Skip to main content

What Is an Accurate Risk/Benefit Ratio for Umbilical Cord Cell Transplantation in Children and Adults?

  • Chapter
Current Controversies in Bone Marrow Transplantation

Part of the book series: Current Clinical Oncology ((CCO))

  • 97 Accesses

Abstract

Allogeneic transplantation (allotransplantation) can cure a significant fraction of patients with high-risk or recurrent hematologic malignancies (1). However, this approach has been limited by the availability of suitable human leukocyte antigen (HLA)-matched related donors, and by the occurrence of severe graft-vs-host disease (GVHD) when bone marrow (BM) from HLA-matched unrelated donor (MUD), or partially HLA-mismatched family member grafts, are utilized (2–4). Attempts to reduce GVHD in recipients undergoing allotransplantation with MUD, or partially HLAmismatched family member grafts by T-cell depletion (TCD) has been shown to reduce acute GVHD. However, this benefit of reduced GVHD is offset by increases in the rates of graft failure, lymphoproliferative disorders associated with Epstein-Barr virus, and recurrent leukemia (5,6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buchner T. Treatment of adult acute leukemia, Curr. Opin. Oncol., 9 (1997) 18–25.

    Article  PubMed  CAS  Google Scholar 

  2. Kernan NA, Bartsch G, Ash RC, et al. Analysis of 462 transplantations from unrelated donors facilitated by the National Marrow Donor Program, N. Engl. J. Med., 328 (1993) 593–602.

    Article  PubMed  CAS  Google Scholar 

  3. Davies SM, Wagner JE, Weisdorf DJ, et al. Unrelated donor base marrow transplantation for hematologic malignancies: current status, Leukemia Lymphoma, 23 (1996) 221–226.

    Article  PubMed  CAS  Google Scholar 

  4. Carlens S, Ringden O, Remberger M, et al. Risk factors for chronic graft-versus-host disease after bone marrow transplantation: a retrospective single centre analysis, Bone Marrow Transplant., 22 (1998) 755–761.

    Article  PubMed  CAS  Google Scholar 

  5. Goldman JM, Gale RP, Bortin MM, et al. Bone marrow transplantation for chronic myelogenous leukemia in chronic phase: increased risk of relapse associated with T-cell depletion, Ann. Intern. Med., 108 (1988) 806–814.

    PubMed  CAS  Google Scholar 

  6. Champlin RE. T-cell depletion for allogeneic bone marrow transplantation: impact on graft-versushost disease, engraftment, and graft-versus-leukemia, J. Hematother., 2 (1993) 27–42.

    Article  PubMed  CAS  Google Scholar 

  7. Beatty PG, Kollman C, and Howe CW. Unrelated-donor marrow transplants: the experience of the National Marrow Donor Program, Clin. Transplant., (1995) 271–277.

    Google Scholar 

  8. Gluckman E, Rocha V, Boyer-Chammard A, et al. Outcome of cord-blood transplantation from related and unrelated donors, New Eng. J. Med., 337 (1997) 373–381.

    Article  PubMed  CAS  Google Scholar 

  9. Wagner JE, Kernan NA, Steinbuch M, et al. Allogeneic sibling umbilical-cord-blood transplantation in children with malignant and non-malignant disease, Lancet, 346 (1995) 214–219.

    Article  PubMed  CAS  Google Scholar 

  10. Kurtzberg J, Laughlin M, Graham ML, et al. Placental blood as a source of hematopoietic stem cells for transplantation into unrelated recipients, N. Engl. J. Med., 335 (1996) 157–166.

    Article  PubMed  CAS  Google Scholar 

  11. Wagner JE, Rosenthal J, Sweetman R, et al. Successful transplantation of HLA-matched and HLAmismatched umbilical cord blood from unrelated donors: analysis of engraftment and acute graftversus-host disease, Blood, 88 (1996) 795–802.

    PubMed  CAS  Google Scholar 

  12. Cairo MS and Wagner JE. Placental and/or umbilical cord blood: an alternative source of hematopoietic stem cells for transplantation, Blood, 90 (1997) 4665–4678.

    PubMed  CAS  Google Scholar 

  13. Wagner JE and Kurtzberg, J. Cord blood stem cells, Curr. Opin. Hematol., 4 (1997) 413–418.

    Article  PubMed  CAS  Google Scholar 

  14. Laporte J, Gorin N, Rubinstein P, et al. Cord-blood transplantation from an unrelated donor in an adult with chronic myelogenous leukemia, N. Engl. J. Med., 335 (1996) 167–170.

    Article  PubMed  CAS  Google Scholar 

  15. Laughlin MJ, Rizzieri DA, Smith CA, et al. Engraftment and reconstitution of immune function post unrelated cord blood transplant in an adult with Philadelphia chromosome positive acute lymphocytic leukemia, Leukemia Res., 22 (1998) 215–219.

    Article  CAS  Google Scholar 

  16. Rubinstein P, Carrier C, Scaradavou A, et al. Outcomes among 562 recipients of placental-blood transplants from unrelated donors, New Eng. J. Med., 339 (1998) 1565–1577.

    Article  PubMed  CAS  Google Scholar 

  17. Faber LM, van Luxemburg-Heijs SAP, Veenhof WFJ, et al. Generation of CD4’ cytotoxic T-lymphocyte clones from a patient with severe graft-versus-host disease after allogeneic bone marrow transplantation: implications for graft-versus-leukemia reactivity, Blood, 86 (1995) 2821–2828.

    PubMed  CAS  Google Scholar 

  18. Jiang YZ, Kanfer EF, Macdonald D, Cullis JO, Goldman JM, and Barrett AJ. Graft-versus-leukaemia following allogeneic bone marrow transplantation: emergence of cytotoxic T lymphocytes reacting to host leukaemia cells, Bone Marrow Transplant., 8 (1991) 253–258.

    PubMed  CAS  Google Scholar 

  19. Falkenburg HF, Faber LM, van den Elshout M, et al. Generation of donor-derived antileukemic cytotoxic T-lymphocyte responses for treatment of relapsed leukemia after allogeneic HLA-identical bone marrow transplantation, J. Immunother., 14 (1993) 305.

    Article  CAS  Google Scholar 

  20. Laughlin MJ, Smith CA, Martin P, et al. Hematopoietic engraftment using placental cord blood (PCB) unrelated donor transplantation in recipients 40 kg weight, Blood, 88 (Suppl 1) (1996) 266a.

    Google Scholar 

  21. Kurtzberg J, Laughlin MJ, Smith CA, et al. Hematopoietic recovery in adult recipients following unrelated umbilical cord blood (UCB) transplantation, Blood, 90 (Suppl 1) (1997) 110a.

    Google Scholar 

  22. Broxmeyer HE and Cooper S. High-efficiency recovery of immature haematopoietic progenitor cells with extensive proliferative capacity from human cord blood cryopreserved for 10 years, Clin. Exp. Immunol., 107 (Suppl 1) (1997) 45–53.

    PubMed  Google Scholar 

  23. Almici C, Carlo-Stella C, Wagner JE, et al. Biologic and phenotypic analysis of early hematopoietic progenitor cells in umbilical cord blood, Leukemia, 11 (1997) 2143–2149.

    Article  PubMed  CAS  Google Scholar 

  24. Bender JG, Unverzagt K, Walker DE, et al. Phenotypic analysis and characterization of CD34’ cells from normal human bone marrow, cord blood, peripheral blood, and mobilized peripheral blood from patients undergoing autologous stem cell transplantation, Clin. Immunol. Immunopathol., 70 (1994) 10.

    Article  PubMed  CAS  Google Scholar 

  25. Gomi S, Hasegawa S, Dan K, and Wakabayashi I. A comparative analysis of the transplant potential of umbilical cord blood versus mobilized peripheral blood stem cells, Nippon Ika Daigaku Zasshi, 64 (1997) 307–313.

    PubMed  CAS  Google Scholar 

  26. Rubinstein P, Dobrila L, Rosenfield RE, et al. Processing and preservation of placental/umbilical cord blood for unrelated bone marrow reconstitution, Proc. Natl. Acad. Sci. USA.,92 (1995)10,119–10,122.

    Google Scholar 

  27. Almici C, Carlo-Stella C, Wagner JE, and Rizzoli V. Density separation and cryopreservation of umbilical cord blood cells: evaluation of recovery in short-and lon-term cultures, Acta Haematol., 95 (1996) 171–175.

    Article  PubMed  CAS  Google Scholar 

  28. Regidor C, Posada M, Monteagudo D, et al. Umbilical cord blood banking for unrelated transplantation: evaluation of cell separation and storage methods, Exp. Hamatol., 27 (1999) 30–35.

    Google Scholar 

  29. Denning-Kendall P, Donaldson C, Nicol A, et al. Optimal processing of human umbilical cord blood for clinical banking, Exp. Hematol., 24 (1996) 1394–1401.

    PubMed  CAS  Google Scholar 

  30. Fraser JK, Cairo MS, Wagner EL, et al. Cord blood transplantation study (COBLT): cord blood bank standard operating procedures. J. Hematother., 7 (1998) 521–561.

    Article  PubMed  CAS  Google Scholar 

  31. Theilgaard-Monch K, Raaschou-Jensen K, Heilmann C, et al. A comparative study of CD34’ cells, CE34’ subsets, colony forming cells and cobblestone area forming cells in cord blood and bone marrow allografts, Eur. J. Haematol., 62 (1999) 174–183.

    Article  PubMed  CAS  Google Scholar 

  32. DiGiusto DL, Lee R, Moon J, et al. Hematopoietic potential of cryopreserved and ex vivo manipulated umbilical cord blood progenitor cells evaluated in vitro and in vivo, Blood, 87 (1996) 1261–1271.

    PubMed  CAS  Google Scholar 

  33. Briddell RA, Kern BP, Zilm KL, Stoney GB, and McNiece IK. Purification of CD34’ cells is essential for optimal ex vivo expansion of umbilical cord blood cells, J. Hematother, 6 (1997) 145–150.

    Article  PubMed  CAS  Google Scholar 

  34. Genechea G, Segovia JC, Albella B, et al. Delayed engraftment of nonobese diabetic/severe combined immunodeficient mice transplanted with ex vivo-expanded human CD34’ cord blood cells, Blood, 93 (1999) 1097–1105.

    Google Scholar 

  35. Rice A, Hemming C, Case J, et al. Comparative study of the in vitro behavior of cord blood subpopulations after short-term cytokine exposure, Bone Marrow Transplant., 23 (1999) 211–220.

    Article  PubMed  CAS  Google Scholar 

  36. Bonnet D, Bhatia M, Wang JC, Kapp U, and Dick JE. Cytokine treatment or accessory cells are required to initiate engraftment of purified primitive human hematopoietic cells transplanted at limited doses into NOD/SCID mice, Bone Marrow Transplant., 23 (1999) 203–209.

    Article  PubMed  CAS  Google Scholar 

  37. Welniak L, Murphy WJ, Iacobucci M, et al. IL-15 increases lymphoid and myeloid engraftment of ex vivo expanded human umbilical cord blood (UCB) in NOD.SCID mice, Blood, 92 (Suppl 1) (1998) 290b.

    Google Scholar 

  38. Gauthier L, Fougereau M, and Tonnelle C. Construction of temperature and Zn-dependent human stromal cell lines that amplify hematopoietic precursors from cord blood CD34’ cells, Exp. Hematol., 26 (1998) 534–540.

    PubMed  CAS  Google Scholar 

  39. Jazwiec B, Solanilla A, Grosset C, et al. Endothelial cell support of hematopoiesis is differentially altered by IL-1 and glucocorticords, Leukemia, 12 (1998) 1210–1220.

    Article  PubMed  CAS  Google Scholar 

  40. Piacibello W, Sanavio F, Garetto L, et al. Differential growth factor requirement of primitive cord blood hematopoietic stem cell for self-renewal and amplification vs proliferation and differentiation, Leukemia, 12 (1998) 718–727.

    Article  PubMed  CAS  Google Scholar 

  41. Flasshove M Banerjee D, Leonard JP, et al. Retroviral transduction of human CD34’ umbilical cord blood progenitor cells with a mutated dihydrofolate reductase cDNA, Hum. Gene Ther.,9 (1998) 63–71.

    Google Scholar 

  42. Chatterjee S, Li W, Wong CA, et al. Transduction of primitive human marrow and cord blood-derived hematopoietic progenitor cells with adeno-associated virus vectors, Blood, 93 (1999) 1882–1894.

    PubMed  CAS  Google Scholar 

  43. Hansen JA, Anasetti C, Beatty PG, et al. Treatment of leukemia by marrow transplantation from HLA-incompatible donors. Effect of HLA-disparity on GVHD, relapse and survival, Bone Marrow Transplant., 6 108–111.

    Google Scholar 

  44. Goulmy E, Shipper R, Pool J, et al. Mismatches of minor histocompatibility antigens between HLAidentical donors and recipients and the development of graft-versus-host disease after bone marrow transplantation, N. Engl. J. Med., 334 (1996) 281–285.

    Article  PubMed  CAS  Google Scholar 

  45. van der Harst D, Coulmy E, Falkenburg JHF, et al. Recognition of minor histocompatibility antigens on lymphocytic and myeloid leukemic cells by cytotoxic T-cell clones, Blood, 83 (1994) 1060.

    Google Scholar 

  46. Herrera C, Tones A, Garcia-Castellano JM, et al. Prevention of graft-versus-host disease in high risk patients by depletion of CD4’ and reduction of CD8’ lymphocytes in the marrow graft, Bone Marrow Transplant., 23 (1999) 443–450.

    Article  PubMed  CAS  Google Scholar 

  47. Sehn LH, Alyea EP, Weller E, et al. Comparative outcomes of T-cell-depleted and non-T-celldepleted allogeneic bone marrow transplantation for chronic myelogenous leukemia: impact of donor lymphocyte infusion, J. Clin. Oncol., 17 (1999) 561–568.

    PubMed  CAS  Google Scholar 

  48. Novitzky N, Thomas V, Hale G, and Waldmann H. Ex vivo depletion of T cells from bone marrow grafts with CAMPATH-1 in acute leukemia: graft-versus-host disease and graft-versus-leukemia effect, Transplantation, 67 (1998) 620–626.

    Article  Google Scholar 

  49. Zhang L, Martin DR, Fung-Leung WP, et al. Peripheral deletion of mature CD8* antigen-specific T cells after in vivo exposure to male antigen, J. Immunol., 148 (1992) 3740–3745.

    PubMed  CAS  Google Scholar 

  50. Burlingham WJ, Grailer AP, Fechner JH, et al. Microchimerism linked to cytotoxic T lymphocyte functional unresponsiveness (clonal anergy) in a tolerant renal transplant recipient, Transplantation, 59 (1995) 1147–1155.

    PubMed  CAS  Google Scholar 

  51. Falkenburg JH, van Luxemburg-Heijs SA, Lim FT, et al. Umbilical cord blood contains normal frequencies of cytotoxic T-lymphocytes precursors (CTLp) and helper T-lymphocyte precursors against noninherited maternal antigens and noninherited paternal antigens, Ann. Hematol., 72 (1996) 260–264.

    Article  PubMed  CAS  Google Scholar 

  52. Han P, Hodge G, Story C, et al. Phenotypic analysis of functional T-lymphocyte subtypes and natural killer cells in human cord blood: relevance to umbilical cord blood transplantation, Br. J. Haematol., 89 (1995) 733–740.

    Article  PubMed  CAS  Google Scholar 

  53. Risdon G, Gaddy J, Stehman FB, et al. Proliferative and cytotoxic responses of human cord blood T lymphocytes following allogeneic stimulation, Cell Immunol., 154 (1994) 14–24.

    Article  PubMed  CAS  Google Scholar 

  54. Chalmers IM, Janossy G, Contreras M, and Navarrete C. Intracellular cytokine profile of cord and adult blood lymphocytes, Blood, 92 (1998) 11–18.

    PubMed  CAS  Google Scholar 

  55. Andersson U, Andersson J, Lindfors A, Wagner K, Moller G, and Heusser CH. Simultaneous production of interleukin 2, interleukin 4 and interferon-gamma by activated human blood lymphocytes, Eur. J. Immunol., 20 (1990) 1591–1596.

    Article  PubMed  CAS  Google Scholar 

  56. Saito S, Morii T, Umekage H, et al. Expression of the interleukin-2 receptor gamma chain on cord blood mononuclear cells, Blood, 87 (1996) 3344–3350.

    PubMed  CAS  Google Scholar 

  57. Risdon G, Gaddy J, and Broxmeyer HE. Allogeneic responses of human umbilical cord blood, Blood, 20 (1994) 566–570.

    CAS  Google Scholar 

  58. Kadereit S, McKinnon K, Mohammad S, Boss L, Junge G, Zakem-Cloud H, Iacobucci M, and Laughlin MJ. Nuclear factor of activated T-cells (NFAT-1) function in umbilical cord blood (UCB) vs adult peripheral blood, Blood, 92 (Suppl 1) (1998) 292b.

    Google Scholar 

  59. Wingard JR. Infections in allogeneic bone marrow transplant recipients, Semin. Oncol., 20 (1993) 80–87.

    PubMed  CAS  Google Scholar 

  60. Lucas KG, Small TN, Heller G, et al. The development of cellular immunity to Epstein-Barr virus after allogeneic bone marrow transplantation, Blood, 87 (1996) 2594–2603.

    PubMed  CAS  Google Scholar 

  61. Keever CA, Small TN, Flomenberg N, et al. Immune reconstitution following bone marrow transplantation: comparison of recipients of T-cell depleted marrow with recipients of conventional marrow grafts, Blood, 73 (1989) 1340–1350.

    PubMed  CAS  Google Scholar 

  62. Verdonck LF, Dekker AW, de Gast GC, et al. Allogeneic bone marrow transplantation with a fixed low number of T cells in the marrow graft, Blood, 83 (1994) 3090.

    PubMed  CAS  Google Scholar 

  63. Soiffer RI, Bosserman L, Murray C, et al. Reconstitution of T-cell function after CD6 depleted allogeneic bone marrow transplantation, Blood, 75 (1990) 2076–2084.

    PubMed  CAS  Google Scholar 

  64. Roux E, Helg C, Ffurmont-Girard, et al. Analysis of T-cell reproduction after allogeneic bone marrow transplantation: significant differences between recipients of T-cell depleted and unmanipulated grafts, Blood, 87 (1996) 3984–3992.

    PubMed  CAS  Google Scholar 

  65. Kook H, Goldman F, Giller R, et al. Reconstitution of the immune system after unrelated or partially matched T-cell-depleted bone marrow transplantation in children: functional analyses of lymphocytes and correlation with immunophenotypic recovery following transplantation, Clin. Diag. Lab. Immunol., 4 (1997) 96–103.

    CAS  Google Scholar 

  66. Laughlin MJ, McKinnon K, Demarest J, et al. Immune recovery post unrelated allogeneic umbilical cord blood (UCB) transplantation in adult recipients, Blood, 90 (Suppl 1) (1997) 420a.

    Google Scholar 

  67. Ault KA, Antin JH, Ginsburg D, et al. Phenotype of recovering lymphoid cell populations after marrow transplantation, J. Exp. Med., 161 (1985) 1483–1111.

    Article  PubMed  CAS  Google Scholar 

  68. Hercend T, Takvorian T, Nowill A, et al. Characterization of natural killer cells with antileukemia activity following allogeneic bone marrow transplantation, Blood, 67 (1986) 722–728.

    PubMed  CAS  Google Scholar 

  69. Locatelli F, Maccario R, Comoli P, et al. Hematopoietic and immune recovery after transplantation of cord blood progenitor cells in children, Bone Marrow Transplant., 18 (1996) 1095–1101.

    PubMed  CAS  Google Scholar 

  70. Sulitzeanu D. Human cancer-associated antigens: present status and implications for immunodiagnosis, Adv. Cancer Res., 44 (1985) 1–42.

    Article  PubMed  CAS  Google Scholar 

  71. Faber LM, va Luxemburg-Heijs SA, Veenhof WF, et al. Generation of CD4’ cytotoxic T-lymphocyte clones from a patient with severe graft-versus-host disease after allogeneic bone marrow transplantation: implications for graft-versus-leukemia reactivity, Blood, 86 (1995) 2821.

    Google Scholar 

  72. Falkenburg HF, Faber LM, van den Elshout M, et al. Generation of donor-derived antileukemic cytotoxic T-lymphocyte responses for treatment of relapsed leukemia after allogeneic HLA-identical bone marrow transplantation, J. Immunother., 14 (1993) 305.

    Article  CAS  Google Scholar 

  73. Huang AY, Golumbek P, Ahmadzadeh M, et al. Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens, Science, 264 (1994) 961.

    Article  PubMed  CAS  Google Scholar 

  74. Jiang YZ, Barrett AJ, Goldman JM, and Mavroudis DA. Association of natural killer cell immune recovery with a graft-versus-leukemia effect independent of graft-versus-host disease following allogeneic bone marrow transplantation, Ann. Hematol., 74 (1997) 1–6.

    Article  PubMed  CAS  Google Scholar 

  75. Harris DT, Schumacher MJ, Locascio J, et al. Phenotypic and functional immaturity of human umbilical cord blood T lymphocytes, Proc. Natl. Acad. Sci. USA.,89 (1992) 10,006–10,010.

    Google Scholar 

  76. Han P, Hodge G, Story C, et al. Phenotypic analysis of functional T-lymphocyte subtypes and natural killer cells in human cord blood: relevance to umbilical cord blood transplantation, Br. J. Haematol., 89 (1995) 733–740.

    Article  PubMed  CAS  Google Scholar 

  77. Keever CA, Abu-Hajir M, Graf W, et al. Characterization of the alloreactivity and anti-leukemia reactivity of cord blood mononuclear cells, Bone Marrow Transplant., 15 (1995) 407–419.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Laughlin, M.J. (2000). What Is an Accurate Risk/Benefit Ratio for Umbilical Cord Cell Transplantation in Children and Adults?. In: Bolwell, B.J. (eds) Current Controversies in Bone Marrow Transplantation. Current Clinical Oncology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-657-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-657-7_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9812-7

  • Online ISBN: 978-1-59259-657-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics