Skip to main content

Abstract

The past 15 yr have witnessed an explosion of advances leading to important information regarding hematopoietic stem cells (HSCs), which has been directly applicable to the clinical setting. Mobilized peripheral blood (PB) and umbilical cord blood (CB) have been identified as alternatives to bone marrow (BM) as sources of human HSCs for clinical transplantation. Currently, BM remains the predominant stem cell source for allogeneic transplants (allotransplant); most autologous transplants (autotransplants) are now performed solely with mobilized PB stem cells (PBSC). Although experience with CB as a source of stem cells has been limited, it is expected to have its greatest application in the unrelated allotransplant setting. Recent observations that stem cells from each of these sources have biologically distinct properties, and that stem cell doses affect outcomes in clinical transplantation, underscore the importance of stem cell enumeration in predicting transplant outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Serke S, Arseniev L, Watts M, Fritsch G, Ingles-Esteve J, Johnson JE, et al. Imprecision of counting CFU-GM colonies and CD34-expressing cells, Bone Marrow Transplant., 20 (1997) 57–61.

    Article  PubMed  CAS  Google Scholar 

  2. Andrews RG, Singer JW, and Bernstein ID. Precursors of colony-forming cells in humans can be distinguished from colony-forming cells by expression of the CD33 and CD34 antigens and light scatter properties. J. Exp. Med., 169 (1989) 1721–1731.

    Article  PubMed  CAS  Google Scholar 

  3. Bernstein ID, Leary AG, Andrews RG, and Ogawa M. Blast colony-forming cells and precursors of colony-forming cells detectable in long-term marrow culture express the same phenotype (CD33CD34*), Exp. Hematol., 19 (1991) 680–682.

    PubMed  CAS  Google Scholar 

  4. Sakabe H, Ohmizono Y, Tanimukai S, Kimura T, Mori KJ, Abe T, et al. Functional differences between subpopulations of mobilized peripheral blood-derived CD34* cells expressing different levels of HLA-DR, CD33, CD38 and c-kit antigens. Stem Cell, 15 (1997) 73–81.

    Article  CAS  Google Scholar 

  5. Terstappen LWMM, Huang S, Safford M, Lansdorp PM, and Loken MR. Sequential generations of hematopoietic colonies derived from single nonlineage-committed CD34*CD38- progenitor cells. Blood, 77 (1991) 1218–1227.

    PubMed  CAS  Google Scholar 

  6. Prosper F, Stroncek D, and Verfaillie CM. Phenotypic and functional characterization of long-term culture-initiating cells present in peripheral blood progenitor collections of normal donors treated with granulocyte colony-stimulating factor. Blood, 88 (1996) 2033–2042.

    PubMed  CAS  Google Scholar 

  7. Van Epps DE, Bender J, Lee W, Schilling M, Smith A, Smith S, et al. Harvesting, characterization, and culture of CD34* cells from human bone marrow, peripheral blood, and cord blood. Blood Cells, 20 (1994) 411–423.

    PubMed  Google Scholar 

  8. Kasai M and Masauzi N. Characteristics of umbilical cord blood (UCB) and UCB transplantation. Semin. Thromb. Hemostasis., 24 (1998) 491–495.

    Article  CAS  Google Scholar 

  9. Huang S, Law P, Young D, Ho AD. Candidate hematopoietic stem cells from fetal tissues, umbilical cord blood vs. adult bone marrow and peripheral blood. Exp. Hematol., 26 (1998) 1162–1171.

    PubMed  CAS  Google Scholar 

  10. Theilgaard-Mönch K, Raaschou-Jensen K, Heilmann C, Andersen H, Bock J, Russel CA, et al. A comparative study of CD34* cells, CD34* subsets, colony forming cells, and cobblestone area forming cells in cord blood and bone marrow allografts. Eur. J. Haematol., 62 (1999) 174–183.

    Article  PubMed  Google Scholar 

  11. Gluckman E, Broxmeyer HE, Auerbach AD, et al. Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical cord blood from an HLA-identical sibling. N. Engl. J. Med., 321 (1989) 1174–1178.

    Article  PubMed  CAS  Google Scholar 

  12. Timeus F, Crescenzio N, Marranca D, et al. Cell adhesion molecules in cord blood hematopoietic progenitors. Bone Marrow Transplant., 22 (1998) S61 - S62.

    Article  PubMed  Google Scholar 

  13. Cairo MS and Wagner JE. Placental and/or umbilical cord blood: An alternative source of hematopoietic stem cells for transplantation. Blood, 90 (1997) 4665–4678.

    Google Scholar 

  14. Gratama JW, Orfao A, Barnett D, Brando B, Huber A, Janossy G, et al. Flow cytometric enumeration of CD34* hematopoietic stem and progenitor cells. Cytometry, 34 (1998) 128–142.

    Article  PubMed  CAS  Google Scholar 

  15. Wagner JE, Kernan NA, Steinbuch M, Broxmeyer HE, and Gluckman E. Allogeneic sibling umbilical cord blood transplantation in children with malignant and non-malignant disease. Lancet., 346 (1995) 214–219.

    Article  PubMed  CAS  Google Scholar 

  16. Lapidot T, Pflumio F, Doedens M, Murdoch B, Williams DE, and Dick JE. Cytokine stimulation of multilineage hematopoiesis from immature human cell engrafted in SCID mice. Science, 255 (1992) 1137–1141.

    Article  PubMed  CAS  Google Scholar 

  17. Vormoor J, Lapidot T, Pflumio F, et al Immature human cord blood progenitors engraft and proliferate to high levels in severe combined immunodeficient mice. Blood, 83 (1994) 2489–2497.

    PubMed  CAS  Google Scholar 

  18. Pflumio F, Izac B, Katz A, Shultz LD, Vainchenker W, and Coulombel L. Phenotype and function of human hematopoietic cells engrafting immune-deficient CB 17-severe combined immunodeficiency mice and nonobese diabetic-severe combined immunodeficiency mice after transplantation of human cord blood mononuclear cells. Blood, 88 (1996) 3731.

    PubMed  CAS  Google Scholar 

  19. Hogan CJ, Shpall EJ, McNiece I, and Keller G. Multilineage engraftment in NOD/LtSz-scid/scid mice from mobilized human CD34* peripheral blood progenitor cells. Biol. Blood Marrow Transplant., 3 (1997) 236–246.

    PubMed  CAS  Google Scholar 

  20. Hogan CJ, Shpall El, McNulty O, et al. Engraftment and development of human CD34(+)-enriched cells from umbilical cord blood in NOD/LtSz-scid/scid mice. Blood, 90 (1997) 85–96.

    PubMed  CAS  Google Scholar 

  21. Noort WA, Willemze R, and Falkenburg JHF. Comparison of repopulating ability of hematopoietic progenitor cells isolated from human umbilical cord blood or bone marrow cells in NOD-SCID mice. Bone Marrow Transplant., 22 (1998) S58 - S60.

    PubMed  Google Scholar 

  22. Thomas ED and Storb R. Technique for human marrow grafting. Blood, 36 (1970) 507–515.

    PubMed  CAS  Google Scholar 

  23. Storb R, Prentice RL, and Thomas ED. Marrow transplantation for treatment of aplastic anemia. An analysis of factors associated with graft rejection. New Engl. J. Med., 296 (1977) 61–66.

    Article  CAS  Google Scholar 

  24. Al-Fiar F, Prince HM, Imrie K, Stewart AK, Crump M, and Keating A. Bone marrow mononuclear cell count does not predict neutrophil and platelet recovery following autologous bone marrow transplant: value of the colony-forming unit granulocytic-macrophage (CFU-GM) assay. Cell Transplantation, 6 (1997) 491–495.

    Article  PubMed  CAS  Google Scholar 

  25. Brandwein JM, Callum J, Sutcliffe SB, Scott JG, and Keating A. Analysis of factors affecting hematopoietic recovery after autologous bone marrow transplantation for lymphoma. Bone Marrow Transplant., 6 (1990) 291–294.

    PubMed  CAS  Google Scholar 

  26. Douay L, Gorin N, Mary J, Lemarie E, Lopez M, Najman A, et al. Recovery of CFU-GM from cryopreserved marrow and in vivo evaluation after autologous bone marrow transplantation are predictive of engraftment. Exp. Hematol., 14 (1986) 358–365.

    PubMed  CAS  Google Scholar 

  27. Sharp JG, Kessinger A, Mann S, Crouse DA, Armitage JO, Bierman P, et al. Outcome of high-dose therapy and autologous transplantation in non-Hodgkin’s lymphoma based on the presence of tumor in the marrow or infused hematopoietic harvest. J. Clin. Oncol., 14 (1996) 214–219.

    PubMed  CAS  Google Scholar 

  28. Laporte J, Douay L, Lopez M, Labopin M, Jouet JP, Lesage S, et al. One hundred twenty-five adult patients with primary acute leukemia autografted with marrow purged by mafosfamide: a 10-year single institution experience. Blood, 84 (1994) 3810–3818.

    PubMed  CAS  Google Scholar 

  29. Rowley SD, Piantadosi S, Marcellus, DC, Jones RI, Davidson NE, Davis JM, et al. Analysis of factors predicting speed of hematologic recovery after transplantation with 4-hydroperoxyclophosphamidepurged autologous bone marrow grafts. Bone Marrow Transplant., 7 (1991) 183–191.

    PubMed  CAS  Google Scholar 

  30. Gorin N, Lopez M, Laporte J, Quittet P, Lesage S, Lemoine F, et al. Preparation and successful engraftment of purified CD34* bone marrow progenitor cells in patients with non-Hodgkin’ s lymphoma. Blood, 85 (1995) 1647–1654.

    PubMed  CAS  Google Scholar 

  31. Shpall E, LeMaistre CF, Holland K, Ball E, Jones R, Saral R, et al. A prospective randomized trial of buffy coat versus CD34-selected autologous bone marrow support in high-risk breast cancer patients receiving high dose chemotherapy. Blood, 90 (1997) 4313–4320.

    PubMed  CAS  Google Scholar 

  32. Attarian H, Feng Z, Buckner CD, MacLeod B, and Rowely SD. Long-term cryopreservation of bone marrow for autologous transplantation. Bone Marrow Transplant., 17 (1996) 425–430.

    PubMed  CAS  Google Scholar 

  33. Tones A, Alonso MC, Gomez-Villagran JL, Manzanares MR, Martinez F, Gomez P, et al. No influence of number of donor CFU-GM on granulocyte recovery in bone marrow transplantation for acute leukemia. BLUT, 50 (1985) 89–94.

    Article  Google Scholar 

  34. Atkinson K, Nome S, Chan P, Downs K, and Biggs J. Lack of correlation between nucleated bone marrow cell dose, marrow CFU-GM dose or marrow CFU-E dose and the rate of HLA-identical sibling marrow engraftment. Br. J. of Hematology, 60 (1985) 245–251.

    Article  CAS  Google Scholar 

  35. Bacigalupo A, Piaggio G, Podesta M, Figari O, Benvenuto F, Sogno G, et al. Influence of marrow CFU-GM content on engraftment and survival after allogeneic bone marrow transplantation. Bone Marrow Transplant., 15 (1995) 221–226.

    PubMed  CAS  Google Scholar 

  36. Gerhartz H, Kolb H, Clemm C, and Wilmanns W. Clonogenic assays and engraftment in allogeneic bone marrow transplantation. Bone Marrow Transplant., 1 (1986) 221–226.

    PubMed  CAS  Google Scholar 

  37. Bortin M, Gale R, Kay H, and Rimm A Bone marrow transplantation for acute myelogenous leukemia. JAMA, 249 (1983) 1166–1175.

    Article  PubMed  CAS  Google Scholar 

  38. Sierra J, Storer B, Hansen J, Bjerke J, Martin P, Petersdorf E, et al. Transplantation of marrow cells from unrelated donors for treatment of high risk acute leukemia: the effect of leukemic burden, donor HLA-matching and marrow cell dose. Blood, 89 (1997) 4226–4235.

    PubMed  CAS  Google Scholar 

  39. Mavroudis D, Read E, Cottler-Fox M, Couriel D, Molldrem J, Carter C, et al. CD34` cell dose predicts survival, posttransplant morbidity, and rate of hematologic recovery after allogeneic marrow transplants for hematologic malignancies. Blood, 8 (1996) 3223–3229.

    Google Scholar 

  40. Bender JG, To LB, Williams S, and Schwartzberg LS. Defining a therapeutic dose of peripheral blood stem cells. J. Hematother., 1 (1992) 329–341.

    Article  PubMed  CAS  Google Scholar 

  41. Schwella N, Siegert W, Beyer J, Rick O, Zingsem J, Eckstein R, et al. Autografting with blood progenitor cells: predictive value of preapheresis blood cell counts on progenitor cell harvest and correlation of the reinfused cell dose with hematopoietic reconstitution. Ann. Hematol., 71 (1995) 227–234.

    Article  PubMed  CAS  Google Scholar 

  42. Smith RJ and Sweetenham JW. A mononuclear cell dose of 3 x 108/kg predicts early multilineage recovery in patients with malignant lymphoma treated with carmustine, etoposide, Ara-C and melphalan (BEAM) and peripheral blood progenitor cell transplantation. Exp. Hematol., 23 (1995) 1581–1588.

    PubMed  CAS  Google Scholar 

  43. Watts MJ, Sullivan AM, Jamieson E, Pearce R, Fielding A, Devereux S, et al. Progenitor-cell mobilization after low-dose cyclophosphamide and granulocyte colony-stimulating factor: an analysis of progenitor=cell quantity and quality and factors predicting for these parameters in 101 pretreated patients with malignant lymphoma. J. Clin. Oncol., 15 (1997) 535–546.

    PubMed  CAS  Google Scholar 

  44. Haas R, Witt B, Motile R, Goldschmidt H, Hohaus S, Fruehauf S, et al. Sustained long-term hematopoiesis after myeloablative therapy with peripheral blood progenitor cell support. Blood, 85 (1995) 3754–3761.

    PubMed  CAS  Google Scholar 

  45. To LB, Haylock DN, Simmons PJ, and Juttner CA. The biology and clinical uses of blood stem cells. Blood, 89 (1997) 2233–2238.

    PubMed  CAS  Google Scholar 

  46. Hermouet S, Niaussat AE, Briec A, Pineau D, Robillard N, Bataille R, et al. Analysis of platelet recovery after autologous transplantation with G-CSF mobilized CD34* cells purified from leukapheresis products. Hematol. Cell Ther., 39 (1997) 317–325.

    Article  PubMed  CAS  Google Scholar 

  47. Tricot G, Jagannath S, Vesole D, Nelson J, Tindle S, Miller L, et al. Peripheral blood stem cell transplants for multiple myeloma: identification of favorable variables for rapid engraftment in 225 patients. Blood, 85 (1995) 588–596.

    PubMed  CAS  Google Scholar 

  48. Glaspy JA, Shpall EJ, LeMaistre CF, Briddell RA, Menchaca DM, Turner SA, et al. Peripheral blood progenitor cell mobilization using stem cell factor in combination with filgrastim in breast cancer patients. Blood, 90 (1997) 2939–2951.

    PubMed  CAS  Google Scholar 

  49. Weaver CH, Hazelton B, Birch R, Palmer P, Allen C, Schwartzberg L, et al. An analysis of engraftment kinetics as a function of the CD34 content of peripheral blood progenitor cell collections in 692 patients after the administration of myeloablative chemotherapy. Blood, 86 (1995) 3961–3969.

    PubMed  CAS  Google Scholar 

  50. Rossi A, Cortelazzo S, Bellavita P, Viero P, Bassan R, Comotti B, et al. Long-term haematological reconstitution following BEAM and autologous transplantation of circulating progenitor cells in non-Hodgkin’s lymphoma. Brit. J. Haematol., 96 (1997) 620–626.

    Article  CAS  Google Scholar 

  51. Bolwell B, Goormastic M, Andresen S, Koo A, Wise K, Overmoyer B, et al. Variables associated with the platelet count 6 weeks after autologous peripheral blood progenitor cell transplantation. Bone Marrow Transplant., 22 (1998) 547–551.

    Article  PubMed  CAS  Google Scholar 

  52. Bensinger W, Appelbaum F, Rowley S, Storb R, Sanders J, Lilleby K, et al. Factors that influence collection and engraftment of autologous peripheral-blood stem cells. J. Clin. Oncol.,13 (1995) 25472555.

    Google Scholar 

  53. Weaver CH, Potz J, Redmond J, Tauer K, Schwartzberg LS, Kaywin P, et al. Engraftment and outcomes of patients receiving myeloablative therapy followed by autologous peripheral blood stem cells with a low CD34’ cell content. Bone Marrow Transplant., 19 (1997) 1103–1110.

    Article  PubMed  CAS  Google Scholar 

  54. Dercksen MW, Rodenhuis S, Dirkson MKA, Schaasberg WP, Baars JW, van der Wall E, et al. Subsets of CD34’ cells and rapid hematopoietic recovery after peripheral-blood stem-cell transplantation. J. Clin. Oncol., 13 (1995) 1922–1932.

    PubMed  CAS  Google Scholar 

  55. Copelan EA, Ceselski SK, Ezzone SA, Lasky LC, Penza SL, Bechtel TP, et al. Mobilization of peripheral-blood progenitor cells with high-dose etoposide and granulocyte colony-stimulating factor in patients with breast cancer, non-Hodgkin’s lymphoma, and Hodgkin’s disease. J. Clin. Oncol., 15 (1997) 759–765.

    PubMed  CAS  Google Scholar 

  56. Millar BC, Millar JL, Shepherd V, Blackwell P, Porter H, Cunningham D, et al. The importance of CD34’/CD33- cells in platelet engraftment after intensive therapy for cancer patients given peripheral blood stem cell rescue. Bone Marrow Transplant., 22 (1998) 469–475.

    Article  PubMed  CAS  Google Scholar 

  57. Pecora AL, Preti RA, Gleim GW, Jennis A, Zahos K, Cantwell S, et al. CD34*CD33- cells influence days to engraftment and transfusion requirements in autologous blood stem-cell recipients. J. Clin. Oncol., 16 (1998) 2093–2104.

    PubMed  CAS  Google Scholar 

  58. Sampol Mayol A, Besalduch Vital J, Galmés Llodrâ A, Bargay Lleonart J, Matamoros Flori N, Morey Sureda M, et al. CD34* cell dose and CD33- subsets: collection and engraftment kinetics in autologous peripheral blood stem cells transplantation. Haematologica, 83 (1998) 489–495.

    CAS  Google Scholar 

  59. Buscemi F, Indovina A, Scimè R, Santoro A, Pampinella M, Fiandaca T, et al. CD34* cell subsets and platelet recovery after PBSC autograft. Bone Marrow Transplant., 16 (1995) 855–860.

    PubMed  CAS  Google Scholar 

  60. Hawn P, Sovalat H, Becker M, Arkam Y, Ojeda-Uribe M, Raidot JP, et al. Primordial role of CD34’38- cells in early and late trilineage haemopoietic engraftment after utologous blood cell transplantation. Brit. J. Haematol., 103 (1998) 568–581.

    Article  Google Scholar 

  61. Takue Y, Kawano Y, Abe T, Okamoto Y, Suzue T, Shimizu T, et al. Collection and transplantation of peripheral blood stem cells in very small children weighing 20 kg or less. Blood, 86 (1995) 372–380.

    Google Scholar 

  62. Leibundgut K, von Rohr A, Brülhart K, Hirt A, Ischi E, Jeanneret C, et al. The number of circulating CD34’ blood cells predicts the colony-forming capacity of leukapheresis produces in children. Bone Marrow Transplant., 15 (1995) 25–31.

    PubMed  CAS  Google Scholar 

  63. Diaz MA, Alegre A, Villa M, Granda A, de la Vega A, Ramirez M, et al. Pediatric experience with autologous peripheral blood progenitor cell transplantation: influence of CD34’ cell dose in engraftment kinetics. Bone Marrow Transplant., 18 (1996) 699–703.

    PubMed  CAS  Google Scholar 

  64. Gonzelez-Requejo A, Madero L, Diaz MA, Villa M, Garcia-Escribano C, Balas A, et al. Progenitor cell subsets and engraftment kinetics in children undergoing autologous peripheral blood stem cell transplantation. Brit. J. Haematol., 101 (1998) 104–110.

    Article  Google Scholar 

  65. Anderlini P, Körbling M, Dale D, Gratwohl A, Schmitz N, Stroncek D, et al. Allogeneic blood stem cell transplantation: considerations for donors. Blood, 90 (1997) 903–908.

    PubMed  CAS  Google Scholar 

  66. Körbling M, Huh YO, Durett A, Mirza N, Miller P, Engel H, et al. Allogeneic blood stem cell transplantation: peripheralization and yield of donor-derived primitive hematopoietic progenitor cells (CD34’ Thy-1“) and lymphoid subsets, and possible predictors of engraftment and graft-versushost disease. Blood, 86 (1995) 2842–2848.

    PubMed  Google Scholar 

  67. Rosenfeld C, Collins R, Pineiro L, Agura E, and Nemunaitis J. Allogeneic blood cell transplantation without posttransplant colony-stimulating factors in patients with hematopoietic neoplasm: a phase II study. J. Clin. Oncol., 14 (1996) 1314–1319.

    PubMed  CAS  Google Scholar 

  68. Brown RA, Adkins D, Goodnough LT, Haug JS, Todd G, Wehde M, et al. Factors that influence the collection and engraftment of allogeneic peripheral-blood stem cells in patients with hematologic malignancies. J. Clin. Oncol., 15 (1997) 3067–3074.

    PubMed  CAS  Google Scholar 

  69. Urbano-Ispizua A, Solano C, Brunet S, de la Rubia J, Odriozola J, Zuazu J, et al. Allogeneic transplantation of selected CD34’ cells from peripheral blood: experience of 62 cases using immunoadsorption or immunomagnetic technique. Bone Marrow Transplant., 22 (1998) 519–525.

    Article  PubMed  CAS  Google Scholar 

  70. Brugger W, Bross KJ, Glatt M, Weber F, Mertelsmann R, and Kanz L. Mobilization of tumor cells and hematopoietic progenitor cells into peripheral blood of patients with solid tumors. Blood, 83 (1994) 636–640.

    PubMed  CAS  Google Scholar 

  71. Vescio RA, Han EJ, Schiller GJ, Lee JC, Wu CH, Cao J, et al. Quantitative comparison of multiple myeloma tumor contamination in bone marrow harvest and leukapheresis autografts. Bone Marrow Transplant., 18 (1996) 103–110.

    PubMed  CAS  Google Scholar 

  72. Ross AA, Cooper BW, Lazarus HM, Mackay W, Moss TJ, Ciobanu N, et al. Detection and viability of tumor cells in peripheral blood stem cell collections from breast cancer patients using immunocytochemical and clonogenic assay techniques. Blood, 82 (1993) 2605–2610.

    PubMed  CAS  Google Scholar 

  73. Cooper BW, Moss TJ, Ross AA, Ybanez J, and Lazarus HM. Occult tumor contamination of hematopoietic stem-cell products does not affect clinical outcome of autologous transplantation in patients with metastatic breast cancer. J. Clin. Oncol., 16 (1998) 3509–3517.

    PubMed  CAS  Google Scholar 

  74. Negrin RS, Kusnierz-Glaz CR, Still BJ, Schriber JR, Chao NJ, Long GD, et al. Transplantation of enriched and purged peripheral blood progenitor cells from a single apheresis product in patients with non-Hodgkin’s lymphoma. Blood, 85 (1995) 3334–3341.

    PubMed  CAS  Google Scholar 

  75. Watts MJ, Sullivan AM, Ings SJ, Leverett D, Peniket AJ, Perry AR, et al. Evaluation of clinical scale CD34• cell purification: experience of 71 immunoaffinity column procedures. Bone Marrow Transplant., 20 (1997) 157–162.

    Article  PubMed  CAS  Google Scholar 

  76. Fruehauf S, Haas R, Conradt C, Murea S, Witt B, Möhle R, et al. Peripheral blood progenitor cell (PBPC) counts during steady-state hematopoiesis allow to estimate the yield of mobilized PBPC after filgrastim (R-metHuG-CSF)-supported cytotoxic chemotherapy. Blood, 85 (1995) 2619–2626.

    PubMed  CAS  Google Scholar 

  77. Elliott C, Samson DM, Armitage S, Lyttelton MP, McGuigan D, Hargreaves R, et al. When to harvest peripheral-blood stem cells after mobilization therapy: prediction of CD34-positive cell yield by preceding day CD34-positive concentration in peripheral blood. J. Clin. Oncol., 14 (1996) 970–973.

    PubMed  CAS  Google Scholar 

  78. Chapple P, Prince HM, Quinn M, Bertoncello I, Juneja S, Wolf M, et al. Peripheral blood CD34’ cell count reliably predicts autograft yield. Bone Marrow Transplant., 22 (1998) 125–130.

    Article  PubMed  CAS  Google Scholar 

  79. Husson B, Ravoet C, Dehon M, Wallef G, Hougardy N, and Delannoy A. Predictive value of the steady-state peripheral blood progenitor cell (PBPC) counts for the yield of PBPC collected by leukapheresis after mobilization by granulocyte colony-stimulating factor (G-CSF) alone or chemotherapy and G-CSF. Blood, 87 (1996) 3526–3528.

    PubMed  CAS  Google Scholar 

  80. Roberts AW, Begley CG, Grigg AP, and Basser RL. Do steady-state peripheral blood progenitor cell (PBPC) counts predict the yield of PBPC mobilized by filgrastim alone? [letter]. Blood, 86 (1995) 2451.

    Google Scholar 

  81. Tarella C, Castellano C, Locatelli F, Caracciolo D, Corradini P, Falda M, et al. G-CSF administration following peripheral blood progenitor cell (PBPC) autograft in lymphoid malignancies: evidence for clinical benefits and reduction of treatment costs. Bone Marrow Transplant., 21 (1998) 401–407.

    Article  PubMed  CAS  Google Scholar 

  82. Klumpp TR, Mangan KF, Goldberg SL, Pearlman ES, and Macdonald JS. Granulocyte colony-stimulating factor accelerates neutrophil engraftment following peripheral-blood stem-cell transplantation: a prospective, randomized trial. J. Clin. Oncol., 13 (1995) 1323–1327.

    PubMed  CAS  Google Scholar 

  83. Lee SM, Radford JA, Dogson L, Huq T, Ryder WDJ, Pettengell R, et al. Recombinant human granulocyte colony-stimulating factor (filgrastim) following high-dose chemotherapy and peripheral blood progenitor cell rescue in high-grade non-Hodgkin’s lymphoma: clinical benefits at no extra cost. Brit. J. Cancer, 77 (1998) 1294–1299.

    Article  PubMed  CAS  Google Scholar 

  84. Linch DC, Milligan DW, Winfield DA, Kelsey SM, Johnson SA, Littlewood TJ, et al. G-CSF after peripheral blood stem cell transplantation in lymphoma patients significantly accelerated neutrophil recovery and shortened time in hospital: results of a randomized BNLI trial. Brit. J. Haematol., 99 (1997) 933–938.

    Article  CAS  Google Scholar 

  85. Kawano Y, Takaue Y, Mimaya J, Horikoshi Y, Watanabe T, Abe T, et al. Marginal benefit/disadvantage of granulocyte colony-stimulating factor therapy after autologous blood stem cell transplantation in children: results of a prospective randomized trial. Blood, 92 (1998) 4040–4046.

    PubMed  CAS  Google Scholar 

  86. Pettengell R, Woll PJ, O’Connor DA, Dexter TM, and Testa NG. Viability of haemopoietic progenitors from whole blood, bone marrow and leukapheresis product: effects of storage media, temperature of time. Bone Marrow Transplant., 14 (1994) 703–709.

    CAS  Google Scholar 

  87. Humpe A, Riggert J, Vehmeyer K, Troff C, Hiddemann W, Köhler M, et al. Comparison of CD34+ cell numbers and colony growth before and after cryopreservation of peripheral blood progenitor and stem cell harvests: influence of prior chemotherapy. Transfusion, 37 (1997) 1050–1057.

    Article  PubMed  CAS  Google Scholar 

  88. Valeri CR and Pivacek LE. Effects of the temperature, the duration of frozen storage, and the freezing container on in vitro measurements in human peripheral blood mononuclear cells. Transfusion, 36 (1996) 303–308.

    Article  PubMed  CAS  Google Scholar 

  89. Galmés A, Besalduch J, Bargay J, Novo A, Morey M, Guerra JM, et al. Long-term storage at -80°C of hematopoietic progenitor cells with 5-percent dimethyl sulfoxide as the sole cryoprotectant. Transfusion, 39 (1999) 70–73.

    Article  PubMed  Google Scholar 

  90. Katayama Y, Yano T, Bessho A, Deguchi S, Sunami K, Mahmut N, et al. The effects of a simplified method for cryopreservation and thawing procedures on peripheral blood stem cells. Bone Marrow Transplant., 19 (1997) 283–287.

    Article  PubMed  CAS  Google Scholar 

  91. Ayello J, Semidei-Pomales M, Preti R, Hesdorffer C, and Reiss RF. Effects of long-term storage at -90 degrees C of bone marrow and PBPC on cell recovery, viability, and clonogenic potential. J. Hematother., 7 (1998) 385–390.

    Article  PubMed  CAS  Google Scholar 

  92. Kurtzberg J, Laughlin M, Graham ML, et al. Placental blood as a source of hematopoietic stem cells for transplantation into unrelated recipients. N. Engl. J. Med., 335 (1996) 157–166.

    Article  PubMed  CAS  Google Scholar 

  93. Wagner JE, Rosenthal J, Sweetman R, et al. Successful transplantation of HLA-matched and HLAmismatched umbilical cord blood from unrelated donors: analysis of engraftment and acute graftvs-host disease. Blood, 88 (1996) 795–802.

    PubMed  CAS  Google Scholar 

  94. Gluckman E, Rocha V, Boyer-Chammard A, et al. Outcome of cord blood transplantation from related and unrelated donors. N. Engl. J. Med., 337 (1997) 373–381.

    Article  PubMed  CAS  Google Scholar 

  95. Rubinstein P, Carrier C, Scaradavou A, et al. Outcomes among 562 recipients of placental-blood transplants from unrelated donors. N. Engl. J. Med., 339 (1998) 1565–1577.

    Article  PubMed  CAS  Google Scholar 

  96. Migliaccio AR, Adamson JW, Rubinstein P, and Stevens C. Correlation between progenitor cell dose, likelihood to engraft and time to myeloid engraftment in 130 unrelated placental/cord blood transplants. 3rd Eurocord Concerted Action Workshop, Annecy, France, 1998 ( Abstr.).

    Google Scholar 

  97. Morrison SJ, Wandycz AM, Akashi K, et al. The aging of hematopoietic stem cells. Nature Med., 2 (1996) 1011–1016.

    Article  PubMed  CAS  Google Scholar 

  98. Morrison SJ, Prowse KR, Ho P, et al. Telomerase activity in hematopoietic cells is associated with self-renewal potential. Immunity, 5 (1996) 207–216.

    Article  PubMed  CAS  Google Scholar 

  99. Mayani H and Lansdorp PM. Thy-1 expression is linked to functional properties of primitive hematopoietic progenitor cells from human umbilical cord blood. Blood, 83 (1994) 2410–2417.

    PubMed  CAS  Google Scholar 

  100. Kurtzberg J, Graham M, Casei J, et al. The use of umbilical cord blood in mismatched related and unrelated hemapoietic stem cell transplantation. Blood, 20 (1994) 275–284.

    CAS  Google Scholar 

  101. Rubinstein P, Rosenfield RE, Adamson JW, and Stevens CE. Stored placental blood for unrelated bone marrow reconstitution. Blood, 81 (1993) 1679–1690.

    PubMed  CAS  Google Scholar 

  102. Rubinstein P. Placental blood-derived hematopoietic stem cells for unrelated bone marrow reconstitution. J. Hematother., 2 (1993) 207–210.

    Article  PubMed  CAS  Google Scholar 

  103. Gluckman E, Rocha V, and Chastang CI. Ham-Wasserman Lecture: Cord blood hematopoietic stem cells biology and transplantation. American Society of Hematology Education Program Book. (1998) 1–14.

    Google Scholar 

  104. Rocha V, Chastang CI, Souillet G, et al. for the Eurocord transplant group. Related cord blood transplants: The Eurocord experience of 78 transplants. Bone Marrow Transplant., 21 (1998) 559.

    Google Scholar 

  105. Gluckman E, Rocha V, Chastang CI, on behalf of Eurocord. Cord blood banking and transplant in Europe. Bone Marrow Transplant., 22 (1998) S68 - S74.

    PubMed  Google Scholar 

  106. Wagner JE, DeFor T, Rubinstein P, and Kurtzberg J. Transplantation of unrelated donor umbilical cord blood (UCB): Outcomes and analysis of risk factors. Blood, 90 (1997) 398a (Abstract).

    Google Scholar 

  107. Ademokun JA, Chapman C, Dunn J, et al. Umbilical blood collection and separation for hematopoietic progenitor cell banking. Bone Marrow Transplant., 19 (1997) 1023–1028.

    Article  PubMed  CAS  Google Scholar 

  108. Campos L, Roubi N, and Guyotat D. Definition of optimal conditions for collection and cryopreservation of umbilical hematopoietic cells. Cryobiology,32 (1995)511–513.

    Google Scholar 

  109. Broxmeyer HE, Douglas GW, Hangoc G, et al. Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc. Natl. Acad. Sci., 86 (1989) 3828–3832.

    Article  PubMed  CAS  Google Scholar 

  110. Jacobs HCJM and Falkenburg JHF. Umbilical cord blood banking in The Netherlands. Bone Marrow Transplant., 22 (1998) S8 - S10.

    PubMed  Google Scholar 

  111. Rubinstein P, Drobila L, Rosenfield R, et al. Processing and cryopreservation of placental/umbilical cord blood for unrelated bone marrow reconstitution. Proc. Natl. Acad. Sci. USA,92 (1995) 10,11910,122.

    Google Scholar 

  112. Querol S, Gabarro M, Amat L, et al. The placental blood program of the Barcelona Cord Blood Bank. Bone Marrow Transplant., 22 (1998) S3 - S5.

    PubMed  Google Scholar 

  113. Kögler G, Sarnowski A, and Wernet P. Volume reduction of cord blood by Hetastarch for longterm stem cell banking. Bone Marrow Transplant., 22 (1998) S14 - A15.

    PubMed  Google Scholar 

  114. Shlebak AA, Marley SB, Roberts IAG, Davidson RJ, Goldman JM, and Gordon MY. Optimal timing for processing and cryopreservation of umbilical cord haematopoietic stem cells for clinical transplantation. Bone Marrow Transplant., 23 (1999) 131–138.

    Article  PubMed  CAS  Google Scholar 

  115. Broxmeyer HE, Kurtzberg J, Gluckman E, et al. Umbilical cord blood hematopoietic stem and repopulating cells in human clinical transplantation. Blood Cells, 17 (1990) 313–329.

    Google Scholar 

  116. Almici C, Carlo-Stella C, and Mangoni L. Density separation and cryopreservation of umbilical cord blood cells: evaluation of recovery in short-and long-term cultures. Acta. Haematica., 95 (1996) 171–175.

    Article  CAS  Google Scholar 

  117. Turner CW, Luzins J, and Hutcheson C. A modified harvest technique for cord blood haematopoietic stem cells. Bone Marrow Transplant., 10 (1992) 89–91.

    PubMed  CAS  Google Scholar 

  118. Emminger W, Emminger-Schmidmeir W, Hocker P, et al. Myeloid progenitor cells (CFU-GM) predict engraftment kinetics in autologous transplantation in children. Bone Marrow Transplant., 4 (1989) 415–420.

    PubMed  CAS  Google Scholar 

  119. Osawa M, Hanada K, Hamada H, and Nakauchi H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science, 273 (1996) 242–245.

    Article  PubMed  CAS  Google Scholar 

  120. Cheng J, Baumhueter S, Cacalano G, Carver-Moore K, Thibodeaux H, Thomas R, et al. Hematopoietic defects in mice lacking the sialomucin CD34. Blood, 87 (1996) 479–490.

    PubMed  CAS  Google Scholar 

  121. Goodell MA, Rosenzweig M, Kim H, Marks DF, DeMaria M, Paradis G, et al. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nature Med., 3 (1997) 1337–1345.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

O’Donnell, L.C., Elder, P.J., Avalos, B.R. (2000). How Many Stem Cells Are Sufficient for Engraftment?. In: Bolwell, B.J. (eds) Current Controversies in Bone Marrow Transplantation. Current Clinical Oncology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-657-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-657-7_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9812-7

  • Online ISBN: 978-1-59259-657-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics