Skip to main content

Characteristics of Adenovirus Vectors

  • Chapter
  • 132 Accesses

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

Adenovirus vectors have shown seductive promise as molecular biology tools and are being proposed for a number of clinical gene delivery applications. We will review the properties of adenovirus vectors that are responsible for the great interest in their use. We will discuss a number of the limitations of the current vectors and describe some of the strategies that are being used to improve these vectors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Horowitz, M. S. (1996) Adenoviruses, in Fields Virology 3rd ed., ( Fields, B. N., Knipe, D. M., Howley, P. M. et al. eds.), Lippincott-Raven Publishers, Philidelphia, pp. 2149–2176.

    Google Scholar 

  2. Shenk, T. (1996) Adenoviridae: The viruses and their replication, in Fields Virology, 3rd ed., (Fields, B. N., Knipe, D. M., Howley, P. M. et al., eds.), Lippincott-Raven Publishers, Philadelphia.

    Google Scholar 

  3. Petersson, U. and Roberts, R. J. (1986) Adenovirus gene expression and replication: a historical review, in DNA Tumor Viruses: Control of Gene Expression and Replication, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 33–57.

    Google Scholar 

  4. Shenk, T. (1995) Group C adenovirus as vectors for gene therapy, in Viral Vectors ( Kaplitt, M. G. and Loewy, A. D., eds.) Academic Press, San Diego, pp. 43–54.

    Chapter  Google Scholar 

  5. Hitt, M., Bett, A. J., Addison, C. L., Prevec, L., and Graham, F. L. (1995) Techniques for human adenovirus vector construction and characterization, in Methods in Molecular Genetics, vol 7. ed Adolph. K. W. Academic Press, San Diego, pp. 13–30.

    Google Scholar 

  6. Graham, F. L. and Prevec, L. (1995) Methods for construction of adenovirus vectors. Mol Biotechnol 3, 207–220.

    Article  PubMed  CAS  Google Scholar 

  7. Trapnell, B. C. and Gorziglia, M. (1994) Gene Therapy using adenoviral vectors. Curre. Opinion Bitotechnol. 5, 617–625.

    Article  CAS  Google Scholar 

  8. Stewart P. L. and Burnett, R. M. (1995) Adenovirus structure by X-ray crystallography and electron microscopy. Curr. Top. Microbiol. Immunol. 199, 25–38.

    Article  PubMed  Google Scholar 

  9. Stewart, P. L., Fuller, S. D., and Burnett, R. M. (1993) Difference imaging of adenovirus: bridging the resolution gap between X-ray crystallography and electron microscopy. EMBO J 12, 2589–2599.

    PubMed  CAS  Google Scholar 

  10. Stewart, P. L., Burnett, R. M., Cyrklaff, M., and Fuller, S. D. (1991) Image reconstruction reveals the complex molecular organization of adenovirus. Cell 67, 145–154.

    Article  PubMed  CAS  Google Scholar 

  11. Furcinitti, P. S., van Oostrum, J., and Burnett, R. M. (1989) Adenovirus polypeptide IX revealed as capsid cement by difference images from electron microscopy and crystallography. EMBO J 8, 3563–3570.

    PubMed  CAS  Google Scholar 

  12. Cotten, M., Baker, A., Saltik, M., Wagner, E., and Buschle, M. (1994) Lipopolysaccharide is a frequent contaminant of plasmid DNA preparations and can be toxic to primary cells in the presence of the adenovirus. Gene Ther. 1, 239–246.

    PubMed  CAS  Google Scholar 

  13. Cotten, M., Baker, A., Birnstiel, M. L., Zatloukal, K., and Wagner, E. (1997) Adenovirus polylysine DNA conjugates. Curr. Protocols Hum. Genet. 12.3.1–12. 3. 33.

    Google Scholar 

  14. Mittereder, N., March, K. L., and Trapnell, B. C. (1996) Evaluation of the concentration and bioactivity of adenovirus vectors for gene therapy. J. Virol. 70, 7498–7509.

    PubMed  CAS  Google Scholar 

  15. Gluzman, Y., Reichl, H., and Solnick, D. (1982) Helper-free adenovirus type 5 vectors. p187–192 in Y. Gluzman (ed.) Eukaryotic Viral Vectors. Cold Spring Harbor Laboratory Press, Cold Spring, Harbor, N.Y.

    Google Scholar 

  16. Van Doren, K., Hanahan, D., and Gluzman, Y. (1984) Infection of eucaryotic cells by helper-independent recombinant adenoviruses: early region 1 is not obligatory for integration of viral DNA. J. Virol. 50, 606–614.

    PubMed  Google Scholar 

  17. Karlsson, S., Humphries, R. K., Gluzman, Y., and Nienhuis, A. W. (1985) Transfer of genes into hemapoietic cells using recombinant DNA viruses. Proc. Natl. Acad. Sci. U.S.A. 82, 158–162.

    Article  PubMed  CAS  Google Scholar 

  18. Ballay, A., Levrero, M., Buendia, M. A., Tiollais P., and Perricaudet M. (1985) In vitro and in vivo synthesis of the hepatitis B virus surface antigen and of the receptor for polymerized human serum albumin from recombinant humanadenoviruses. EMBO J. 4, 3861–3865.

    PubMed  CAS  Google Scholar 

  19. Berkner, K. L. (1988) Development of adenovirus vectors for the expression of heterologous genes. Biotechniques 6, 616–629.

    Article  PubMed  CAS  Google Scholar 

  20. Bett, A. J., Haddara, W., Prevec, L., and Graham, F. L. (1994) An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3. Proc. Natl. Acad. Sci. U.S.A. 91, 8802–8806.

    Article  PubMed  CAS  Google Scholar 

  21. Imler, J. L., Chartier, C., Dieterle, A., Dreyer, D., Mehtali, M., and Pavirani, A. (1995) An efficient procedure to select and recover recombinant adenovirus vectors. Gene Ther. 2, 263–268.

    PubMed  CAS  Google Scholar 

  22. Schaack, J., Langer, S., and Guo, X. (1995) Efficient selection of recombinant adenoviruses by vectors that express beta-galactosidase. J. Virol 69, 3920–3923.

    PubMed  CAS  Google Scholar 

  23. Miyake, S., Makimura, M., Kanegae, Y., Harada, S., Sato, Y., Takamori, K., Tokuda, C., and Saito, I. (1996) Efficient generation of recombinant adenoviruses using adenovirus DNA-terminal protein complex and a cosmid bearing the full-length virus genome. Proc. Natl. Acad. Sci. USA 93, 1320–1324.

    Article  PubMed  CAS  Google Scholar 

  24. Ketner, G., Spencer, F., Tugendreich, S., Connelly, C., and Hieter, P. (1994) Efficient manipulation of the human adenovirus genome as an infectious yeast artificial chromosome clone. Proc. Natl. Acad. Sci. USA 91, 6186–6190.

    Article  PubMed  CAS  Google Scholar 

  25. Brough, D. E., Lizonova, A., Hsu, C., Kulesa, V. A., and Kovesdi, I. (1996) A gene transfer vector-cell line system for complete functional complementation of adenovirus early regions El and E4. J. Virol. 70, 6497–6501.

    PubMed  CAS  Google Scholar 

  26. Oliner, J. D., Kinzler, K. W., and Vogelstein, B. (1993) In vivo cloning of PCR products in E. coli. Nucleic Acids Res. 21, 5192–5197.

    Article  CAS  Google Scholar 

  27. Bubeck, P., Winkler, M., and Bautsch, W. (1993) Rapid cloning by homologous recombination in vivo. Nucleic Acids Res. 21, 3601–3602.

    Article  PubMed  CAS  Google Scholar 

  28. Degryse, E. (1995) Evaluation of Escherichia coli recBC sbcBC mutants for cloning by recombination in vivo. J. Biotechnol. 39, 181–187.

    Article  PubMed  CAS  Google Scholar 

  29. Degryse, E. (1996) In vivo intermolecular recombination in Escherichia coli application to plasmid constructions. Gene 170, 45–50.

    Article  PubMed  CAS  Google Scholar 

  30. Chartier, C., Degryse, E., Gantzer, M., Dieterle, A., Pavirani, A., and Mehtali, M. (1996) Efficient generation of recombinant adenovirus vectors by homologous recombination in Escherichia coli. J. Virol. 70, 4805–4810.

    PubMed  CAS  Google Scholar 

  31. Crouzet, J., Naudin, L., Orsini, C., Vigne, E., Ferrero, L., Le Roux, A., Benoit, P., Latta, M., Torrent, C., Branellec, D., Denefle, P., Mayaux, J. F., Perricaudet, and M., Yeh, P. (1997) Recombinational construction in Escherichia coli of infectious adenoviral genomes. Proc. Natl. Acad. Sci. USA 94, 1414–1419.

    Article  PubMed  CAS  Google Scholar 

  32. Wu, B., Hurst, H., Jones, N., and Morimoto, R. (1986) The 13S product of adenovirus 5 activates transcription of the cellular human HSP70 gene. Mol. Cell. Biol. 6, 2994–2999.

    PubMed  CAS  Google Scholar 

  33. Lum, L. S. Y., Hsu, S., Vaewhongs, M., and Wu, B. (1992) The hsp70 gene CCAAT-binding factor mediates transcriptional activation by the adenovirus E1A protein. Mol. Cell. Biol. 12, 2599–2605.

    PubMed  CAS  Google Scholar 

  34. Kraus, V. B., Moran, E., and Nevins, J. R. (1992) Promoter-specific trans-activation by the adenovirus ElA 12S product involves separate E1A domains. Mol. Cell. Biol. 12, 4391–4399.

    PubMed  CAS  Google Scholar 

  35. Agoff, S. N. and Wu, B. (1994) CBF mediates adenovirus Ela trans-activation by interacting at the C-terminal promoter targeting domain of conserved region 3. Onco gene 9, 3707–3711.

    CAS  Google Scholar 

  36. Parsell, D. A. and Lindquist, S. (1994) Heat shock proteins and stress tolerance, in The Biology of Heat Shock Proteins and Molecular Chaperones, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 457–494.

    Google Scholar 

  37. Wold, W. S. M. and Gooding, L. R. (1991) Region of E3 of adenovirus: A cassette of genes involved in host immunosurveillance and virus-cell interactions. Virology 184, 1–8.

    Article  PubMed  CAS  Google Scholar 

  38. Wold, W. S. M. (1993) Adenovirus gene that modulate the sensitivity of virus-infected cells to lysis by TNF. J. Cell. Biochem 53, 329–335.

    Article  PubMed  CAS  Google Scholar 

  39. White, E. and Gooding, L. R. (1994) Regulation of apoptosis by human adenoviruses, in Apoptosis II: The Molecular Basis of Apoptosis in Disease, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  40. Shen, Y. and T. Shenk (1995) Viruses and apoptosis, Curr. Opinion Genet. Dey. 5, 105–111.

    Article  CAS  Google Scholar 

  41. Schmitz, M. L., A. Indorf, F. P. Limbourg, H. Städtler, E. B. M. Traenckner, and P. A. Baeuerle. (1996) The dual effect of adenovirus type 5 E1A 13S protein on NF-kB activation is antagonized by E1B 19K. Mol. Cel. Biol. 15, 4052–4063.

    Google Scholar 

  42. Grimm, S, M. K. A. Bauer, P. A. Baeuerle, and K. Schulze-Osthoff. (1996). Bc1–2 down-regulates the activity of transcription factor NF-kB induced upon apoptosis. J. Cell. Biol. 134, 13–23.

    Article  PubMed  CAS  Google Scholar 

  43. Chiocca, S., Baker, A., and Cotten, M. (1997) Identification of a novel anti-apoptopic protein, GAM-1, encoded by the CELO adenovirus. J. Virol. 71, 3168–3177.

    PubMed  CAS  Google Scholar 

  44. Stark, J. M., Amin, R. S., and Trapnell, B. C. (1996) Infection of A549 cells with a recombinant adenovirus vector induces ICAM-1 expression and increased CD-18-dependent adhesion of activated neutrophils. Hum. Gene Ther. 7, 1669–1681.

    Article  PubMed  CAS  Google Scholar 

  45. Adesanya, M. R., Redman, R. S., Baum, B. J., and O’Connell, B. C. (1996) Immediate inflammatory responses to adenovirus-mediated gene transfer in rat salivary glands. Hum. Gene Ther 7, 1085–1093.

    Google Scholar 

  46. Yang, Y., Su, Q., and Wilson J. M. (1996b) Role of viral antigens in destructive cellular immune responses to adenovirus vector-transduced cells in mouse lungs. J. Virol. 70, 7209–7212.

    PubMed  CAS  Google Scholar 

  47. Byrnes, A. P., MacLaren, R. E., and Charlton, H. M. (1996a) Immunological instability of persistent adenovirus vectors in the brain: peripheral exposure to vector leads to renewed inflammation, reduced gene expression, and demyelination. J. Neurosci. 16, 3045–3055.

    PubMed  CAS  Google Scholar 

  48. Byrnes, A. P., Wood, M. J., and Charlton, H. M. (1996b) Role of T cells in inflammation caused by adenovirus vectors in the brain. Gene Ther. 3, 644–651.

    PubMed  CAS  Google Scholar 

  49. Petrof, B. J., Lochmuller, H., Massie, B., Yang, L., Macmillan, C., Zhao, J. E., Nalbantoglu, J., and Karpati, G. (1996) Impairment of force generation after adenovirusmediated gene transfer to muscle is alleviated by adenoviral gene inactivation and host CD8+ T cell deficiency. Hum. Gene. Ther. 7, 1813–1826.

    Article  PubMed  CAS  Google Scholar 

  50. Sawchuk, S. J., Boivin, G. P., Duwel, L. E., Ball, W., Bove, K., Trapnell, B., and Hirsch, R. (1996) Anti-T cell receptor monoclonal antibody prolongs transgene expression following adenovirus-mediated in vivo gene transfer to mouse synovium. Hum. Gene Ther. 7, 499–506.

    Article  PubMed  CAS  Google Scholar 

  51. Kolls, J. K., Lei, D., Odom, G., Nelson, S., Summer, W. R., Gerber, M. A., and Shellito, J. E. (1996) Use of transient CD4 lymphocyte depletion to prolong transgene expression of El -deleted adenoviral vectors. Hum. Gene Ther. 7, 489–497.

    Article  PubMed  CAS  Google Scholar 

  52. Poller, W., Schneider-Rasp, S., Liebert, U., Merklein, F., Thalheimer, P., Haack, A., Schwaab, R., Schmitt, C., and Brackmann, H. H. (1996). Stabilization of transgene expression by incorporation of E3 region genes into an adenoviral factor IX vector and by transient anti-CD4 treatment of the host. Gene Ther. 3, 521–530.

    PubMed  CAS  Google Scholar 

  53. Kay, M, A., Holterman, A, X., Meuse, L., Gown, A., Ochs, H. D., Linsley, P, S., and Wilson, C. B. (1995) Long-term hepatic adenovirus-mediated gene expression in mice following CTLA4Ig administration. Nat. Genet. 11, 191–197.

    Article  PubMed  CAS  Google Scholar 

  54. Yang, Y., Trinchieri, G., and Wilson, J. M. (1995) Recombinant IL-12 prevents formation of blocking antibodies to recombinant adenovirus and allows repeated gene therapy to mouse lung. Nat. Med. 1, 890–893.

    Article  PubMed  CAS  Google Scholar 

  55. Guerette, B., Vilquin, J. T., Gingras, M., Gravel, C., Wood, K. J., and Tremblay, J. P. (1996) Prevention of immune reactions triggered by first-generation adenoviral vectors by monoclonal antibodies and CTLA4Ig. Hum. Gene Ther. 7, 1455–1463.

    Article  PubMed  CAS  Google Scholar 

  56. Jooss, K., Yang, Y., and Wilson, J. M. (1996) Cyclophosphamide diminishes inflammation and prolongs transgene expression following delivery of adenoviral vectors to mouse liver and lung. Hum. Gene Ther. 7, 1555–1566.

    Article  PubMed  CAS  Google Scholar 

  57. Kay, M. A., Meuse, L., Gown, A. M., Linsley, P., Hollenbaugh, D., Aruffo, A., Ochs, H. D., and Wilson, C. B. (1997) Transient immunomodulation with anti-CD40 ligand antibody and CTLA4Ig enhances persistence and secondary adenovirus-mediated gene transfer into mouse liver Proc. Natl. Acad. Sci. USA 94, 4686–4691.

    Article  PubMed  CAS  Google Scholar 

  58. Lochmuller, H., Petrof, B, J., Pari, G., Larochelle, N., Dodelet, V., Wang, Q., Allen, C., Prescott, S., Massie, B., Nalbantoglu, J., and Karpati, G. (1996) Transient immunosuppression by FK506 permits a sustained high-level dystrophin expression after adenovirusmediated dystrophin minigene transfer to skeletal muscle of adult dystrophic (mdx) mice. Gene Ther. 3, 706–716.

    PubMed  CAS  Google Scholar 

  59. Smith, T. A., White, B. D., Gardner, J. M., Kaleko, M., and McClelland, A. (1996) Transient immunosuppression permits successful repetitive intravenous administration of an adenovirus vector. Gene Ther. 3, 496–502.

    PubMed  CAS  Google Scholar 

  60. Ilan, Y., Droguett, G., Chowdhury, N. R., Li, Y., Sengupta, K., Thummala, N. R., Davidson, A., Chowdhury, J. R., and Horwitz, M. S. (1997) Insertion of the adenoviral E3 region into a recombinant viral vector prevents antiviral humoral and cellular immune responses and permits long-term gene expression. Proc. Natl. Acad. Sci. USA 94, 2587–2592.

    Article  PubMed  CAS  Google Scholar 

  61. Wilson, C. and Kay, M. A. (1995) Immunomodulation to enhance gene therapy. Nat. Med. 1, 887–889.

    Article  PubMed  CAS  Google Scholar 

  62. Barr, D., Tubb, J., Ferguson, D., Scaria, A., Lieber, A., Wilson, C., Perkins, J., and Kay, M. A. (1995) Strain related variations in adenovirally mediated transgene from mouse hepatocytes in vivo: comparisons between immunocompetent and immunodeficient inbred strains. Gene Ther. 2, 151–155.

    PubMed  CAS  Google Scholar 

  63. Sparer, T. E., Wynn, S. G., Clark, D. J., Kaplan, J. M., Cardoza, L. M., Wadsworth, S. C. Smith, A. E., and Gooding, L. R. (1997) Generation of cytotoxic T lymphocytes against immunorecessive epitopes after multiple immunizations with adenovirus vectors is dependent on haplotype. J. Virol. 71, 2277–2284.

    CAS  Google Scholar 

  64. Kaplan, J. M., Armentano, D., Sparer, T. E., Wynn, S. G., Peterson, P. A., Wadsworth, S. C., Couture, K. K., Pennington, S. E., St George, J. A., Gooding, L. R., and Smith, A. E. (1997a) Characterization of factors involved in modulating persistence of transgene expression from recombinant adenovirus in the mouse lung. Hum. Gene Ther. 8, 45–56.

    Article  PubMed  CAS  Google Scholar 

  65. Tripathy, S. K., Black, H. B., Goldwasser, E., and Leiden, J. M. (1996) Immune responses to transgene-encoded proteins limit the stability of gene expression after injection of replication-defective adenovirus vectors. Nat. Med. 2, 545–550.

    Article  PubMed  CAS  Google Scholar 

  66. Gooding, L. R. (1992) Virus proteins that counteract host immune defenses. Cell 71, 5–7.

    Article  PubMed  CAS  Google Scholar 

  67. Lee. M. G., Abina, M. A., Haddada, H., and Perricaudet, M. (1995) The constitutive expression of the immunomodulatory gpl9k protein in El-, E3- adenoviral vectors through reduces the host cytotoxic-T-cell response against the vector. Gene Ther. 2, 256–262.

    PubMed  CAS  Google Scholar 

  68. Mittal, S. K., Prevec, L., Graham, F. L., and Babiuk, L. A. (1995) Development of a bovine adenovirus type 3-based expression vector. J. Gen. Virol. 76, 93–102.

    Article  PubMed  CAS  Google Scholar 

  69. Mittal, S. K., Middleton, D. M., Tikoo, S. K., Prevec, L., Graham, F. L., and Babiuk, L. A. (1996) Pathology and immunogenicity in the cotton rat (Sigmodon hispidus) model after infection with a bovine adenovirus type 3 recombinant virus expressing the firefly luciferase gene. J. Gen. Virol. 77, 1–9.

    Article  PubMed  CAS  Google Scholar 

  70. Vrati, S., Brookes, D. E., Strike, P., Khatri, A., Boyle, D. B., and Both, G. W. (1996a) Unique genome arrangement of an ovine adenovirus: identification of new proteins and proteinase cleavage sites. Virology 220, 186–199.

    Article  PubMed  CAS  Google Scholar 

  71. Vrati, S., Macavoy, E. S., Xu, Z. Z., Smole, C., Boyle, D. B., and Both, G. W. (1996b) Construction and transfection of ovine adenovirus genomic clones to rescue modified viruses. Virology 220, 200–203.

    Article  PubMed  CAS  Google Scholar 

  72. Xu, Z. Z., Hyatt, A., Boyle, D. B., and Both, G. W. (1997) Construction of ovine adenovirus recombinants by gene insertion or deletion of related terminal region sequences. Virology 230, 62–71.

    Article  PubMed  CAS  Google Scholar 

  73. Chiocca, S., Kurzbauer, R., Schaffner, G., Baker, A., Mautner, V., and Cotten, M. (1996) The complete DNA sequence and genomic organization of the avian adenovirus CELO. J. Virol. 70, 2939–2949.

    PubMed  CAS  Google Scholar 

  74. Amalfitano, A., Begy, C. R., and Chamberlain, J. S. (1996) Improved adenovirus packaging cell lines to support the growth of replication-defective gene-delivery vectors. Proc. Natl. Acad. Sci. USA 93, 3352–3356.

    Article  PubMed  CAS  Google Scholar 

  75. Zhou, H., O’Neal, W., Morral, N., and Beaudet, A. L. (1996) Development of a complementing cell line and a system for construction of adenovirus vectors with El and E2a deleted. J. Virol. 70, 7030–7038.

    PubMed  CAS  Google Scholar 

  76. Gorziglia, M. I., Kadan, M. J., Yei, S., Lim, J., Lee, G. M., Luthra, R., and Trapnell, B. C. (1996) Eliminination of both El and E2 from adenovirus vectors further improves prospects in vivo human gene therapy. J. Virol. 70, 4173–4178.

    PubMed  CAS  Google Scholar 

  77. Gao, G. P., Yang, Y., and Wilson, J. M. (1996) Biology of adenovirus vectors with El and E4 deletions for liver-directed gene therapy. J. Virol. 70, 8934–8943.

    PubMed  CAS  Google Scholar 

  78. Langer, S. J. and Schaack, J. (1996) 293 cell lines that inducibly express high levels of adenovirus type 5 precursor terminal protein. Virology 221, 172–179.

    Google Scholar 

  79. Schaack, J., Guo, X., and Langer, S. J. (1996) Characterization of a replication-incompetent adenovirus type 5 mutant deleted for the preterminal protein gene. Proc. Natl. Acad. Sci. USA 93, 14686–14691.

    Article  PubMed  CAS  Google Scholar 

  80. Hearing, P., Samulski, R. J,. Wishart, W. L., and Shenk, T. (1987) Identification of a repeated sequence element required for efficient encapsidation of the adenovirus type 5 chromosome. J. Virol. 61, 2555–2558.

    PubMed  CAS  Google Scholar 

  81. Grable, M. and Hearing, P. (1992) cis and trans requirements for the selective packaging of adenovirus type 5 DNA. J. Virol. 66, 723–731.

    Google Scholar 

  82. Fisher, K. J., Choi, H., Burda, J., Chen, S. J., and Wilson, J. M. (1996) Recombinant adenovirus deleted of all viral genes for gene therapy of cystic fibrosis. Virology 217, 11–22.

    Article  PubMed  CAS  Google Scholar 

  83. Haecker, S. E., Stedman, H. H,. Balice-Gordon, R. J., Smith, D. B., Greelish, J. P., Mitchell, M. A., Wells, A., Sweeney, H. L., and Wilson, J. M. (1996) In vivo expression of full-length human dystrophin from adenoviral vectors deleted of all viral genes. Hum. Gene Ther. 7, 1907–1914.

    Article  PubMed  CAS  Google Scholar 

  84. Kumar-Singh, R. and Chamberlain, J. S. (1996) Encapsidated adenovirus minichromosomes allow delivery and expression of a 14 kb dystrophin cDNA to muscle cells. Hum. Mol. Genet. 5, 913–921.

    Article  PubMed  CAS  Google Scholar 

  85. Anton, M. and Graham, F. L. (1995) Site-specific recombination mediated by an adenovirus vector expressing the Cre recombinase protein: a molecular switch for control of gene expression. J. Virol. 69, 4600–4606.

    PubMed  CAS  Google Scholar 

  86. Lieber, A., He, C. Y., Kirillova, I., and Kay, M. A. (1996) Recombinant adenoviruses with large deletions generated by Cre-mediated excision exhibit different biological properties compared with first-generation vectors in vitro and in vivo. J Virol. 70, 8944–8960.

    PubMed  CAS  Google Scholar 

  87. Hardy, S., Kitamura, M., Harris-Stansil, T., Dai, Y., and Phipps, M. L. (1997) Construction of adenovirus vectors through Cre-lox recombination. J. Virol. 71, 1842–1849.

    PubMed  CAS  Google Scholar 

  88. Kanegae, Y., Lee, G., Sato, Y., Tanaka, M., Nakai, M., Sakaki, T., Sugano, S., and Saito, I. (1995) Efficient gene activation in mammalian cells by using recombinant adenovirus expressing site-specific Cre recombinase. Nucleic Acids Res. 23, 3816–3821.

    Article  PubMed  CAS  Google Scholar 

  89. Kanegae, Y., Miyake, S, Sato, Y., Lee, G., and Saito, I. (1996) Adenovirus vector technology: an efficient method for constructing recombinant adenovirus and on/off switching of gene expression. Acta Paediatr. Jpn. 38, 182–188.

    Article  PubMed  CAS  Google Scholar 

  90. Parks, R. J., Chen, L., Anton, M., Sankar, U., Rudnicki, M. A., and Graham, F. L. (1996) A helper-dependent adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packaging signal. Proc. Natl. Acad. Sci. USA 93, 13565–13570.

    Article  PubMed  CAS  Google Scholar 

  91. Chen, L., Anton, M., and Graham, F L (1996) Production and characterization of human 293 cell lines expressing the site-specific recombinase Cre. Somat. Cell. Mol. Genet. 22, 477–488.

    Article  PubMed  CAS  Google Scholar 

  92. Grubb, B. R., Pickles, R, J., Ye, H., Yankaskas, J. R., Vick, R. N., Engelhardt, J. F., Wilson, J. M., Johnson, L. G., and Boucher, R. C. (1994) Inefficient gene transfer by adenovirus vector to cystic fibrosis airway epithelia of mice and humans. Nature 371, 802–806.

    CAS  Google Scholar 

  93. Zabner, J., Zeiher, B. G., Friedman, E., and Welsh, M. J. (1996) Adenovirus-mediated gene transfer to ciliated airway epithelia requires prolonged incubation time. J. Virol. 70, 6994–7003.

    PubMed  CAS  Google Scholar 

  94. Pickles, R. J., Barker, P. M., Ye, H., and Boucher, R. C. (1996) Efficient adenovirusmediated gene transfer to basal but not columnar cells of cartilaginous airway epithelia. Hum. Gene Ther. 7, 921–931.

    Article  PubMed  CAS  Google Scholar 

  95. Fasbender, A., Zabner, J., Chillon, M., Moninger, T. O., Puga, A. P., Davidson, B. L., and Welsh, M. J. (1997) Complexes of adenovirus with polycationic polymers and cationic lipids increase the efficiency of gene transfer in vitro and in vivo. J. Biol Chem. 272, 6479–6489.

    Article  PubMed  CAS  Google Scholar 

  96. Arcasoy, S. M., Latoche, J. D., Gondor, M, Pitt, B. R., and Pilewski, J. M. (1997) Polycations increase the efficiency of adenovirus-mediated gene transfer to epithelial and endothelial cells in vitro. Gene Ther. 4, 32–38.

    Article  PubMed  CAS  Google Scholar 

  97. Baker, A., Saltik, M., Lehrmann, H., Killisch, I., Lamm, G., Christofori, G., and Cotten, M. (1997) Polyethylenimine is a simple, inexpensive and effective reagent for condensing and linking plasmid DNA to adenovirus for gene delivery. Gene Ther. (in press).

    Google Scholar 

  98. Wickham, T. J., Roelvink, P. W., Brough, D. E., and Kovesdi, I. (1997) Adenovirus targeted to heparan-containing receptors increases its gene delivery efficiency to multiple cell types Nat. Biotechnol. 14, 1570–1573.

    Article  Google Scholar 

  99. March, K. L., Madison, J. E., and Trapnell, B. C. (1995) Pharmacokinetics of adenoviral vector-mediated gene delivery to vascular smooth muscle cells: modulation by poloxamer 407 and implications for cardiovascular gene therapy. Hum. Gene Ther. 6, 41–53.

    Article  PubMed  CAS  Google Scholar 

  100. Bergelson, J. M., Cunningham, J. A., Droguett, G., Kurt-Jones, E. A., Krithivas, A., Hong, J. S., Horwitz, M. S., Crowell, R. L., and Finberg, R. W. (1997) Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275, 1320–1323.

    Article  PubMed  CAS  Google Scholar 

  101. Hennache, B. and Boulanger, P. (1977) Biochemical study of KB-cell receptor for adenovirus. Biochem. J. 166, 237–247.

    PubMed  CAS  Google Scholar 

  102. Defer, C., Belin, M. T., Caillet-Boudin, M. L., and Boulanger, P. (1990) Human adenovirus-host cell interactions: comparative study with members of subgroups B and C. J. Virol. 64, 3661–3673.

    PubMed  CAS  Google Scholar 

  103. Freimuth, P. (1996) A human cell line selected for resistance to adenovirus infection has reduced levels of the virus receptor. J. Virol. 70, 4081–4085.

    PubMed  CAS  Google Scholar 

  104. Mayr, G. A., and Freimuth, P. (1997) A single locus on human chromosome 21 directs the expression of a receptor for adenovirus type 2 in mouse A9 cells. J. Virol. 71, 412–418.

    PubMed  CAS  Google Scholar 

  105. Henry, L. J., Xia, D., Wilke, M. E., Deisenhofer, J., and Gerard, R. D. (1994) Characterization of the knob domain of the adenovirus type 5 fiber protein expressed in Escheriachia coll. J. Virol. 68, 5239–5246.

    CAS  Google Scholar 

  106. Stevenson, S. C., Rollence, M., White, B., Weaver, L., and McClelland, A. (1995) Human adenovirus serotypes 3 and 5 bind to two different cellular receptors via the fiber head domain. J. Virol. 69, 2850–2857.

    PubMed  CAS  Google Scholar 

  107. Xia, D., Henry, L. J., Gerard, R. D., and Deisenhofer, J. (1994) Crystal structure of the receptor-binding domain of adenovirus type 5 fiber protein at 1.7 A resolution. Structure 2, 1259–1270.

    Article  PubMed  CAS  Google Scholar 

  108. Michael, S. I., Huang, C. H., Romer, M. U., Wagner, E., Hu, P. C., and Curiel, D. T. (1993) Binding-incompetent adenovirus facilitates molecular conjugate-mediated gene transfer by the receptor-mediated endocytosis pathway. J. Biol. Chem. 268, 6866–6869.

    PubMed  CAS  Google Scholar 

  109. Gall, J., Kass-Eisler, A., Leinwand, L., and Falck-Pedersen, E. (1996) Adenovirus type 5 and 7 capsid chimera: fiber replacement alters receptor tropism without affecting primary immune neutralization epitopes. J. Virol. 70, 2116–2123.

    PubMed  CAS  Google Scholar 

  110. Krasnykh, V. N., Mikheeva, G. V., Douglas, J. T., and Curiel, D. T. (1996) Generation of recombinant adenovirus vectors with modified fibers for altering viral tropism. J. Virol. 70, 6839–6846.

    PubMed  CAS  Google Scholar 

  111. Roelvink, P. W., Kovesdi, I., and Wickham, T. J. (1996) Comparative analysis of adenovirus fiber-cell interaction: adenovirus type 2 (Ad2) and Ad9 utilize the same cellular fiber receptor but use different binding strategies for attachment. J. Virol. 70, 7614–7621.

    PubMed  CAS  Google Scholar 

  112. Michael, S. I., Hong, J. S., Curiel, D. T., and Engler, J. A. (1995) Addition of a short peptide ligand to the adenovirus fiber protein. Gene Ther. 2, 660–668.

    PubMed  CAS  Google Scholar 

  113. Wohlfart, C. (1988) Neutralization of adenovirus: kinetics, stoichiometry, and mechanisms. J. Virol. 62, 2321–2328.

    PubMed  CAS  Google Scholar 

  114. Mastrangeli, A., Harvey, B.-G., Yao, J., Wolff, G., Kovesdi, I., Crystal, R. G., and FalckPedersen, E. (1996) “Sero-Switch” adenovirus-mediated in vivo gene transfer: circumvention of anti-adenovirus humoral immune defenses against repeat adenovirus vector administration by changing the adenovirus serotype. Hum. Gene Ther. 7, 79–87.

    Google Scholar 

  115. Liebermann, H., Mentel, R., Dohner, L., Modrow, S., and Seidel, W. (1996) Inhibition of cell adhesion to the virus by synthetic peptides of fiber knob of human adenovirus serotypes 2 and 3 and virus neutralisation by anti-peptide antibodies. Virus Res. 45, 111–122.

    Article  PubMed  CAS  Google Scholar 

  116. Bai, M., Campisi, L., and Freimuth, P. (1994) Vitronectin receptor antibodies inhibit infection of HeLa and A549 cells by adenovirus type 12 but not adenovirus type 2. J. Virol. 68, 5925–5932.

    PubMed  CAS  Google Scholar 

  117. Pring-Akerblom, P. and Adrian, T. (1995) Characterization of adenovirus subgenus D fiber genes. Virology 206, 564–571.

    Article  PubMed  CAS  Google Scholar 

  118. Mei, Y. F. and Wadell, G. (1995) Highly heterogeneous fiber genes in the two closely related adenovirus genome types Ad35p and Ad34a. Virology 206, 686–689.

    Article  PubMed  CAS  Google Scholar 

  119. Buschle, M., Cotten, M., Kirlappos, H., Mechtler, K., Schaffner, G., Zauner, W., Birnstiel, M. L., and Wagner, E. (1995) Receptor-mediated gene transfer into human T-lymphocytes via binding of DNA/CD3 antibody particles to the CD3 T cell receptor complex. Hum. Gene Ther. 6, 753–761.

    Article  PubMed  CAS  Google Scholar 

  120. Batra, R. K., Wang-Johanning, F., Wagner, E., Garver, R. I., and Curiel, D. T. (1994) Receptor-mediated gene delivery employing lectin-binding specificity. Gene Ther. 1, 255–260.

    PubMed  CAS  Google Scholar 

  121. Bai, M., Harfe, B., and Freimuth, P. (1993) Mutations that alter an Arg-Gly-Asp (RGD) sequence in the adenovirus type 2 penton base protein abolish its cell rounding activity and delay virus reproduction in flat cells. J. Virol. 67, 5198–5205.

    PubMed  CAS  Google Scholar 

  122. Wickham, T. J., Mathias, P., Cheresh, D. A., and Nemerow, G. R. (1993) Integrins 43 or 45 promote adenovirus internalization but not virus attachment. Cell 73, 309–319.

    Article  PubMed  CAS  Google Scholar 

  123. Belin, M-T. and Boulanger, P. (1993) Involvement of cellular adhesion sequences in the attachment of adenovirus to the HeLa cell surface. J. Gen. Virol. 74, 1485–1497.

    Article  PubMed  CAS  Google Scholar 

  124. Nemerow, G. R., Cheresh, D. A., and Wickham, T. J. (1994) Adenovirus entry into host cells: a role for av integrins. Trends Cell Biol. 4, 52–55.

    Article  PubMed  CAS  Google Scholar 

  125. Huang, S., Endo, R. I., and Nemerow, G. R. (1995) Upregulation of integrins av133 and avß5 on human monocytes and T-lymphocytes facilitates adenovirus-mediated gene delivery. J. Virol. 69, 2257–2263.

    PubMed  CAS  Google Scholar 

  126. Huang, S., Kamata, T., Takada, Y., Ruggeri, Z. M., and Nemerow, G. R. (1996) Adenovirus interaction with distinct integrins mediates separate events in cell entry and gene delivery to hematopoietic cells. J. Virol. 70, 4502–4508.

    PubMed  CAS  Google Scholar 

  127. Greber, U. F., Webster, P., Weber, J., and Helenius, A. (1996) The role of the adenovirus protease in virus entry cells. EMBO J. 15, 1766–1777.

    PubMed  CAS  Google Scholar 

  128. Wickham, T. J., Carrion, M. E., and Kovesdi, I. (1995) Targeting of adenovirus penton base to new receptors through replacement of its RGD motif with other receptor-specific peptide motifs. Gene. Ther. 2, 750–756.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chiocca, S., Cotten, M. (1998). Characteristics of Adenovirus Vectors. In: Chiocca, E.A., Breakefield, X.O. (eds) Gene Therapy for Neurological Disorders and Brain Tumors. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-478-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-478-8_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5314-1

  • Online ISBN: 978-1-59259-478-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics