khatchaturian H, Lewis ME, Akil H, Watson SJ. Anatomy of CNS opioid receptors. Trends Neurosci. 1988; 11: 308–314.

    Article  PubMed  CAS  Google Scholar 

  35. Casy AF. Opioid receptors and their ligands: recent developments. Adv. Drug Res. 1989; 18: 177–289.

    CAS  Google Scholar 

  36. Glare PA, Walsh TD. Clinical pharmacokinetics of morphine. Ther. Drug Monit. 1991; 13: 1–23.

    Article  PubMed  CAS  Google Scholar 

  37. Morrison LM, Payne M, Drummond GB. Comparison of speed of onset of analgesic effect of diamorphine and morphine. Br. J. Anaesth. 1991; 66: 656–659.

    Article  PubMed  CAS  Google Scholar 

  38. Nordberg G, Borg L, Hedner T, Mellstrand T. CSF and plasma pharmacokinetics of intramuscular morphine. Eur. J. Clin. Pharmacol. 1985; 27: 677–681.

    Article  PubMed  CAS  Google Scholar 

  39. Goucke CR, Hackett LP, Ilett KF. Concentrations of morphine, morphine-6-glucuronide, and morphine-3-glucuronide in serum and cerebrospinal fluid following morphine administration to patients with morphine-resistant pain. Pain 1994; 56: 145–149.

    Article  PubMed  CAS  Google Scholar 

  40. Brunk SF, Delle M. Morphine metabolism in man. Clin. Pharmacol. Ther. 1974; 16: 51–57.

    PubMed  CAS  Google Scholar 

  41. Boerner U, Abbott S, Roe RL. The metabolism of morphine and heroin in man. Drug. Metab. Rev. 1975; 4: 39–73.

    Article  PubMed  CAS  Google Scholar 

  42. Pasternak GW, Bodnar RJ, Clark JA, Inturrisi CE. Morphine 6-glucuronide, a potent mu agonist. Life Sci. 1987; 41: 2845–2849.

    Article  PubMed  CAS  Google Scholar 

  43. Ball M, McQuay HJ, Moore RA, Allen MC, Fisher A, Sear J. Renal failure and the use of morphine in intensive care. Lancet 1985; 1 (8432): 784–786.

    Article  PubMed  CAS  Google Scholar 

  44. Portenoy RK, Foley KM, Stulman J, et al. Plasma morphine and morphine-6-glucuronide during chronic morphine therapy for cancer pain: plasma profiles, steady-state concentrations and the consequences of renal failure. Pain 1991; 47: 13–19.

    Article  PubMed  CAS  Google Scholar 

  45. Osborne R, Joel S, Trew D, Slevin M. Morphine and metabolite behavior after different routes of administration: demonstration of the importance of the active metabolite morphine-6-glucuronide. Clin. Pharmacol. Ther. 1990; 47: 12–19.

    Article  PubMed  CAS  Google Scholar 

  46. Gourlay GK. Sustained relief of chronic pain. Pharmacokinetics of sustained release morphine. Clin. Pharmacokinet. 1998; 35: 173–190.

    Article  PubMed  CAS  Google Scholar 

  47. Streisand JB, Busch MA, Egan TD, Smith BG, Gay M, Pace NL. Dose proportionality and pharmacokinetics of oral transmucosal fentanyl citrate. Anesthesiology 1998; 88: 305–309.

    Article  PubMed  CAS  Google Scholar 

  48. Gourlay GK, Kowalski SR, Plummer JL, Cherry DA, Gaukroger P, Cousins MJ. The transdermal administration of fentanyl in the treatment of postoperative pain: pharmacokinetics and pharmacodynamic effects. Pain 1989; 37: 193–202.

    Article  PubMed  CAS  Google Scholar 

  49. Plezia PM, Kramer TH, Linford J, Hameroff SR. Transdermal fentanyl: pharmacokinetics and preliminary clinical evaluation. Pharmacotherapy 1989; 9: 2–9.

    PubMed  CAS  Google Scholar 

  50. Mather LE. Clinical pharmacokinetics of fentanyl and its newer derivatives. Clin. Pharmacokinet. 1983; 8: 422–446.

    Article  PubMed  CAS  Google Scholar 

  51. Bower S: Plasma protein binding of fentanyl. J. Pharm. Pharmacol. 1981; 33: 507–514.

    Article  PubMed  CAS  Google Scholar 

  52. Halliburton JR. The pharmacokinetics of fentanyl, sufentanil and alfentanil: a comparative review. AANA J. 1988; 56: 229–232.

    PubMed  CAS  Google Scholar 

  53. Goromaru T, Matsuura H, Yoshimura N, et al. Identification and quantitative determination of fentanyl metabolites in patients by gas chromatography-mass spectrometry. Anesthesiology 1984; 61: 73–77.

    PubMed  CAS  Google Scholar 

  54. Corall IM, Moore AR, Strunin L. Plasma concentrations of fentanyl in normal surgical patients and those with severe renal and hepatic disease. Br. J. Anaesth. 1980; 52: 101 P.

    Google Scholar 

  55. Joh I, Sila M, Bastani B. Nondialyzability of fentanyl with high-efficiency and high-flux membranes (letter). Anesth. Analg. 1998; 86: 447.

    PubMed  CAS  Google Scholar 

  56. Glass PS, Hardman D, Kamiyama Y, et al. Preliminary pharmacokinetics and pharmacodynamics of an ultra-shortacting opioid: remifentanil (GI87084B). Anesth. Analg. 1993; 77: 1031–1040.

    Article  PubMed  CAS  Google Scholar 

  57. Lemmens HJ. Pharmacokinetic-pharmacodynamic relationships for opioids in balanced anesthesia. Clin. Pharmacokinet. 1995; 29: 231–242.

    Article  PubMed  CAS  Google Scholar 

  58. Westmoreland CL, Hoke JF, Sebel PS, Hug CC Jr, Muir KT. Pharmacokinetics of remifentanil (GI87084B) and its major metabolite (GI90291) in patients undergoing elective inpatient surgery. Anesthesiology 1993; 79: 893–903.

    Article  PubMed  CAS  Google Scholar 

  59. Tipps LB, Coplin WM, Murry KR, Rhoney DH. Safety and feasibility of continuous infusion of remifentanil in the neurosurgical intensive care unit. Neurosurgery 2000; 46: 596–602.

    Article  PubMed  CAS  Google Scholar 

  60. Flacke JW, Flacke WE, Bloor BC, Van Etten AP, Kripke BJ. Histamine release by four narcotics: a double-blind study in humans. Anesth. Analg. 1987; 66: 723–730.

    Article  PubMed  CAS  Google Scholar 

  61. Rosow CE, Moss J, Philbin DM, Savarese JJ. Histamine release during morphine and fentanyl anesthesia. Anesthesiology 1982; 56: 93–96.

    Article  PubMed  CAS  Google Scholar 

  62. Rao TLK, Mummaneni N, El-Etr AA. Convulsions: an unusual response to intravenous fentanyl administration. Anesth. Analg. 1982; 61: 1020–1021.

    Article  PubMed  CAS  Google Scholar 

  63. Safwat AM, Daniel D. Grand mal seizure after fentanyl administration. Anesthesiology 1983; 59: 78.

    Article  PubMed  CAS  Google Scholar 

  64. Hoien AO. Another case of grand mal seizure after fentanyl administration. Anesthesiology 1984; 60: 387–388.

    Article  PubMed  CAS  Google Scholar 

  65. Murkin JM, Moldenhauer CC, Hug CC, et al. Absence of seizures during induction of anesthesia with high-dose fentanyl. Anesth. Analg. 1984; 63: 489–494.

    Article  PubMed  CAS  Google Scholar 

  66. De Conno F, Caraceni A, Martini C, et al. Hyperalgesia and myoclonus with intrathecal infusion of high-dose morphine. Pain 1991; 47: 337–339.

    Article  PubMed  Google Scholar 

  67. de Armendi AJ, Fahey M, Ryan JF. Morphine-induced myoclonic movements in a pediatric pain patient. Anesth. Analg. 1993; 77: 191–192.

    Article  PubMed  Google Scholar 

  68. Charney DS, Mihic SJ, Harris RA. Hypnotics and sedatives. In Hardman, JG, Limbird, LE, eds. Goodman and Gilman’s The Pharmacological Basis of Therapeutics, 10th ed. New York: McGraw-Hill, 2001: 399–427.

    Google Scholar 

  69. Sanchez-Izquierdo-Riera JA, Caballero-Cubedo RE, Perez-Vela JL, Ambros-Checa A, Cantalapiedra-Santiago JA, Alted-Lopez E. Propofol versus midazolam: safety and efficacy for sedating the severe trauma patient. Anesth. Analg. 1998; 86: 1219–1224.

    PubMed  CAS  Google Scholar 

  70. Papazian L, Albanese J, Thirion X, Perrin G, Durbec O, Martin C. Effect of bolus doses of midazolam on intracranial pressure and cerebral perfusion pressure in patients with severe head injury. Br. J. Anaesth. 1993; 71: 267–271.

    Article  PubMed  CAS  Google Scholar 

  71. Forster A, Juge O, Morel D. Effects of midazolam on cerebral hemodynamics and cerebral vasomotor responsiveness to carbon dioxide. J. Cereb. Blood Flow Metab. 1983; 3: 246–249.

    Article  PubMed  CAS  Google Scholar 

  72. Cock HR, Schapira AH. A comparison of lorazepam and diazepam as initial therapy in convulsive status epilepticus. QJM 2002; 95: 225–231.

    Article  PubMed  CAS  Google Scholar 

  73. Claassen J, Hirsch LJ, Emerson RG, Bates JE, Thompson TB, Mayer SA. Continuous EEG monitoring and midazolam infusion for refractory nonconvulsive status epilepticus. Neurology 2001; 57: 1036–1042.

    Article  PubMed  CAS  Google Scholar 

  74. Prasad A, Worrall BB, Bertram EH, Bleck TP. Propofol and midazolam in the treatment of refractory status epilepticus. Epilepsia 2001; 42: 380–386.

    Article  PubMed  CAS  Google Scholar 

  75. Ahmed S, Chadwick D, Walker RJ. The management of alcohol-related seizures: an overview. Hosp. Med. 2000; 61: 793–796.

    PubMed  CAS  Google Scholar 

  76. Hoffman EJ, Warren EW. Flumazenil: a benzodiazepine antagonist. Clin. Pharm. 1993; 12: 641–656.

    PubMed  CAS  Google Scholar 

  77. Schulte am Esch J, Kochs E. Midazolam and flumazenil in neuroanaesthesia. Acta Anaesthesiol. Scand. Suppl. 1990; 92: 96–102.

    Google Scholar 

  78. Evers AS, Crowder CM. General anesthetics. In Hardman JG, Limbird LE, eds. Goodman and Gilman’s The Pharmacological Basis of Therapeutics, 10th ed. New York: McGraw-Hill, 2001: 337–365.

    Google Scholar 

  79. Russo H, Bressolle F. Pharmacodynamics and pharmacokinetics of thiopental. Clin. Pharmacokinet. 1998; 35: 95–134.

    Article  PubMed  CAS  Google Scholar 

  80. Wermeling DP, Blouin RA, Porter WH, Rapp RP, Tibbs PA. Pentobarbital pharmacokinetics in patients with severe head injury. Drug. Intell. Clin. Pharmacol. 1987; 21: 459–463.

    CAS  Google Scholar 

  81. Viswanathan CT, Booker HE, Welling PG. Pharmacokinetics of phenobarbital following single and repeated doses. J. Clin. Pharmacol. 1979; 19: 282–289.

    PubMed  CAS  Google Scholar 

  82. Baldessarini RJ, Tarazi FI. Drugs and the treatment of psychiatric disorders: psychosis and mania. In Hardman JG, Limbird LE, eds. Goodman and Gilman’s The Pharmacological Basis of Therapeutics, 10th ed. New York: McGraw-Hill, 2001: 485–520.

    Google Scholar 

  83. Lehmann KA, Van Peer A, Ikonomakis M, Gasparini R, Heykants J. Pharmacokinetics of droperidol in surgical patients under different conditions of anaesthesia. Br. J. Anaesth. 1988; 61: 297–301.

    Article  PubMed  CAS  Google Scholar 

  84. Lischke V, Behne M, Doelken P, Schledt U, Probst S, Vettermann J. Droperidol causes a dose-dependent prolongation of the QT interval. Anesth. Analg. 1994; 79: 983–986.

    Article  PubMed  CAS  Google Scholar 

  85. Misfeldt BB, Jorgensen PB, Spotoft H, Ronde F. The effects of droperidol and fentanyl on intracranial pressure and cerebral perfusion pressure in neurosurgical patients. Br. J. Anaesth. 1976; 48: 963–968.

    Article  PubMed  CAS  Google Scholar 

  86. Pisani F, Oteri G, Costa C, Di Raimondo G, Di Perri R. Effects of psychotropic drugs on seizure threshold. Drug Saf. 2002; 25: 91–110.

    Article  PubMed  CAS  Google Scholar 

  87. Higuchi H, Adachi Y, Dahan A, et al. The interaction between propofol and clonidine for loss of consciousness. Anesth. Analg. 2002; 94: 886–891.

    Article  PubMed  CAS  Google Scholar 

  88. Dobrydnjov I, Axelsson K, Samarutel J, Holmstrom B. Postoperative pain relief following intrathecal bupivacaine combined with intrathecal or oral clonidine. Acta Anaesthesiol. Scand. 2002; 46: 806–814.

    Article  PubMed  CAS  Google Scholar 

  89. Iskandar H, Guillaume E, Dixmerias F, et al. The enhancement of sensory blockade by clonidine selectively added to mepivacaine after midhumeral block. Anesth. Analg. 2001; 93: 771–775.

    Article  PubMed  CAS  Google Scholar 

  90. Venn RM, Grounds RM. Comparison between dexmedetomidine and propofol for sedation in the intensive care unit: patient and clinician perceptions. Br. J. Anaesth. 2001; 87: 684–690.

    Article  PubMed  CAS  Google Scholar 

  91. Khan ZP, Munday IT, Jones RM, Thornton C, Mant TG, Amin D. Effects of dexmedetomidine on isoflurane requirements in healthy volunteers. 1: Pharmacodynamic and pharmacokinetic interactions. Br. J. Anaesth. 1999; 83: 372–380.

    Article  PubMed  CAS  Google Scholar 

  92. Venn RM, Bradshaw CJ, Spencer R, et al. Preliminary UK experience of dexmedetomidine, a novel agent for postoperative sedation in the intensive care unit. Anaesthesia 1999; 54: 1136–1142.

    Article  PubMed  CAS  Google Scholar 

  93. Bhana N, Goa KL, McClellan KJ. Dexmedetomidine. Drugs 2000; 59: 263–268.

    Article  PubMed  CAS  Google Scholar 

  94. Palmeri A, Sapienza S, Giuffrida R, et al. Modulatory action of noradrenergic system on spinal motoneurons in humans. Neuroreport 1999; 10: 1225–1229.

    Article  PubMed  CAS  Google Scholar 

  95. Tulen JH, van de Wetering BJ, Kruijk MP, et al. Cardiovascular, neuroendocrine, and sedative responses to four graded doses of clonidine in a placebo-controlled study. Biol. Psychiatry. 1992; 32: 485–500.

    Article  PubMed  CAS  Google Scholar 

  96. Fujimura A, Ebihara A, Shiga T, et al. Pharmacokinetics and pharmacodynamics of a new transdermal clonidine, M-5041T, in healthy subjects. J. Clin. Pharmacol. 1993; 33: 1192–200.

    PubMed  CAS  Google Scholar 

  97. Talke P, Richardson CA, Scheinin M, Fisher DM. Postoperative pharmacokinetics and sympatholytic effects of dexmedetomidine. Anesth. Analg. 1997; 85: 1136–1142.

    PubMed  CAS  Google Scholar 

  98. Maruyama K, Takeda S, Hongo T, Kobayashi N, Ogawa R. The effect of oral clonidine premedication on lumbar cerebrospinal fluid pressure in humans. J. Nippon Med. Sch. 2000; 67: 429–433.

    Article  PubMed  CAS  Google Scholar 

  99. ter Minassian A, Beydon L, Decq P, Bonnet F. Changes in cerebral hemodynamics after a single dose of clonidine in severely head-injured patients. Anesth. Analg. 1997; 84: 127–132.

    PubMed  CAS  Google Scholar 

  100. Favre JB, Gardaz JP, Ravussin P. Effect of clonidine on ICP and on the hemodynamic responses to nociceptive stimuli in patients with brain tumors. J. Neurosurg. Anesthesiol. 1995; 7: 159–167.

    Article  PubMed  CAS  Google Scholar 

  101. Talke P, Tong C, Lee HW, Caldwell J, Eisenach JC, Richardson CA. Effect of dexmedetomidine on lumbar cerebrospinal fluid pressure in humans. Anesth. Analg. 1997; 85: 358–364.

    PubMed  CAS  Google Scholar 

  102. Bischoff P, Scharein E, Schmidt GN, von Knobelsdorff G, Bromm B, Esch JS. Topography of clonidine-induced electroencephalographic changes evaluated by principal component analysis. Anesthesiology 2000; 92: 1545–1552.

    Article  PubMed  CAS  Google Scholar 

  103. Yamadera H, Ferber G, Matejcek M, Pokorny R. Electroencephalographic and psychometric assessment of the CNS effects of single doses of guanfacine hydrochloride (Estulic) and clonidine (Catapres). Neuropsychobiology 1985; 14: 97–107.

    Article  PubMed  CAS  Google Scholar 

  104. Kirchberger K, Schmitt H, Hummel C, et al. Clonidine-and methohexital -induced epileptiform discharges detected by magnetoencephalography (MEG) in patients with localization-related epilepsies. Epilepsia 1998; 39: 1104–1112.

    Article  PubMed  CAS  Google Scholar 

  105. Mirski MA, Rossell LA, McPherson RW, Traystman RJ. Dexmedetomidine decreases seizure threshold in a rat model of experimental generalized epilepsy. Anesthesiology 1994; 81: 1422–1428.

    Article  PubMed  CAS  Google Scholar 

  106. Miyazaki Y, Adachi T, Kurata J, Utsumi J, Shichino T, Segawa H. Dexmedetomidine reduces seizure threshold during enflurane anaesthesia in cats. Br. J. Anaesth. 1999; 82: 935–937.

    Article  PubMed  CAS  Google Scholar 

  107. Whittington RA, Virag L, Vulliemoz Y, Cooper TB, Morishima HO. Dexmedetomidine increases the cocaine seizure threshold in rats. Anesthesiology 2002; 97: 693–700.

    Article  PubMed  CAS  Google Scholar 

  108. Karhuvaara S, Kallio A, Salonen M, Tuominen J, Scheinin M. Rapid reversal of alpha 2-adrenoceptor agonist effects by atipamezole in human volunteers. Br. J. Clin. Pharmacol. 1991; 31: 160–165.

    Article  PubMed  CAS  Google Scholar 

  109. Kang TM. Propofol infusion syndrome in critically ill patients. Ann. Pharmacother. 2002; 36: 1453–1456.

    Article  PubMed  Google Scholar 

  110. Hanna JP, Ramundo ML. Rhabdomyolysis and hypoxia associated with prolonged propofol infusion in children. Neurology 1998; 50: 301–303.

    Article  PubMed  CAS  Google Scholar 

  111. Alkire MT, Haier RJ. Correlating in vivo anaesthetic effects with ex vivo receptor density data supports a GABAergic mechanism of action for propofol, but not for isoflurane. Br. J. Anaesthesia 2001; 86: 618–626.

    Article  CAS  Google Scholar 

  112. Mohammadi B, Haeseler G, Leuwer M, Dengler R, Krampfl K, Bufler J. Structural requirements of phenol derivatives for direct activation of chloride currents via GABAA receptors. Eur. J. Pharmacol. 2001; 421: 85–91.

    Article  PubMed  CAS  Google Scholar 

  113. Tsuchiya H. Structure-specific membrane-fluidizing effect of propofol. Clin. Exp. Pharmacol. Physiol. 2001; 28: 292–299.

    Article  PubMed  CAS  Google Scholar 

  114. Perrier ND, Baerga-Varela Y, Murray MJ. Death related to propofol use in an adult patient. Crit. Care Med. 2000; 28: 3071–3074.

    Article  PubMed  CAS  Google Scholar 

  115. Petersen KD, Landsfeldt U, Cold GE, et al. ICP is lower during propofol anaesthesia compared to isoflurane and sevoflurane. Acta. Neurochir. Suppl. 2002; 81: 89–91.

    PubMed  CAS  Google Scholar 

  116. Kelly DF, Goodale DB, Williams J, et al. Propofol in the treatment of moderate and severe head injury: a randomized, prospective double-blinded pilot trial. J. Neurosurg. 1999; 90: 1042–1052.

    Article  PubMed  CAS  Google Scholar 

  117. Carley S, Crawford I. Propofol for resistant status epilepticus. Emerg. Med. J. 2002; 19: 143–144.

    Article  PubMed  Google Scholar 

  118. Begemann M, Rowan AJ, Tuhrim S. Treatment of refractory complex-partial status epilepticus with propofol: case report. Epilepsia 2000; 41: 105–109.

    Article  PubMed  CAS  Google Scholar 

  119. Stecker MM, Kramer TH, Raps EC, O’Meeghan R, Dulaney E, Skaar DJ. Treatment of refractory status epilepticus with propofol: clinical and pharmacokinetic findings. Epilepsia 1998; 39: 18–26.

    Article  PubMed  CAS  Google Scholar 

  120. Brown LA, Levin GM. Role of propofol in refractory status epilepticus. Ann. Pharmacother. 1998; 32: 1053–1059.

    Article  PubMed  CAS  Google Scholar 

  121. Pitt-Miller PL, Elcock BJ, Maharaj M. The management of status epilepticus with a continuous propofol infusion. Anesth. Analg. 1994; 78: 1193–1194.

    Article  PubMed  CAS  Google Scholar 

  122. Mackenzie SJ, Kapadia F, Grant IS. Propofol infusion for control of status epilepticus. Anaesthesia 1990; 45: 1043–1045.

    Article  PubMed  CAS  Google Scholar 

  123. Makela JP, Iivanainen M, Pieninkeroinen IP, Waltimo O, Lahdensuu M. Seizures associated with propofol anesthesia. Epilepsia 1993; 34: 832–835.

    Article  PubMed  CAS  Google Scholar 

  124. Borgeat A. Propofol: pro-or anticonvulsant? Eur. J. Anaesthesiol. Suppl. 1997; 15: 17–20.

    Article  PubMed  CAS  Google Scholar 

  125. Bansinath M, Shukla VK, Turndorf H. Propofol modulates the effects of chemoconvulsants acting at GABAergic, glycinergic, and glutamate receptor subtypes. Anesthesiology 1995; 83: 809–815.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hemstreet, M.K., Suarez, J.I., Mirski, M.A. (2004). Sedation and Analgesia in the Critically Ill Neurology and Neurosurgery Patient. In: Suarez, J.I. (eds) Critical Care Neurology and Neurosurgery. Current Clinical Neurology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-660-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-660-7_12

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-350-3

  • Online ISBN: 978-1-59259-660-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics