Skip to main content

Management of Traumatic Brain Injury with Moderate Hypothermia

  • Chapter
Hypothermia and Cerebral Ischemia

Overview

Early reports of therapeutic hypothermia for severe traumatic brain injury can be traced back to the first half of the 20th century. It is only within the last two decades that clinical studies have demonstrated that therapeutic moderate hypothermia for brief durations can improve patient outcomes following brain injury. The historical background, recent clinical experience, and mechanisms of action of moderate hypothermia are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fay T. (1943) Observations on generalized refrigeration in cases of severe cerebral trauma. Assoc. Res. Nerv. Ment. Dis. Proc. 24, 611–619.

    Google Scholar 

  2. Hendrick E. B. (1959) The use of hypothermia in severe head injuries in childhood. Ann. Surg. 79, 362–364.

    CAS  Google Scholar 

  3. Lazorthes G. and Campan L. (1958) Hypothermia in the treatment of craniocerebral traumatism. J. Neurosurg. 15, 162–167.

    Article  PubMed  CAS  Google Scholar 

  4. Sedzimir C. B. (1959) Therapeutic hypothermia in cases of head injury. J. Neurosurg. 16, 407–414.

    Article  PubMed  CAS  Google Scholar 

  5. Woringer E., Schneider J., Baumgartener J., and Thomalske G. (1954) Essai critique sur l’effet de l’hibernation artificielle sur 19 cas de souffrance du tronc cerebral apres traumatisme selectionnes pour leur gravite parmi 270 comas postcommotionels. Anesth. Analg. (Paris) 11, 34–45

    CAS  Google Scholar 

  6. Drake C. G. and Jory T. A. (1962) Hypothermia in the treatment ot cntical head injury. Can. Med. Assoc. J. 87, 887–891.

    PubMed  CAS  Google Scholar 

  7. Shapiro H. M., Wyte S. R., and Loeser J. (1974) Barbiturate-augmented hypothermia for reduction of persistent intracranial hypertension. J. Neurosurg. 40, 90–100.

    Article  PubMed  CAS  Google Scholar 

  8. Mouritzen C. V. and Andersen M. N. (1966) Mechanisms of ventricular fibrillation during hypothermia: relative changes in myocardial refractory period and conduction velocity. J. Thorac. Cardiovasc. Surg. 51, 585–589. .

    Google Scholar 

  9. Rohrer M. J. and Natale A. M. (1992) Effect of hypothermia on the coagulation cascade. Crit. Care Med. 20, 1402–1405.

    Article  PubMed  CAS  Google Scholar 

  10. Bailey C. P., Cookson B. A., Downing D. F., and Neptune W. B. (1999) Cardiac surgery under hypothermia. J. Thorac. Surg. 27, 73–95.

    Google Scholar 

  11. Mohri H. and Merendino K. A. (1969) Hypothermia with or without a pump oxygenator. In Surgery of the Chest (Gibbon J. H., ed.), W. B. Saunders, Philadelphia, pp. 643–673.

    Google Scholar 

  12. Dietrich W. D., Alonso O., Busto R., Globus M. Y., and Ginsberg M. D. (1994) Posttraumatic brain hypothermia reduces histopathological damage following concussive brain injury in the rat. Acta Neuropathol. 87, 250–258.

    Article  PubMed  CAS  Google Scholar 

  13. Sano T., Drummond J. C., Patel P. M., Grafe M. R., Watson J. C., and Cole D. J. (1992) A comparison of the cerebral protective effects of isoflurane and mild hypothermia in a model of incomplete forebrain ischemia in the rat. Anesthesiology 76, 221–228.

    Article  PubMed  CAS  Google Scholar 

  14. Moyer D. J., Welsh F. A., and Zager E. L. (1992) Spontaneous cerebral hypothermia diminishes focal infarction in rat brain. Stroke 23, 1812–1816.

    Article  PubMed  CAS  Google Scholar 

  15. Leonov Y., Sterz F., Safar P., et al. (1990) Mild cerebral hypothermia during and after cardiac arrest improves neurologic outcome in dogs. J. Cereb. Blood Flow Metab. 10, 57–70.

    Article  PubMed  CAS  Google Scholar 

  16. Rosomoff H. L. (1966) Relationship of metabolism to hypothermia. Res. Publ. Assoc. 41, 116–126.

    CAS  Google Scholar 

  17. Clifton G. L., Allen S., Barrodale P., et al. (1993) A phase II study of moderate hypothermia in severe brain injury. J. Neurotrauma 10, 263–271; discussion 273.

    Google Scholar 

  18. Marion D. W., Obrist W. D., Carlier P. M., Penrod L. E., and Darby J. M. (1993) The use of moderate therapeutic hypothermia for patients with severe head injuries: a preliminary report. J. Neurosurg. 79, 354–362.

    Article  PubMed  CAS  Google Scholar 

  19. Resnick D. K., Marion D. W., and Darby J. M. (1994) The effect of hypothermia on the incidence of delayed traumatic intracerebral hemorrhage. Neurosurgery 34, 252–255; discussion 255–256.

    Article  PubMed  CAS  Google Scholar 

  20. Shiozaki T., Sugimoto H., Taneda M., et al. (1993) Effect of mild hypothermia on uncontrollable intracranial hypertension after severe head injury. J. Neurosurg. 79, 363–368.

    Article  PubMed  CAS  Google Scholar 

  21. Metz C., Holzschuh M., Bein T., et al. (1996) Moderate hypothermia in patients with severe head injury: cerebral and extracerebral effects. J. Neurosurg. 85, 533–541.

    Article  PubMed  CAS  Google Scholar 

  22. Marion D. W., Penrod L. E., Kelsey S. F., et al. (1997) Treatment of traumatic brain injury with moderate hypothermia. N. Engl. J. Med. 336, 540–546.

    Article  PubMed  CAS  Google Scholar 

  23. Jiang J., Yu M., and Zhu C. (2000) Effect of long-term mild hypothermia therapy in patients with severe traumatic brain injury: 1-year follow-up review of 87 cases. J. Neurosurg. 93, 546–549.

    Article  PubMed  CAS  Google Scholar 

  24. Marion D. W. (1997) Therapeutic moderate hypothermia for severe traumatic brain injury. J. Intens. Care Med. 12, 239–248.

    Google Scholar 

  25. Clifton G. L., Miller E. R., Choi S. C., et al. (2001) Lack of effect of induction of hypothermia after acute brain injury. N. Engl. J. Med. 344, 556–563.

    Article  PubMed  CAS  Google Scholar 

  26. Cairns C. J. and Andrews P. J. (2002) Management of hyperthermia in traumatic brain injury. Curr. Opin. Crit. Care 8, 106–110.

    Article  PubMed  Google Scholar 

  27. Natale J. E., Joseph J. G., Helfaer M. A., and Shaffner D. H. (2000) Early hyperthermia after traumatic brain injury in children: risk factors, influence on length of stay, and effect on short-term neurologic status. Crit. Care Med. 28, 2608–2615.

    Article  PubMed  CAS  Google Scholar 

  28. Marion D. W. (2001) Therapeutic moderate hypothermia and fever. Curr. Pharm. Des. 7, 1533–1536.

    Article  PubMed  CAS  Google Scholar 

  29. Chatzipanteli K., Alonso O. F., Kraydieh S., and Dietrich W. D. (2000) Importance of posttraumatic hypothermia and hyperthermia on the inflammatory response after fluid percussion brain injury: biochemical and immunocytochemical studies. J. Cereb. Blood Flow Metab. 20, 531–542.

    Article  PubMed  CAS  Google Scholar 

  30. Rossi S., Zanier E. R., Mauri I., Columbo A., and Stocchetti N. (2001) Brain temperature, body core temperature, and intracranial pressure in acute cerebral damage. J. Neurol. Neurosurg. Psychiatry 71, 448–454.

    Article  PubMed  CAS  Google Scholar 

  31. Jiang J. Y., Gao G. Y., Li W. P., Yu M. K., and Zhu C. (2002) Early indicators of prognosis in 846 cases of severe traumatic brain injury. J. Neurotrauma 19, 869–874.

    Article  PubMed  Google Scholar 

  32. Buchan A. and Pulsinelli W. A. (1990) Hypothermia but not the N-methyl-D-aspartate antagonist, MK-801, attenuates neuronal damage in gerbils subjected to transient global ischemia. J. Neurosci. 10, 311–316.

    PubMed  CAS  Google Scholar 

  33. Welsh F. A., Sims R. E., and Harris V. A. (1990) Mild hypothermia prevents ischemic injury in gerbil hippocampus. J. Cereb. Blood Flow Metab. 10, 557–563.

    Article  PubMed  CAS  Google Scholar 

  34. Minamisawa H., Smith M. L., and Siesjo B. K. (1990) The effect of mild hyperthermia and hypothermia on brain damage following 5,10, and 15 minutes of forebrain ischemia. Ann. Neurol. 28, 26–33.

    Article  PubMed  CAS  Google Scholar 

  35. Clifton G. L., Jiang J. Y., Lyeth B. G., Jenkins L. W., Hamm R. J., and Hayes R. L. (1991) Marked protection by moderate hypothermia after experimental traumatic brain injury. J. Cereb. Blood Flow Metab. 11, 114–121.

    Article  CAS  Google Scholar 

  36. Busto R., Dietrich W. D., Globus M. Y., Valdes I., Scheinberg P., and Ginsberg M. D. (1987) Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J. Cereb. Blood Flow Metab.7, 729–738.

    Article  PubMed  CAS  Google Scholar 

  37. Busto R., Dietrich W. D., Globus M. Y., and Ginsberg M. D. (1989) Postischemic moderate hypothermia inhibits CA1 hippocampal ischemic neuronal injury. Neurosci. Lett. 101, 299–304.

    Article  PubMed  CAS  Google Scholar 

  38. Clifton G. L., Taft W. C., Blair R. E., Choi S. C., and DeLorenzo R. J. (1989) Conditions for pharmacologic evaluation in the gerbil model of forebrain ischemia. Stroke 20, 1545–1552.

    Article  PubMed  CAS  Google Scholar 

  39. Busto R., Dietrich W. D., Globus M. Y., and Ginsberg M. D. (1989) The importance of brain temperature in cerebral ischemic injury. Stroke 20, 1113–1114.

    Article  PubMed  CAS  Google Scholar 

  40. Pomeranz S., Safar P., Radovsky A., Tisherman S. A., Alexander H., and Stezoski W. (1993) The effect of resuscitative moderate hypothermia following epidural brain compression on cerebral damage in a canine outcome model. J. Neurosurg. 79, 241–251.

    Article  PubMed  CAS  Google Scholar 

  41. Marion D. W. and White M. J. (1996) Treatment of experimental brain injury with moderate hypothermia and 21- aminosteroids. J. Neurotrauma 13, 139–147.

    Article  PubMed  CAS  Google Scholar 

  42. Lyeth B. G., Jiang J. Y., and Liu S. (1993) Behavioral protection by moderate hypothermia initiated after experimental traumatic brain injury. J. Neurotrauma 10,57–64.

    Article  PubMed  CAS  Google Scholar 

  43. Gordon C. J. (2001) The therapeutic potential of regulated hypothermia. Emerg. Med. J. 18, 81–89.

    Article  PubMed  CAS  Google Scholar 

  44. Blumbergs P. C., Jones N. R., and North J. B. (1989) Diffuse axonal injury in head trauma. J. Neurol. Neurosurg. Psychiatry 52, 838–841.

    Article  PubMed  CAS  Google Scholar 

  45. Erb D. E. and Povlishock J. T. (1988) Axonal damage in severe traumatic brain injury: an experimental study in cat. Acta Neuropathol. 76, 347–358.

    Article  PubMed  CAS  Google Scholar 

  46. Baker A. J., Moulton R. J., MacMillan V. H., and Shedden P. M. (1993) Excitatory amino acids in cerebrospinal fluid following traumatic brain injury in humans. J. Neurosurg. 79, 369–372.

    Article  PubMed  CAS  Google Scholar 

  47. Jennett W. B. (1970) Secondary ischaemic brain damage after head injury. J. Clin. Pathol. Suppl. 4, 172–175.

    Article  CAS  Google Scholar 

  48. Michenfelder J. D. and Theye R. A. (1970) The effects of anesthesia and hypothermia on canine cerebral ATP and lactate during anoxia produced by decapitation. Anesthesiology 33, 430–439.

    Article  PubMed  CAS  Google Scholar 

  49. Michenfelder J. D. (1988) The hypothermic brain. In Anesthesia and the Brain: Clinical, Functional, Metabolic and Vascular Correlates (Michenfelder J. D., ed.), Churchill Livingstone, New York.

    Google Scholar 

  50. Hayes R. L., Stonnington H. H., Lyeth B. G., Dixon C. E., and Yamamoto T. (1986) Metabolic and neurophysiologic sequelae of brain injury: a cholinergic hypothesis. Cent. Nerv. Syst. Trauma 3, 163–173.

    PubMed  CAS  Google Scholar 

  51. Benveniste H. (1991) The excitotoxin hypothesis in relation to cerebral ischemia. Cerebrovasc. Brain Metab. Rev. 3, 213–245.

    PubMed  CAS  Google Scholar 

  52. Choi D. W. and Rothman S. M. (1990) The role of glutamate neurotoxicity in hypoxic—ischemic neuronal death. Annu. Rev. Neurosci. 13, 171–182.

    Article  PubMed  CAS  Google Scholar 

  53. Faden A. I., Demediuk P., Panter S. S., and Vink R. (1989) The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science 244, 798–800.

    Article  PubMed  CAS  Google Scholar 

  54. Povlishock J. T. and Lyeth B. G. (1989) Traumatically induced blood—brain barrier disruption: a conduit for the passage of circulating excitatory neurotransmitters. Soc. Neurosci. Abstr. 15, 1113 (Abstr).

    Google Scholar 

  55. Wei E. P., Kontos H. A., Dietrich W. D., Povlishock J. T., and Ellis E. F. (1981) Inhibition by free radical scavengers and by cyclooxygenase inhibitors of pial arteriolar abnormalities from concussive brain injury in cats. Circ. Res. 48, 95–103.

    Article  PubMed  CAS  Google Scholar 

  56. Busto R., Globus M. Y., Dietrich W. D., Martinez E., Valdes I., and Ginsberg M. D. (1989) Effect of mild hypothermia on ischemia-induced release of neurotransmitters and free fatty acids in rat brain. Stroke 20, 904–910.

    Article  PubMed  CAS  Google Scholar 

  57. Rosomoff H. L. (1959) Experimental brain injury during hypothermia. J. Neurosurg. 16, 177–187.

    Article  PubMed  CAS  Google Scholar 

  58. Rosomoff H. L., Shulman K., and Raynor R. (1960) Experimental brain injury and delayed hypothermia. Surg. Gynecol. Obstet. 110, 27–32.

    PubMed  CAS  Google Scholar 

  59. Dempsey R. J., Combs D. J., Maley M. E., Cowen D. E., Roy M. W., and Donaldson D. L. (1987) Moderate hypothermia reduces postischemic edema development and leukotriene production. Neurosurgery 21, 177–181.

    Article  PubMed  CAS  Google Scholar 

  60. Lei B., Tan X., Cai H., Xu Q., and Guo Q. (1994) Effect of moderate hypothermia on lipid peroxidation in canine brain tissue after cardiac arrest and resuscitation. Stroke 25, 147–152.

    Article  PubMed  CAS  Google Scholar 

  61. Lyeth B. G., Jiang J. Y., Robinson S. E., Guo H., and Jenkins L. W. (1993) Hypothermia blunts acetylcholine increase in CSF of traumatically brain injured rats. Mol. Chem. Neuropathol. 18, 247–256.

    Article  PubMed  CAS  Google Scholar 

  62. Taft W. C., Yang K., Dixon C. E., Clifton G. L., and Hayes R. L. (1993) Hypothermia attenuates the loss of hippocampal microtubule-associated protein 2 (MAP2) following traumatic brain injury. J. Cereb. Blood Flow Metab. 13, 796–802.

    Article  PubMed  CAS  Google Scholar 

  63. Bayir H., Clark R. S., and Kochanek P. M. (2003) Promising strategies to minimize secondary brain injury after head trauma. Crit. Care Med. 31, S112–117.

    Article  PubMed  CAS  Google Scholar 

  64. Meyer J. S., Kondo A., Nomura F., Sakamoto K., and Teraura T. (1970) Cerebral hemodynamics and metabolism following experimental head injury. J. Neurosurg. 32, 304–319.

    Article  PubMed  CAS  Google Scholar 

  65. Sood S. C., Gulati S. C., Kumar M., and Kak V. K. (1980) Cerebral metabolism following brain injury. II. Lactic acid changes. Acta Neurochir. 53, 47–51.

    Article  CAS  Google Scholar 

  66. Bouma G. J., Muizelaar J. P., Choi S. C., Newlon P. G., and Young H. F. (1991) Cerebral circulation and metabolism after severe traumatic brain injury: the elusive role of ischemia. J. Neurosurg. 75, 685–693.

    Article  PubMed  CAS  Google Scholar 

  67. Bouma G. J., Muizelaar J. P., Stringer W. A., Choi S. C., Fatouros P., and Young H. F. (1992) Ultra-early evaluation of regional cerebral blood flow in severely head-injured patients using xenon-enhanced computerized tomography. J. Neurosurg. 77, 360–368.

    Article  PubMed  CAS  Google Scholar 

  68. Marion D. W., Darby J., and Yonas H. (1991) Acute regional cerebral blood flow changes caused by severe head injuries. J. Neurosurg. 74, 407–414.

    Article  PubMed  CAS  Google Scholar 

  69. Bullock R., Inglis F. M., Kuroda Y., Butcher S., McCulloch J., and Maxwell W. (1991) Transient hippocampal hypermetabolism associated with glutamate release after acute subdural haematoma in the rat: a potentially neurotoxic mechanism? J. Cereb. Blood Flow Metab. 11, S109 (Abstr).

    Google Scholar 

  70. Kuroda Y., Inglis F. M., Miller J. D., McCulloch J., Graham D. I., and Bullock R. (1992) Transient glucose hypermetabolism after acute subdural hematoma in the rat. J. Neurosurg. 76, 471–477.

    Article  PubMed  CAS  Google Scholar 

  71. Miller J. D., Bullock R., Graham D. I., Chen M. H., and Teasdale G. M. (1990) Ischemic brain damage in a model of acute subdural hematoma. Neurosurgery 27, 433–439.

    Article  PubMed  CAS  Google Scholar 

  72. Stone H. H., Donnelly C., and Frobese A. S. (1956) The effect of lowered body temperature on the cerebral hemodynamics and metabolism of man. Surg. Gynecol. Obstet. 103, 313–322.

    PubMed  Google Scholar 

  73. Bering E. A. (1961) Effect of body temperature change on cerebral oxygen consumption of the intact monkey. Am. J. Physiol. 200, 417–419.

    CAS  Google Scholar 

  74. Bigelow W. G., Lindsay W. K., and Greenwood W. f. (1988) Hypotnermia. Its possible role in cardiac surgery: an investigation of factors governing survival in dogs at low body temperatures. Ann. Surg. 132, 849–866.

    Article  Google Scholar 

  75. McCulloch J., Savaki H. E., Jehle J., and Sokoloff L. (1982) Local cerebral glucose utilization in hypothermic and hyperthermic rats. J. Neurochem. 39, 255–258.

    Article  PubMed  CAS  Google Scholar 

  76. Yoshino A., Hovda D. A., Kawamata T., Katayama Y., and Becker D. P. (1991) Dynamic changes in local cerebral glucose utilization following cerebral conclusion in rats: evidence of a hyper- and subsequent hypometabolic state. Brain Res. 561,106–119.

    Article  PubMed  CAS  Google Scholar 

  77. Kawamata T., Katayama Y., Hovda D. A., Yoshino A., and Becker D. P. (1992) Administration of excitatory amino acid antagonists via microdialysis attenuates the increase in glucose utilization seen following concussive brain injury. J. Cereb. Blood Flow Metab. 12, 12–24.

    Article  PubMed  CAS  Google Scholar 

  78. Hagerdal M., Harp J., Nilsson L., and Siesjo B. K. (1975) The effect of induced hypothermia upon oxygen consumption in the rat brain. J. Neurochem. 24, 311–316.

    Article  PubMed  CAS  Google Scholar 

  79. Rosomoff H. L. and Holaday D. A. (1954) Cerebral blood flow and cerebral oxygen consumption during hypothermia. Am. J. Physiol. 179, 85–88.

    PubMed  CAS  Google Scholar 

  80. Kuluz J. W., Prado R., Chang J., Ginsberg M. D., Schleien C. L., and Busto R. (1993) Selective brain cooling increases cortical cerebral blood flow in rats. Am. J. Physiol. 265, H824–827.

    PubMed  CAS  Google Scholar 

  81. Warner D. S., Deshpande J. K., and Wieloch T. (1986) The effect of isoflurane on neuronal necrosis following near-complete forebrain ischemia in the rat. Anesthesiology 64, 19–23.

    Article  PubMed  CAS  Google Scholar 

  82. Gelb A. W., Boisvert D. P., Tang C., et al. (1989) Primate brain tolerance to temporary focal cerebral ischemia during isoflurane- or sodium nitroprussideinduced hypotension. Anesthesiology 70, 678–683.

    Article  PubMed  CAS  Google Scholar 

  83. Michenfelder J. D. (1988) Anesthesia and the Brain: Clinical, Functional, Metabolic and Vascular Cnrrelatps Chilrchill I ivinostnne New York

    Google Scholar 

  84. Kahveci F. S., Kahveci N., Alkan T., Goren B., Korfali E., and Ozluk K. (2001) Propofol versus isoflurane anesthesia under hypothermic conditions: effects on intracranial pressure and local cerebral blood flow after diffuse traumatic brain injury in the rat. Surg. Neurol. 56, 206–214.

    Article  PubMed  CAS  Google Scholar 

  85. Siesjo B. K. (1992) Pathophysiology and treatment of focal cerebral ischemia. Part II: Mechanisms of damage and treatment. J. Neurosurg. 77, 337–354.

    Article  PubMed  CAS  Google Scholar 

  86. Siesjo B. K. (1992) Pathophysiology and treatment of focal cerebral ischemia. Part I: Pathophysiology. J. Neurosurg. 77, 169–184.

    Article  PubMed  CAS  Google Scholar 

  87. Siesjo B. K. (1981) Cell damage in the brain: a speculative synthesis. J. Cereb. Blood Flow Metab. 1, 155–185.

    Article  PubMed  CAS  Google Scholar 

  88. Mitani A., Kadoya F., and Kataoka K. (1991) Temperature dependence of hypoxia-induced calcium accumulation in gerbil hippocampal slices. Brain Res. 562, 159–163.

    Article  PubMed  CAS  Google Scholar 

  89. Katayama Y., Becker D. P., Tamura T., and Hovda D. A. (1990) Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury. J. Neurosurg. 73, 889–900.

    Article  PubMed  CAS  Google Scholar 

  90. Swanson R. A., Chen J., and Graham S. H. (1994) Glucose can fuel glutamate uptake in ischemic brain. J. Cereb. Blood Flow Metab. 14, 1–6.

    Article  PubMed  CAS  Google Scholar 

  91. Mitani A. and Kataoka K. (1991) Critical levels of extracellular glutamate mediating gerbil hippocampal delayed neuronal death during hypothermia: brain microdialysis study. Neuroscience 42, 661–670.

    Article  PubMed  CAS  Google Scholar 

  92. Palmer A. M., Marion D. W., Botscheller M. L., Bowen D. M., and DeKosky S. T. (1994) Increased transmitter amino acid concentration in human ventricular CSF after brain trauma. NeuroReport 6, 153–156.

    Article  PubMed  CAS  Google Scholar 

  93. McClain C. J., Cohen D., Ott L., Dinarello C. A., and Young B. (1987) Ventricular fluid interleukin-1 activity in patients with head injury. J. Lab. Clin. Med. 110, 48–54.

    PubMed  CAS  Google Scholar 

  94. Young A. B., Ott L. G., Beard D., Dempsey R. J., Tibbs P. A., and McClain C. J. (1988) The acute-phase response of the brain-injured patient. J. Neurosurg. 69, 375–380.

    Article  PubMed  CAS  Google Scholar 

  95. Benveniste E. N. (1994) Cytokine circuits in brain. Implications for AIDS dementia complex. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 72, 71–88.

    PubMed  CAS  Google Scholar 

  96. Giulian D., Baker T. J., Shih L. C., and Lachman L. B. (1986) Interleukin 1 of the central nervous system is produced by ameboid microglia. J. Exp. Med. 164, 594–604.

    Article  PubMed  CAS  Google Scholar 

  97. Bevilacqua M. P., Pober J. S., Wheeler M. E., Cotran R. S., and Gimbrone M. A., Jr. (1985) Interleukin 1 acts on cultured human vascular endothelium to increase the adhesion of polymorphonuclear leukocytes, monocytes, and related leukocyte cell lines. J. Clin. Invest. 76, 2003–2011.

    Article  PubMed  CAS  Google Scholar 

  98. Pober J. S., Gimbrone M. A., Jr., Lapierre L. A., et al. (1986) Overlapping patterns of activation of human endothelial cells by interleukin 1, tumor necrosis factor, and immune interferon. J. Immunol. 137, 1893–1896.

    PubMed  CAS  Google Scholar 

  99. Mantovani A. and Dejana E. (1987) Modulation of endothelial function by interleukin-1. A novel target for pharmacological intervention? Biochem. Pharmacol. 36, 301–305.

    Article  PubMed  CAS  Google Scholar 

  100. Kimura A., Sakurada S., Ohkuni H., Todome Y., and Kurata K. (2002) Moderate hypothermia delays proinflammatory cytokine production of human peripheral blood mononuclear cells. Crit. Care Med. 30, 1499–1502.

    Article  PubMed  CAS  Google Scholar 

  101. Clark R. S., Schiding J. K., Kaczorowski S. L., Marion D. W., and Kochanek P. M. (1994) Neutrophil accumulation after traumatic brain injury in rats: comparison of weight drop and controlled cortical impact models. J. Neurotrauma11, 499–506.

    Article  PubMed  CAS  Google Scholar 

  102. Dietrich W. D., Alonso O., Halley M., and Busto R. (1996) Delayed posttraumatic brain hyperthermia worsens outcome after fluid percussion brain injury: a light and electron microscopic study in rats. Neurosurgery 38, 533–541; discussion 541.

    PubMed  CAS  Google Scholar 

  103. Smith S. L. and Hall E. D. (1996) Mild pre- and posttraumatic hypothermia attenuates blood—brain barrier damage following controlled cortical impact injury in the rat. J. Neurotrauma 13, 1–9.

    Article  PubMed  CAS  Google Scholar 

  104. Jiang J. Y., Lyeth B. G., Kapasi M. Z., Jenkins L. W., and Povlishock J. T. (1992) Moderate hypothermia reduces blood—brain barrier disruption following traumatic brain injury in the rat. Acta Neuropathol. 84, 495–500.

    Article  PubMed  CAS  Google Scholar 

  105. Jiang J. Y., Lyeth B. G., Clifton G. L., Jenkins L. W., Hamm R. J., and Hayes R. L. (1991) Relationship between body and brain temperature in traumatically brain-injured rodents. J. Neurosurg. 74, 492–496.

    Article  PubMed  CAS  Google Scholar 

  106. Krantis A. (1983) Hypothermia-induced reduction in the permeation of radiolabelled tracer substances across the blood—brain barrier. Acta Neuropathol. 60, 61–69.

    Article  PubMed  CAS  Google Scholar 

  107. Dietrich W. D., Busto R., Halley M., and Valdes I. (1990) The importance of brain temperature in alterations of the blood—brain barrier following cerebral ischemia. J. Neuropathol. Exp. Neurol. 49, 486–497.

    Article  PubMed  CAS  Google Scholar 

  108. Dripps R. D. (1956) The Physiology ofInduced Hypothermia. National Academy of Sciences, Washington, D.C.

    Google Scholar 

  109. Steen P. A., Milde J. H., and Michenfelder J. D. (1980) The detrimental effects of prolonged hypothermia and rewarming in the dog. Anesthesiology 52, 224–230.

    Article  PubMed  CAS  Google Scholar 

  110. Ishikawa K., Tanaka H., Shiozaki T., et al. (2000) Charactenstics or intection ana leukocyte count in severely head-injured patients treated with mild hypothermia. J. Trauma 49, 912–922.

    Article  PubMed  CAS  Google Scholar 

  111. Shiozaki T., Hayakata T., Taneda M., et al. (2001) A multicenter prospective randomized controlled trial of the efficacy of mild hypothermia for severely head injured patients with low intracranial pressure. Mild Hypothermia Study Group in Japan. J. Neurosurg. 94, 50–54.

    Article  PubMed  CAS  Google Scholar 

  112. Oung C. M., Li M. S., Shum-Tim D., Chiu R. C., and Hinchey E. J. (1993) In vivo study of bleeding time and arterial hemorrhage in hypothermic versus normothermic animals. J. Trauma 35, 251–254.

    Article  PubMed  CAS  Google Scholar 

  113. Bernard S. A., Gray T. W., Buist M. D., et al. (2002) Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N. Engl. J. Med. 346, 557–563.

    Article  PubMed  Google Scholar 

  114. No author names available. (2002) The hypothermia after cardiac arrest study group: mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N. Engl. J. Med. 346, 549–556.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Levy, E.I., Marion, D.W. (2004). Management of Traumatic Brain Injury with Moderate Hypothermia. In: Maier, C.M., Steinberg, G.K. (eds) Hypothermia and Cerebral Ischemia. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-653-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-653-9_8

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-120-2

  • Online ISBN: 978-1-59259-653-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics