Skip to main content

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

The purpose of this chapter is to review the application of gene therapy approaches, with an emphasis on the use of cytokine genes, to the induction of a cell-mediated immune response useful in the treatment of brain tumors. This chapter begins with a review of general issues specific to the immunologic environment of the central nervous system (CNS) and the immunotherapy of brain tumors, in order to place subsequent discussions in an enlightened context and to allow for critical appraisal of the data presented in the second part of this chapter. A thorough discussion of the animal models commonly used in experimental neuro-oncology is given special emphasis, because the misuse of such models may have a more profound influence on the results from gene-based experimental immunotherapy than it does in other areas of experimental neurooncology. Failure to evaluate the results of such experiments in the context of the appropriateness of the experimental model may produce misleading conclusions that could delay the rational development of efficacious immunotherapeutic strategies. In the second part of this chapter, the recent literature dealing with the use of cytokine gene transfer to induce or enhance a direct cytotoxic effect, or a cell-mediated immune response against brain tumors, is reviewed and evaluated. Finally, some of the questions that remain and the problems that need to be solved are introduced as a stimulant to further work in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bigner, D. D., Schold, C., Bigner, S. H., Bullard, D. E., and Wikstrand, C. (1981) How heterogeneous are gliomas? Cancer Treatment Rep. 65 (Suppl. 2), 45–49.

    Google Scholar 

  2. Shapiro, J. R., Yung, W. K., and Shapiro, W. R. (1981) Isolation, karyotype, and clonal growth of heterogeneous subpopulations of human malignant gliomas. Cancer Res. 41, 2349–2359.

    PubMed  CAS  Google Scholar 

  3. Shapiro, W. R., Yung, W. A., Basler, G. A., and Shapiro, J. R. (1981) Heterogeneous response to chemotherapy of human gliomas grown in nude mice and as clones in vitro. Cancer Treatment Rep. 65 (Suppl. 2), 55–59.

    CAS  Google Scholar 

  4. Shapiro, J. R. and Shapiro, W. R. (1984) Clonal tumor cell heterogeneity. Prog. Exp. Tumor Res. 27, 49–66.

    PubMed  CAS  Google Scholar 

  5. Bigner, D. D., Bigner, S. H., Ponten, J., Westermark, B., Mahaley, M. S., Ruoslahti, E., et al. (1981) Heterogeneity of genotypic and phenotypic characteristics of fifteen permanent cell lines derived from human gliomas. J. Neuropathol. Exp. Neurol. 40, 201–229.

    Article  PubMed  CAS  Google Scholar 

  6. Fogel, M., Gorelik, E., Segal, S., and Feldman, M. (1979) Differences in cell surface antigens of tumor metastases and those of the local tumor. J. Natl. Cancer Inst. 62, 585–588.

    PubMed  CAS  Google Scholar 

  7. Miller, F. R. and Heppner, G. H. (1979) Immunologic heterogeneity of tumor cell subpopulations from a single mouse mammary tumor. J. Natl. Cancer Inst. 63, 1457–1463.

    PubMed  CAS  Google Scholar 

  8. Pimm, M. V. and Baldwin, R. W. (1977) Antigenic differences between primary methylcholanthrene-induced rat sarcomas and post-surgical recurrences. Int. J. Cancer 20, 37–43.

    Article  PubMed  CAS  Google Scholar 

  9. Sugarbaker, E. V. and Cohen, A. M. (1972) Altered antigenicity in spontaneous pulmonary metastases from an antigenic murine sarcoma. Surgery 72, 155–161.

    PubMed  CAS  Google Scholar 

  10. Albino, A. P., Lloyd, K. O., Houghton, A. N., Oettgen, H. F., and Old, L. J. (1981) Heterogeneity in surface antigen and glycoprotein expression of cell lines derived from different melanoma metastases of the same patient. Implications for the study of tumor antigens. J. Exp. Med. 154, 1764–1778.

    Article  PubMed  CAS  Google Scholar 

  11. Byers, V. S. and Johnston, J. O. (1977) Antigenic differences among osteogenic sarcoma tumor cells taken from different locations in human tumors. Cancer Res. 37, 3173–3183.

    PubMed  CAS  Google Scholar 

  12. MacLean, G. D., Seehafer, J., Shaw, A. R., Kieran, M. W., and Longenecker, B. M. (1982) Antigenic heterogeneity of human colorectal cancer cell lines analyzed by a panel of monoc-lonal antibodies. I. Heterogeneous expression of Ia-like and HLA-like antigenic determinants. J. Natl. Cancer Inst. 69, 357–364.

    PubMed  CAS  Google Scholar 

  13. Bigner, D. D. (1981) Biology of gliomas: potential clinical implications of glioma cellular heterogeneity. Neurosurgery 9, 320–326.

    Article  PubMed  CAS  Google Scholar 

  14. Wikstrand, C. J., Grahmann, F. C., McComb, R. D., and Bigner, D. D. (1985) Antigenic heterogeneity of human anaplastic gliomas and glioma-derived cell lines defined by monoclonal antibodies. J. Neuropathol. Exp. Neurol. 44, 229–241.

    Article  PubMed  CAS  Google Scholar 

  15. Wikstrand, C. J., Bigner, S. H., and Bigner, D. D. (1983) Demonstration of complex antigenic heterogeneity in a human glioma cell line and eight derived clones by specific monoclonal antibodies. Cancer Res. 43, 3327–3334.

    PubMed  CAS  Google Scholar 

  16. Nowell, P. C. (1986) Mechanisms of tumor progression. Cancer Res. 46, 2203–2207.

    PubMed  CAS  Google Scholar 

  17. Nowell, P. C. (1976) The clonal evolution of tumor cell populations. Science 194, 23–28.

    Article  PubMed  CAS  Google Scholar 

  18. Laws Jr., E. R., Taylor, W. F., Clifton, M. B., and Okazaki, H. (1984) Neurosurgical management of low-grade astrocytoma of the cerebral hemispheres. J. Neurosurg. 61, 665–673.

    Article  PubMed  Google Scholar 

  19. Muller, W., Afra, D., and Schroder, R. (1977) Supratentorial recurrences of gliomas. Morphological studies in relation to time intervals with astrocytomas. Acta Neurochir. (Wien). 37, 75–91.

    Article  CAS  Google Scholar 

  20. Schwechheimer, K. and Cavenee, W. K. (1993) Genetics of cancer predisposition and progression. Clin. Invest. 71, 488–502.

    Article  CAS  Google Scholar 

  21. Batra, S. K. and Castelino-Prabhu, S. (1995) Epidermal growth factor ligand-independent, unregulated, cell-transforming potential of a naturally occuring human mutant EGFRvIII gene. Cell Growth and Differ. 6, 1251–1259.

    CAS  Google Scholar 

  22. Bogler, O., Huang, H. J., and Cavenee, W. K. (1995) Loss of wild-type p53 bestows a growth advantage on primary cortical astrocytes and facilitates their in vitro transformation. Cancer Res. 55, 2746–2751.

    PubMed  CAS  Google Scholar 

  23. Nishikawa, R., Ji, X. D., Harmon, R. C., Lazar, C. S., Gill, G. N., Cavenee, W. K., and Huang, H. J. (1994) A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity. Proc. Natl. Acad. Sci. USA. 91, 7727–7731.

    Article  PubMed  CAS  Google Scholar 

  24. Brooks, W. H., Netsky, M. G., Normansell, D. E., and Horwitz, D. A. (1972) Depressed cell-mediated immunity in patients with primary intracranial tumors. Characterization of a humoral immunosuppressive factor. J. Exp. Med. 136, 1631–1647.

    Article  PubMed  CAS  Google Scholar 

  25. Brooks, W. H., Caldwell, H. D., and Mortara, R. H. (1974) Immune responses in patients with gliomas. Surg. Neurol. 2, 419–423.

    PubMed  CAS  Google Scholar 

  26. Mahaley Jr., M. S., Brooks, W. H., Roszman, T. L., Bigner, D. D., Dudka, L., and Richardson, S. (1977) Immunobiology of primary intracranial tumors. Part 1: Studies of the cellular and humoral general immune competence of brain-tumor patients. J. Neurosurg. 46, 467–476.

    Article  PubMed  Google Scholar 

  27. Menzies, C. B., Gunar, M., Thomas, D. G., and Behan, P. O. (1980) Impaired thymus-derived lymphocyte function in patients with malignant brain tumour. Clin. Neurol. Neurosurg. 82, 157–168.

    Article  PubMed  CAS  Google Scholar 

  28. Miescher, S., Whiteside, T. L., Carrel, S., and von Fliedner, V. (1986) Functional properties of tumor-infiltrating and blood lymphocytes in patients with solid tumors: effects of tumor cells and their supernatants on proliferative responses of lymphocytes. J. Immunol. 136, 1899–1907.

    PubMed  CAS  Google Scholar 

  29. Brooks, W. H., Roszman, T. L., and Rogers, A. S. (1976) Impairment of rosette-forming T lymphoctyes in patients with primary intracranial tumors. Cancer 37, 1869–1873.

    Article  PubMed  CAS  Google Scholar 

  30. Brooks, W. H., Roszman, T. L., Mahaley, M. S., and Woosley, R. E. (1977) Immunobiology of primary intracranial tumours. II. Analysis of lymphocyte subpopulations in patients with primary brain tumours. Clin. Exp. Immunol. 29, 61–66.

    PubMed  CAS  Google Scholar 

  31. Braun, D. P., Penn, R. D., Flannery, A. M., and Harris, J. E. (1982) Immunoregulatory cell function in peripheral blood leukocytes of patients with intracranial gliomas. Neurosurgery 10, 203–209.

    Article  PubMed  CAS  Google Scholar 

  32. Elliott, L. H., Brooks, W. H., and Roszman, T. L. (1987) Activation of immunoregulatory lymphocytes obtained from patients with malignant gliomas. J. Neurosurg. 67, 231–236.

    Article  PubMed  CAS  Google Scholar 

  33. Elliott, L. H., Brooks, W. H., and Roszman, T. L. (1990) Inability of mitogen-activated lymphocytes obtained from patients with malignant primary intracranial tumors to express high-affinity interleukin 2 receptors. J. Clin. Invest. 86, 80–86.

    Article  PubMed  CAS  Google Scholar 

  34. Roszman, T. L. and Brooks, W. H. (1980) Immunobiology of primary intracranial tumours. III. Demonstration of a qualitative lymphocyte abnormality in patients with primary brain tumours. Clin. Exp. Immunol. 39, 395–402.

    PubMed  CAS  Google Scholar 

  35. Roszman, T. L., Brooks, W. H., and Elliott, L. H. (1982) Immunobiology of primary intracranial tumors. VI. Suppressor cell function and lectin-binding lymphocyte subpopulations in patients with cerebral tumors. Cancer 50, 1273–1279.

    Article  PubMed  CAS  Google Scholar 

  36. Roszman, T. L., Elliott, L. H., and Brooks, W. H. (1992) Proliferative potential of T-cell lymphocytes from gliomas J. Neurosurg. 77, 820–821.

    PubMed  CAS  Google Scholar 

  37. Thomas, D. G., Lannigan, C. B., and Behan, P. O. (1975) Impaired cell-mediated immunity in human brain tumours. Lancet 1, 1389–1390.

    Article  PubMed  CAS  Google Scholar 

  38. Young, H. F., Sakalas, R., and Kaplan, A. M. (1976) Inhibition of cell-mediated immunity in patients with brain tumors. Surg. Neurol. 5, 19–23.

    PubMed  CAS  Google Scholar 

  39. Bodmer, S., Strommer, K., Frei, K., Siepl, C., de Tribolet, N., Heid, I., and Fontana, A. (1989) Immunosuppression and transforming growth factor-beta in glioblastoma. Preferential production of transforming growth factor-beta 2. J. Immunol. 143, 3222–3229.

    PubMed  CAS  Google Scholar 

  40. Fontana, A., Hengartner, H., de Tribolet, N., and Weber, E. (1984) Glioblastoma cells release interleukin 1 and factors inhibiting interleukin 2-mediated effects. J. Immunol. 132, 1837–1844.

    PubMed  CAS  Google Scholar 

  41. Kuppner, M. C., Hamou, M. F., Bodmer, S., Fontana, A., and de Tribolet, N. (1988) The glioblastoma-derived T-cell suppressor factor/transforming growth factor beta 2 inhibits the generation of lymphokine-activated killer (LAK) cells. Int. J. Cancer 42, 562–567.

    Article  PubMed  CAS  Google Scholar 

  42. Roszman, T. L., Brooks, W. H., and Elliott, L. H. (1987) Inhibition of lymphocyte responsiveness by a glial tumor cell-derived suppressive factor. J. Neurosurg. 67, 874–879.

    Article  PubMed  CAS  Google Scholar 

  43. Miescher, S., Whiteside, T. L., de Tribolet, N., and von Fliedner, V. (1988) In situ characterization, clonogenic potential, and antitumor cytolytic activity of T lymphocytes infiltrating human brain cancers. J. Neurosurg. 68, 438–448.

    CAS  Google Scholar 

  44. Kikuchi, K. and Neuwelt, E. A. (1983) Presence of immunosuppressive factors in brain-tumor cyst fluid. J. Neurosurg. 59, 790–799.

    Article  PubMed  CAS  Google Scholar 

  45. Huettner, C., Paulus, W., and Roggendorf, W. (1995) Messenger RNA expression of the immunosuppressive cytokine IL-10 in human gliomas. Am. J. Pathol. 146, 317–322.

    PubMed  CAS  Google Scholar 

  46. Hishii, M., Nitta, T., Ishida, H., Ebato, M., Kurosu, A., Yagita, H., Sato, K., and Okumura, K. (1995) Human glioma-derived interleukin-10 inhibits antitumor immune responses in vitro. Neurosurgery 37, 1160–1166.

    Article  PubMed  CAS  Google Scholar 

  47. Sawamura, Y., Diserens, A. C., and de Tribolet, N. (1990) In vitro prostaglandin E2 production by glioblastoma cells and its effect on interleukin-2 activation of oncolytic lymphocytes. J. Neurooncol. 9, 125–130.

    Article  PubMed  CAS  Google Scholar 

  48. Alleva, D. G., Burger, C. J., and Elgert, K. D. (1994) Tumor-induced regulation of suppressor macrophage nitric oxide and TNF-alpha production. Role of tumor-derived IL-10, TGF-beta, and prostaglandin E2. J. Immunol. 153, 1674–1686.

    PubMed  CAS  Google Scholar 

  49. de Martin, R., Haendler, B., Hofer-Warbinek, R., Gaugitsch, H., Wrann, M., Schlusener, H., et al. (1987) Complementary DNA for human glioblastoma-derived T cell suppressor factor, a novel member of the transforming growth factor-beta gene family. EMBO J. 6, 3673–3677.

    PubMed  Google Scholar 

  50. Wrann, M., Bodmer, S., de Martin, R., Siepl, C., Hofer-Warbinek, R., Frei, K., Hofer, E., and Fontana, A. (1987) T cell suppressor factor from human glioblastoma cells is a 12.5-kd protein closely related to transforming growth factor-beta. EMBO J. 6, 1633–1636.

    PubMed  CAS  Google Scholar 

  51. Moses, H. L., Branum, E. L., Proper, J. A., and Robinson, R. A. (1981) Transforming growth factor production by chemically transformed cells. Cancer Res. 41, 2842–2848.

    PubMed  CAS  Google Scholar 

  52. Roberts, A. B., Anzano, M. A., Lamb, L. C., Smith, J. M., and Sporn, M. B. (1981) New class of transforming growth factors potentiated by epidermal growth factor: isolation from non-neoplastic tissues. Proc. Natl. Acad. Sci. USA 78, 5339–5343.

    Article  PubMed  CAS  Google Scholar 

  53. Kehrl, J. H., Wakefield, L. M., Roberts, A. B., Jakowlew, S., Alvarez-Mon, M., Derynck, R., Sporn, M. B., and Fauci, A. S. (1986) Production of transforming growth factor beta by human T lymphocytes and its potential role in the regulation of T cell growth. J. Exp. Med. 163, 1037–1050.

    Article  PubMed  CAS  Google Scholar 

  54. Wahl, S. M., Hunt, D. A., Wong, H. L., Dougherty, S., McCartney-Francis, N., Wahl, L. M., et al. (1988) Transforming growth factor-beta is a potent immunosuppressive agent that inhibits IL-1-dependent lymphocyte proliferation. J. Immunol. 140, 3026–3032.

    PubMed  CAS  Google Scholar 

  55. Kehrl, J. H., Roberts, A. B., Wakefield, L. M., Jakowlew, S., Sporn, M. B., and Fauci, A. S. (1986) Transforming growth factor beta is an important immunomodulatory protein for human B lymphocytes. J. Immunol. 137, 3855–3860.

    PubMed  CAS  Google Scholar 

  56. Schwyzer, M. and Fontana, A. (1985) Partial purification and biochemical characterization of a T cell suppressor factor produced by human glioblastoma cells. J. Immunol. 134, 1003–1009.

    PubMed  CAS  Google Scholar 

  57. Rook, A. H., Kehrl, J. H., Wakefield, L. M., Roberts, A. B., Sporn, M. B., Burlington, D. B., Lane, H. C., and Fauci, A. S. (1986) Effects of transforming growth factor beta on the functions of natural killer cells: depressed cytolytic activity and blunting of interferon responsiveness. J. Immunol. 136, 3916–3920.

    PubMed  CAS  Google Scholar 

  58. Ranges, G. E., Figari, I. S., Espevik, T., and Palladino Jr., M. A. (1987) Inhibition of cytotoxic T cell development by transforming growth factor beta and reversal by recombinant tumor necrosis factor alpha. J. Exp. Med. 166, 991–998.

    Article  PubMed  CAS  Google Scholar 

  59. Espevik, T., Figari, I. S., Shalaby, M. R., Lackides, G. A., Lewis, G. D., Shepard, H. M., and Palladino Jr., M. A. (1987) Inhibition of cytokine production by cyclosporin A and transforming growth factor beta. J. Exp. Med. 166, 571–576.

    Article  PubMed  CAS  Google Scholar 

  60. Czarniecki, C. W., Chiu, H. H., Wong, G. H., McCabe, S. M., and Palladino, M. A. (1988) Transforming growth factor-beta 1 modulates the expression of class II histocompatibility antigens on human cells. J. Immunol. 140, 4217–4223.

    PubMed  CAS  Google Scholar 

  61. Zuber, P., Kuppner, M. C., and de Tribolet, N. (1988) Transforming growth factor-beta 2 down-regulates HLA-DR antigen expression on human malignant glioma cells. Eur. J. Immunol. 18, 1623–1626.

    Article  PubMed  CAS  Google Scholar 

  62. Bascom, C. C., Wolfshohl, J. R., Coffey Jr., R. J., Madisen, L., Webb, N. R., Purchio, A. R., Derynck, R., and Moses, H. L. (1989) Complex regulation of transforming growth factor beta 1, beta 2, and beta 3 mRNA expression in mouse fibroblasts and keratinocytes by transforming growth factors beta 1 and beta 2. Mol. Cell Biol. 9, 5508–5515.

    PubMed  CAS  Google Scholar 

  63. Qian, S. W., Burmester, J. K., Merwin, J. R., Madri, J. A., Sporn, M. B., and Roberts, A. B. (1992) Identification of a structural domain that distinguishes the actions of the type 1 and 2 isoforms of transforming growth factor beta on endothelial cells. Proc. Natl. Acad. Sci. USA 89, 6290–6294.

    Article  PubMed  CAS  Google Scholar 

  64. Burmester, J. K., Qian, S. W., Roberts, A. B., Huang, A., Amatayakul-Chantler, S., Suardet, L., et al. (1993) Characterization of distinct functional domains of transforming growth factor beta. Proc. Natl. Acad. Sci. USA 90, 8628–8632.

    Article  PubMed  CAS  Google Scholar 

  65. Tucker, M. A. and Gillespie, G. Y. (1994) Production of a bioactive high molecular weight transforming growth factor beta-like molecule by human malignant glioma cell lines. Growth Factors 11, 153–162.

    Article  PubMed  CAS  Google Scholar 

  66. Torre-Amione, G., Beauchamp, R. D., Koeppen, H., Park, B. H., Schreiber, H., Moses, H. L., and Rowley, D. A. (1990) A highly immunogenic tumor transfected with a murine transforming growth factor type beta 1 cDNA escapes immune surveillance. Proc. Natl. Acad. Sci. USA 87, 1486–1490.

    Article  PubMed  CAS  Google Scholar 

  67. Parrillo, J. E. and Fauci, A. S. (1978) Mechanisms of corticosteroid action on lymphocyte subpopulations. III. Differential effects of dexamethasone administration on subpopulations of effector cells mediating cellular cytotoxicity in man. Clin. Exp. Immunol. 31, 116–125.

    PubMed  CAS  Google Scholar 

  68. Fauci, A. S. (1976) Mechanisms of corticosteroid action on lymphocyte subpopulations. II. Differential effects of in vivo hydrocortisone, prednisone and dexamethasone on in vitro expression of lymphocyte function. Clin. Exp. Immunol. 24, 54–62.

    PubMed  CAS  Google Scholar 

  69. Wahlstrom, T., Linder, E., and Saksela, E. (1973) Glia-specific antigens in cell cultures from rabbit brain, human foetal and adult brain, and gliomas. Acta Pathol. Microbiol. Scand. [B]. Microbiol. Immunol. 81, 768–774.

    CAS  Google Scholar 

  70. Siris, J. H. (1936) Concerning the immunological specificity of glioblastoma multiforme. Bull. Neurol. NY 4, 597–601.

    Google Scholar 

  71. Slagel, D. E., Wilson, C. B., and Simmons, P. B. (1969) Polyacrylamide electrophoresis and immunodiffusion studies of brain tumor patients. Ann. NY Acad. Sci. 159, 490–496.

    Article  CAS  Google Scholar 

  72. Wickremesinghe, H. R. and Yates, P. O. (1971) Immunological properties of neoplastic neural tissues. Br. J. Cancer 25, 711–720.

    Article  PubMed  CAS  Google Scholar 

  73. Wikstrand, C. J. and Bigner, D. D. (1979) Surface antigens of human glioma cells shared with normal adult and fetal brain. Cancer Res. 39, 3235–3243.

    PubMed  CAS  Google Scholar 

  74. Waksman, B. H., Porter, H., Lees, M. D., Adams, R. D., and Folch, J. (1954) A study of the chemical nature of components of bovine white matter effective in producing allergic encephalomyelitis in the rabbit. J. Exp. Med. 100, 451–471.

    Article  PubMed  CAS  Google Scholar 

  75. Tuohy, V. K., Lu, Z. J., Sobel, R. A., Laursen, R. A., and Lees, M. B. (1988) A synthetic peptide from myelin proteolipid protein induces experimental allergic encephalomyelitis. J. Immunol. 141, 1126–1130.

    PubMed  CAS  Google Scholar 

  76. Linington, C., Berger, T., Perry, L., Weerth, S., Hinze-Selch, D., Zhang, Y., et al. (1993) T cells specific for the myelin oligodendrocyte glycoprotein mediate an unusual autoimmune inflammatory response in the central nervous system. Eur. J. Immunol. 23, 1364–1372.

    Article  PubMed  CAS  Google Scholar 

  77. Wekerle, H., Kojima, K., Lannes-Vieira, J., Lassmann, H., and Linington, C. (1994) Animal models. Ann. Neurol. 36 (Suppl), S47–53.

    Article  PubMed  CAS  Google Scholar 

  78. Pasteur, L. (1885) Methode pour prevenir la rage apres morsure. Compt. rend. de l’acad. de scien. (Paris) 101, 765–774.

    Google Scholar 

  79. Remlinger, P. (1904) Contribution a l’ etude de la toxine rabique (faits experimentaux et clinique). Compt. rend. Soc. de Biol. 56, 346–350.

    Google Scholar 

  80. Remlinger, P. (1905) Accidents paralytiques au cours du traitement antirabique. Ann. Inst. Pasteur 19, 625–646.

    Google Scholar 

  81. Stuart, G. and Krikorian, K. (1930) A fatal neuro-paralytic accident of anti-rabies treatment. Lancet 1, 1123–1125.

    Article  Google Scholar 

  82. Stuart, G. and Krikorian, K. (1928) The neuro-paralytic accidents of anti-rabies treatment. Ann. Trop. Med. 22, 327–377.

    Google Scholar 

  83. Rivers, T. M. and Schwentker, F. F. (1935) Encephalomyelitis accompanied by myelin destruction experimentally produced in monkeys. J. Exp. Med. 61, 689–702.

    Article  PubMed  CAS  Google Scholar 

  84. Kabat, E. A., Wolf, A., and Bezer, A. E. (1947) The rapid production of acute disseminated encephalomyelitis in rhesus monkeys by injection of heterologous and homologous brain tissue with adjuvants. J. Exp. Med. 85, 117–130.

    Article  PubMed  CAS  Google Scholar 

  85. Bigner, D. D., Pitts, O. M., and Wikstrand, C. J. (1981) Induction of lethal experimental allergic encephalomyelitis in nonhuman primates and guinea pigs with human glioblastoma multiforme tissue. J. Neurosurg. 55, 32–42.

    Article  PubMed  CAS  Google Scholar 

  86. Albright, L., Seab, J. A., and Ommaya, A. K. (1977) Intracerebral delayed hypersensitivity reactions in glioblastoma multiforme patients. Cancer 39, 1331–1336.

    Article  PubMed  CAS  Google Scholar 

  87. Bullard, D. E., Thomas, D. G., Darling, J. L., Wikstrand, C. J., Diengdoh, J. V., Barnard, R. O., Bodmer, J. G., and Bigner, D. D. (1985) A preliminary study utilizing viable HLA mismatched cultured glioma cells as adjuvant therapy for patients with malignant gliomas. Br. J. Cancer 51, 283–289.

    Article  PubMed  CAS  Google Scholar 

  88. Mahaley Jr., M. S., Bigner, D. D., Dudka, L. F., Wilds, P. R., Williams, D. H., Bouldin, T. W., Whitaker, J. N., and Bynum, J. M. (1983) Immunobiology of primary intracranial tumors. Part 7: Active immunization of patients with anaplastic human glioma cells: a pilot study. J. Neurosurg. 59, 201–207.

    Article  PubMed  Google Scholar 

  89. Ommaya, A. K. (1976) Immunotherapy of gliomas: a review. Adv. Neurol. 15, 337–359.

    PubMed  CAS  Google Scholar 

  90. Wikstrand, C. J. and Bigner, D. D. (1981) Hyperimmunization of non-human primates with BCG-CW and cultured human glioma-derived cells. Production of reactive antisera and absence of EAE induction. J. Neuroimmunol. 1, 249–260.

    Article  PubMed  CAS  Google Scholar 

  91. Bloom, H. J., Peckham, M. J., Richardson, A. E., Alexander, P. A., and Payne, P. M. (1973) Glioblastoma multiforme: a controlled trial to assess the value of specific active immunotherapy in patients treated by radical surgery and radiotherapy. Br. J. Cancer 27, 253–267.

    Article  PubMed  CAS  Google Scholar 

  92. Trouillas, P. (1973) Immunology and immunotherapy of cerebral tumors. Current status. Rev. Neurol. (Paris) 128, 23–38.

    CAS  Google Scholar 

  93. Trouillas, P. and Lapras, C. (1970) Active immunotherapy of cerebral tumor. 20 cases. Neurochirurgie. 16, 143–170.

    PubMed  CAS  Google Scholar 

  94. Shirai, Y. (1921) Transplantation of rat sarcomas in adult heterologous animals. J. Med. World 1, 14–15.

    Google Scholar 

  95. Medawar, P. B. (1948) Immunity to homologous grafted skin. III. The fate of skin homo-grafts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br. J. Exp. Pathol. 29, 58–69.

    PubMed  CAS  Google Scholar 

  96. Murphy, J. B. and Sturm, E. (1923) Conditions determining the transplantability of tissues in the brain. J. Exp. Med. 38, 183–197.

    Article  PubMed  CAS  Google Scholar 

  97. Barker, C. F. and Billingham, R. E. (1977) Immunologically privileged sites. Adv. Immunol. 25, 1–54.

    Article  PubMed  CAS  Google Scholar 

  98. Lampson, L. A. and Hickey, W. F. (1986) Monoclonal antibody analysis of MHC expression in human brain biopsies: tissue ranging from “histologically normal” to that showing different levels of glial tumor involvement. J. Immunol. 136, 4054–4062.

    PubMed  CAS  Google Scholar 

  99. Lampson, L. A., Kushner, P. D., and Sobel, R. A. (1990) Major histocompatibility complex antigen expression in the affected tissues in amyotrophic lateral sclerosis. Ann. Neurol. 28, 365–372.

    Article  PubMed  CAS  Google Scholar 

  100. Itagaki, S., McGeer, P. L., and Akiyama, H. (1988) Presence of T-cytotoxic suppressor and leucocyte common antigen positive cells in Alzheimer’ s disease brain tissue. Neurosci. Lett. 91, 259–264.

    Article  PubMed  CAS  Google Scholar 

  101. Sobel, R. A. and Ames, M. B. (1988) Major histocompatibility complex molecule expression in the human central nervous system: immunohistochemical analysis of 40 patients. J. Neuropathol. Exp. Neurol. 47, 19–28.

    Article  PubMed  CAS  Google Scholar 

  102. Traugott, U. (1987) Multiple sclerosis: relevance of class I and class II MHC-expressing cells to lesion development. J. Neuroimmunol. 16, 283–302.

    Article  PubMed  CAS  Google Scholar 

  103. Akiyama, H., Itagaki, S., and McGeer, P. L. (1988) Major histocompatibility complex antigen expression on rat microglia following epidural kainic acid lesions. J. Neurosci. Res. 20, 147–157.

    Article  PubMed  CAS  Google Scholar 

  104. Gogate, N., Bakhiet, M., Kristensson, K., Norrby, E., and Olsson, T. (1991) Gamma interferon expression and major histocompatibility complex induction during measles and vesicular stomatitis virus infections of the brain. J. Neuroimmunol. 31, 19–26.

    Article  PubMed  CAS  Google Scholar 

  105. Matsumoto, Y. and Fujiwara, M. (1986) In situ detection of class I and II major histocompatibility complex antigens in the rat central nervous system during experimental allergic encephalomyelitis. An immunohistochemical study. J. Neuroimmunol. 12, 265–277.

    Article  PubMed  CAS  Google Scholar 

  106. Olsson, T., Maehlen, J., Love, A., Klareskog, L., Norrby, E., and Kristensson, K. (1987) Induction of class I and class II transplantation antigens in rat brain during fatal and nonfatal measles virus infection. J. Neuroimmunol. 16, 215–224.

    Article  PubMed  CAS  Google Scholar 

  107. Schultzberg, M., Olsson, T., Samuelsson, E. B., Maehlen, J., and Kristensson, K. (1989) Early major histocompatibility complex (MHC) class I antigen induction in hypothalamic supraoptic and paraventricular nuclei in trypanosome-infected rats. J. Neuroimmunol. 24, 105–112.

    Article  PubMed  CAS  Google Scholar 

  108. Sethna, M. P. and Lampson, L. A. (1991) Immune modulation within the brain: recruitment of inflammatory cells and increased major histocompatibility antigen expression following intracerebral injection of interferon-gamma. J. Neuroimmunol. 34, 121–132.

    Article  PubMed  CAS  Google Scholar 

  109. Vass, K. and Lassmann, H. (1990) Intrathecal application of interferon gamma. Progressive appearance of MHC antigens within the rat nervous system. Am. J. Pathol. 137, 789–800.

    PubMed  CAS  Google Scholar 

  110. Whelan, J. P., Eriksson, U., and Lampson, L. A. (1986) Expression of mouse beta 2-microglobulin in frozen and formaldehyde-fixed central nervous tissues: comparison of tissue behind the blood-brain barrier and tissue in a barrier-free region. J. Immunol. 137, 2561–2566.

    PubMed  CAS  Google Scholar 

  111. Lampson, L. A. and Siegel, G. (1988) Defining the mechanisms that govern immune acceptance or rejection of neural tissue. Prog. Brain Res. 78, 243–247.

    Article  PubMed  CAS  Google Scholar 

  112. Mattiace, L. A., Davies, P., and Dickson, D. W. (1990) Detection of HLA-DR on microglia in the human brain is a function of both clinical and technical factors. Am. J. Pathol. 136, 1101–1114.

    PubMed  CAS  Google Scholar 

  113. Hickey, W. F., Osborn, J. P., and Kirby, W. M. (1985) Expression of la molecules by astrocytes during acute experimental allergic encephalomyelitis in the Lewis rat. Cell Immunol. 91, 528–535.

    Article  PubMed  CAS  Google Scholar 

  114. Lee, S. C., Moore, G. R., Golenwsky, G., and Raine, C. S. (1990) Multiple sclerosis: a role for astroglia in active demyelination suggested by class II MHC expression and ultrastructural study. J. Neuropathol. Exp. Neurol. 49, 122–136.

    Article  PubMed  CAS  Google Scholar 

  115. Matsumoto, Y., Kawai, K., and Fujiwara, M. (1989) In situ la expression on brain cells in the rat: autoimmune encephalomyelitis-resistant strain (BN) and susceptible strain (Lewis) compared. Immunology 66, 621–627.

    PubMed  CAS  Google Scholar 

  116. Traugott, U. (1989) Detailed analysis of early immunopathologic events during lesion formation in acute experimental autoimmune encephalomyelitis. Cell Immunol. 119, 114–129.

    Article  PubMed  CAS  Google Scholar 

  117. Vass, K., Lassmann, H., Wekerle, H., and Wisniewski, H. M. (1986) The distribution of Ia antigen in the lesions of rat acute experimental allergic encephalomyelitis. Acta Neuropathol. (Berlin) 70, 149–160.

    CAS  Google Scholar 

  118. Wong, G. H., Bartlett, P. F., Clark-Lewis, I., McKimm-Breschkin, J. L., and Schrader, J. W. (1985) Interferon-gamma induces the expression of H-2 and la antigens on brain cells. J. Neuroimmunol. 7, 255–278.

    Article  PubMed  CAS  Google Scholar 

  119. Lampson, L. A. (1995) Interpreting MHC class I expression and class I/class II reciprocity in the CNS: reconciling divergent findings. Microsc. Res. Tech. 32, 267–285.

    Article  PubMed  CAS  Google Scholar 

  120. Grenier, Y., Ruijs, T. C., Robitaille, Y., Olivier, A., and Antel, J. P. (1989) Immunohistochemical studies of adult human glial cells. J. Neuroimmunol. 21, 103–115.

    Article  PubMed  CAS  Google Scholar 

  121. Kim, S. U. (1990) Neurobiology of human oligodendrocytes in culture. J. Neurosci. Res. 27, 712–728.

    Article  PubMed  CAS  Google Scholar 

  122. Massa, P. T., Ozato, K., and McFarlin, D. E. (1993) Cell type-specific regulation of major histocompatibility complex (MHC) class I gene expression in astrocytes, oligodendrocytes, and neurons. GLIA 8, 201–207.

    Article  PubMed  CAS  Google Scholar 

  123. Satoh, J., Kim, S. U., Kastrukoff, L. F., and Takei, F. (1991) Expression and induction of intercellular adhesion molecules (ICAMs) and major histocompatibility complex (MHC) antigens on cultured murine oligodendrocytes and astrocytes. J. Neurosci. Res. 29, 1–12.

    Article  PubMed  CAS  Google Scholar 

  124. Turnley, A. M., Miller, J. F., and Bartlett, P. F. (1991) Regulation of MHC molecules on MBP positive oligodendrocytes in mice by IFN-gamma and TNF-alpha. Neurosci. Lett. 123, 45–48.

    Article  PubMed  CAS  Google Scholar 

  125. Wong, G. H., Bartlett, P. F., Clark-Lewis, I., Battye, F., and Schrader, J. W. (1984) Inducible expression of H-2 and la antigens on brain cells. Nature 310, 688–691.

    Article  PubMed  CAS  Google Scholar 

  126. Bartlett, P. F., Rosenfeld, J., Bailey, K. A., Cheesman, H., Harvey, A. R., and Kerr, R. S. (1990) Allograft rejection overcome by immunoselection of neuronal precursor cells. Prog. Brain Res. 82, 153–160.

    Article  PubMed  CAS  Google Scholar 

  127. Keane, R. W., Tallent, M. W., and Podack, E. R. (1992) Resistance and susceptibility of neural cells to lysis by cytotoxic lymphocytes and by cytolytic granules. Transplantation 54, 520–526.

    Article  PubMed  CAS  Google Scholar 

  128. Rall, G. F., Mucke, L., and Oldstone, M. B. (1995) Consequences of cytotoxic T lymphocyte interaction with major histocompatibility complex class I-expressing neurons in vivo. J. Exp. Med. 182, 1201–1212.

    Article  PubMed  CAS  Google Scholar 

  129. Bergsteindottir, K., Brennan, A., Jessen, K. R., and Mirsky, R. (1992) In the presence of dexamethasone, gamma interferon induces rat oligodendrocytes to express major histocompatibility complex class II molecules. Proc. Natl. Acad. Sci. USA 89, 9054–9058.

    Article  PubMed  CAS  Google Scholar 

  130. De Groot, C. J., Sminia, T., Dijkstra, C. D., Van der Pal, R. H., and Lopes-Cardozo, M. (1991) Interferon-gamma induced IA antigen expression on cultured neuroglial cells and brain macrophages from rat spinal cord and cerebrum. Int. J. Neurosci. 59, 53–65.

    Article  PubMed  Google Scholar 

  131. Sasaki, A., Levison, S. W., and Ting, J. P. (1989) Comparison and quantitation of la antigen expression on cultured macroglia and ameboid microglia from Lewis rat cerebral cortex: analyses and implications. J. Neuroimmunol. 25, 63–74.

    Article  PubMed  CAS  Google Scholar 

  132. Fontana, A., Fierz, W., and Wekerle, H. (1984) Astrocytes present myelin basic protein to encephalitogenic T-cell lines. Nature 307, 273–276.

    Article  PubMed  CAS  Google Scholar 

  133. Fierz, W., Endler, B., Reske, K., Wekerle, H., and Fontana, A. (1985) Astrocytes as antigen-presenting cells. I. Induction of la antigen expression on astrocytes by T cells via immune interferon and its effect on antigen presentation. J. Immunol. 134, 3785–3793.

    PubMed  CAS  Google Scholar 

  134. Sedgwick, J. D., Mossner, R., Schwender, S., and ter Meulen, V. (1991) Major histocompatibility complex-expressing nonhematopoietic astroglial cells prime only CD8+ T lymphocytes: astroglial cells as perpetuators but not initiators of CD4+ T cell responses in the central nervous system. J. Exp. Med. 173, 1235–1246.

    Article  PubMed  CAS  Google Scholar 

  135. Sawamura, Y. and de Tribolet, N. (1990) Immunobiology of brain tumors. Adv. Tech. Stand. Neurosurg. 17, 3–64.

    Article  PubMed  CAS  Google Scholar 

  136. Carrel, S., de Tribolet, N., and Gross, N. (1982) Expression of HLA-DR and common acute lymphoblastic leukemia antigens on glioma cells. Eur. J. Immunol. 12, 354–357.

    Article  PubMed  CAS  Google Scholar 

  137. Wen, P. Y., Lampson, M. A., and Lampson, L. A. (1992) Effects of gamma-interferon on major histocompatibility complex antigen expression and lymphocytic infiltration in the 9L gliosarcoma brain tumor model: implications for strategies of immunotherapy. J. Neuroimmunol. 36, 57–68.

    Article  PubMed  CAS  Google Scholar 

  138. Christinck, E. R., Luscher, M. A., Barber, B. H., and Williams, D. B. (1991) Peptide binding to class I MHC on living cells and quantitation of complexes required for CTL lysis. Nature 352, 67–70.

    Article  PubMed  CAS  Google Scholar 

  139. Speiser, D. E., Kyburz, D., Stubi, U., Hengartner, H., and Zinkernagel, R. M. (1992) Discrepancy between in vitro measurable and in vivo virus neutralizing cytotoxic T cell reactivities. Low T cell receptor specificity and avidity sufficient for in vitro proliferation or cytotoxicity to peptide-coated target cells but not for in vivo protection. J. Immunol. 149, 972–980.

    PubMed  CAS  Google Scholar 

  140. Hart, D. N. and Fabre, J. W. (1981) Demonstration and characterization of la-positive dendritic cells in the interstitial connective tissues of rat heart and other tissues, but not brain. J. Exp. Med. 154, 347–361.

    Article  PubMed  CAS  Google Scholar 

  141. Lowe, J., MacLennan, K. A., Powe, D. G., Pound, J. D., and Palmer, J. B. (1989) Microglial cells in human brain have phenotypic characteristics related to possible function as dendritic antigen presenting cells. J. Pathol. 159, 143–149.

    Article  PubMed  CAS  Google Scholar 

  142. Ulvestad, E., Williams, K., Bjerkvig, R., Tiekotter, K., Antel, J., and Matre, R. (1994) Human microglial cells have phenotypic and functional characteristics in common with both macrophages and dendritic antigen-presenting cells. J. Leukocyte Biol. 56, 732–740.

    PubMed  CAS  Google Scholar 

  143. Hickey, W. F. and Kimura, H. (1988) Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 239, 290–292.

    Article  PubMed  CAS  Google Scholar 

  144. Gehrmann, J., Banati, R. B., and Kreutzberg, G. W. (1993) Microglia in the immune surveillance of the brain: human microglia constitutively express HLA-DR molecules. J. Neuroimmunol. 48, 189–198.

    Article  PubMed  CAS  Google Scholar 

  145. Williams Jr., K., Ulvestad, E., Cragg, L., Blain, M., and Antel, J. P. (1993) Induction of primary T cell responses by human glial cells. J. Neurosci. Res. 36, 382–390.

    Article  PubMed  Google Scholar 

  146. Cserr, H. F. and Knopf, P. M. (1992) Cervical lymphatics, the blood-brain barrier and the immunoreactivity of the brain: a new view. Immunol. Today 13, 507–512.

    Article  PubMed  CAS  Google Scholar 

  147. Oehmichen, M., Wietholter, H., Gruninger, H., and Gencic, M. (1983) Destruction of intracerebrally applied red blood cells in cervical lymph nodes. Experimental investigations. Forensic Sci. Int. 21, 43–57.

    Article  PubMed  CAS  Google Scholar 

  148. Yamada, S., DePasquale, M., Patlak, C. S., and Cserr, H. F. (1991) Albumin outflow into deep cervical lymph from different regions of rabbit brain. Am. J. Physiol. 261, H1197–204.

    PubMed  CAS  Google Scholar 

  149. Bradbury, M. W., Cserr, H. F., and Westrop, R. J. (1981) Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am. J. Physiol. 240, F329–36.

    PubMed  CAS  Google Scholar 

  150. Brierley, J. B. and Field, E. J. (1948) The connections of the spinal subarachnoid space with the lymphatic system. J. Anat. 82, 153–166.

    Google Scholar 

  151. Cserr, H. F., Harling-Berg, C. J., and Knopf, P. M. (1992) Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathol. 2, 269–276.

    Article  PubMed  CAS  Google Scholar 

  152. Weller, R. O., Kida, S., and Zhang, E. T. (1992) Pathways of fluid drainage from the brain—morphological aspects and immunological significance in rat and man. Brain Pathol. 2, 277–284.

    Article  PubMed  CAS  Google Scholar 

  153. Zhang, E. T., Inman, C. B., and Weller, R. O. (1990) Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. J. Anat. 170, 111–123.

    PubMed  CAS  Google Scholar 

  154. Kida, S., Weller, R. O., Zhang, E. T., Phillips, M. J., and Iannotti, F. (1995) Anatomical pathways for lymphatic drainage of the brain and their pathological significance. Neuropathol. Appl. Neurobiol. 21, 181–184.

    Article  PubMed  CAS  Google Scholar 

  155. Harling-Berg, C. J., Knopf, P. M., and Cserr, H. F. (1991) Myelin basic protein infused into cerebrospinal fluid suppresses experimental autoimmune encephalomyelitis. J. Neuroimmunol. 35, 45–51.

    Article  PubMed  CAS  Google Scholar 

  156. Gordon, L. B., Knopf, P. M., and Cserr, H. F. (1992) Ovalbumin is more immunogenic when introduced into brain or cerebrospinal fluid than into extracerebral sites. J. Neuroimmunol. 40, 81–87.

    Article  PubMed  CAS  Google Scholar 

  157. Knopf, P. M., Cserr, H. F., Nolan, S. C., Wu, T. Y., and Harling-Berg, C. J. (1995) Physiology and immunology of lymphatic drainage of interstitial and cerebrospinal fluid from the brain. Neuropathol. Appl. Neurobiol. 21, 175–180.

    Article  PubMed  CAS  Google Scholar 

  158. Harling-Berg, C., Knopf, P. M., Merriam, J., and Cserr, H. F. (1989) Role of cervical lymph nodes in the systemic humoral immune response to human serum albumin microinfused into rat cerebrospinal fluid. J. Neuroimmunol. 25, 185–193.

    Article  PubMed  CAS  Google Scholar 

  159. Griffith, T. S., Brunner, T., Fletcher, S. M., Green, D. R., and Ferguson, T. A. (1995) Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 270, 1189–1192.

    Article  PubMed  CAS  Google Scholar 

  160. Streilein, J. W. (1993) Immune privilege as the result of local tissue barriers and immunosuppressive microenvironments. Curr. Opinion Immunol. 5, 428–432.

    Article  CAS  Google Scholar 

  161. Vick, N. A., Khandekar, J. D., and Bigner, D. D. (1977) Chemotherapy of brain tumors. Arch. Neurol. 34, 523–526.

    Article  PubMed  CAS  Google Scholar 

  162. de Micco, C., Hassoun, J., Meyer, G., and Toga, M. (1986) Role of the blood-brain barrier in the establishment of the immune response against polyoma virus-induced cerebral tumours in hamsters. J. Neuroimmunol. 11, 301–310.

    Article  PubMed  Google Scholar 

  163. Hauser, S. L., Bhan, A. K., Gilles, F. H., Hoban, C. J., Reinherz, E. L., Schlossman, S. F., and Weiner, H. L. (1983) Immunohistochemical staining of human brain with monoclonal antibodies that identify lymphocytes, monocytes, and the Ia antigen. J. Neuroimmunol. 5, 197–205.

    Article  PubMed  CAS  Google Scholar 

  164. Hickey, W. F. and Kimura, H. (1987) Graft-vs.-host disease elicits expression of class I and class II histocompatibility antigens and the presence of scattered T lymphocytes in rat central nervous system. Proc. Natl. Acad. Sci. USA 84, 2082–2086.

    Article  PubMed  CAS  Google Scholar 

  165. Paterson, P. Y. and Day, E. D. (1981) Current perspectives of neuroimmunologic disease: multiple sclerosis and experimental allergic encephalomyelitis (1,2). Clin. Immunol. Rev. 1, 581–697.

    PubMed  Google Scholar 

  166. Hickey, W. F., Hsu, B. L., and Kimura, H. (1991) T-lymphocyte entry into the central nervous system. J. Neurosci. Res. 28, 254–260.

    Article  PubMed  CAS  Google Scholar 

  167. Wekerle, H., Sun, D., Oropeza-Wekerle, R. L., and Meyermann, R. (1987) Immune reactivity in the nervous system: modulation of T-lymphocyte activation by glial cells. J. Exp. Biol. 132, 43–57.

    PubMed  CAS  Google Scholar 

  168. Scheinberg, L. C., Kotsilimbas, D. G., Karpf, R., and Mayer, N. (1966) Is the brain “an immunologically privileged site”? 3. Studies based on homologous skin grafts to the brain and subcutaneous tissues. Arch. Neurol. 15, 62–67.

    Article  PubMed  CAS  Google Scholar 

  169. Rambo Jr., O. N., Fuson, R., Hattori, M., and Eichwald, E. J. (1954) Immune phenomena elicited by transplanted tumors. I. The participation of the eye and the brain. Cancer Res. 14, 169–172.

    PubMed  Google Scholar 

  170. Hasek, M., Chutna, J., Sladecek, M., and Lodin, Z. (1977) Immunological tolerance and tumor allografts in the brain. Nature 268, 68–69.

    Article  PubMed  CAS  Google Scholar 

  171. Raju, S. and Grogan, J. B. (1977) Immunologic study of the brain as a privileged site. Transplant. Proc. 9, 1187–1191.

    PubMed  CAS  Google Scholar 

  172. Geyer, S. J., Gill 3d, T. J., Kunz, H. W., and Moody, E. (1985) Immunogenetic aspects of transplantation in the rat brain. Transplantation 39, 244–247.

    Article  PubMed  CAS  Google Scholar 

  173. Geyer, S. J. and Gill 3d, T. J. (1979) Immunogenetic aspects of intracerebral skin transplantation in inbred rats. Am. J. Pathol. 94, 569–584.

    PubMed  CAS  Google Scholar 

  174. Scheinberg, L. C., Levy, A., and Edelman, F. (1965) Is the brain an “immunologically privileged site”? 2. Studies in induced host resistance to transplantable mouse glioma following irradiation of prior implants. Arch. Neurol. 13, 283–286.

    Article  PubMed  CAS  Google Scholar 

  175. Wakimoto, H., Abe, J., Tsunoda, R., Aoyagi, M., Hirakawa, K., and Hamada, H. (1996) Intensified antitumor immunity by a cancer vaccine that produces granulocyte-macrophage colony-stimulating factor plus interleukin. Cancer Res. 56, 1828–1833.

    PubMed  CAS  Google Scholar 

  176. Schackert, H. K., Itaya, T., Schackert, G., Fearon, E., Vogelstein, B., and Frost, P. (1989) Systemic immunity against a murine colon tumor (CT-26) produced by immunization with syngeneic cells expressing a transfected viral gene product. Int. J. Cancer 43, 823–827.

    Google Scholar 

  177. Kida, Y., Cravioto, H., Hochwald, G. M., Hochgeschwender, U., and Ransohoff, J. (1983) Immunity to transplantable nitrosourea-induced neurogenic tumors II Immunoprophylaxis of tumors of the brain. J. Neuropathol. Exp. Neurol. 42, 122–135.

    Article  PubMed  CAS  Google Scholar 

  178. Grooms, G. A., Eilber, F. R., and Morton, D. L. (1977) Failure of adjuvant immunotherapy to prevent central nervous system metastases in malignant melanoma patients. J. Surg. Oncol. 9, 147–153.

    Article  PubMed  CAS  Google Scholar 

  179. Mitchell, M. S. (1989) Relapse in the central nervous system in melanoma patients successfully treated with biomodulators. J. Clin. Oncol. 7, 1701–1709.

    PubMed  CAS  Google Scholar 

  180. Booss, J., Esiri, M. M., Tourtellotte, W. W., and Mason, D. Y. (1983) Immunohistological analysis of T lymphocyte subsets in the central nervous system in chronic progressive multiple sclerosis. J. Neurol. Sci. 62, 219–232.

    Article  PubMed  CAS  Google Scholar 

  181. Ridley, A. and Cavanagh, J. B. (1971) Lymphocytic infiltration in gliomas: evidence of possible host resistance. Brain 94, 117–124.

    Article  PubMed  CAS  Google Scholar 

  182. Takeuchi, J. and Barnard, R. O. (1976) Perivascular lymphocytic cuffing in astrocytomas. Acta Neuropathol. (Berlin) 35, 265–271.

    CAS  Google Scholar 

  183. Wood, G. W. and Morantz, R. A. (1979) Immunohistologic evaluation of the lymphoreticular infiltrate of human central nervous system tumors. J. Natl. Cancer Inst. 62, 485–491.

    PubMed  CAS  Google Scholar 

  184. Farmer, J. P., Antel, J. P., Freedman, M., Cashman, N. R., Rode, H., and Villemure, J. G. (1989) Characterization of lymphoid cells isolated from human gliomas. J. Neurosurg. 71, 528–533.

    Article  PubMed  CAS  Google Scholar 

  185. Albright, L., Madigan, J. C., Gaston, M. R., and Houchens, D. P. (1975) Therapy in an intracerebral murine glioma model, using bacillus Calmette-Guerin, neuraminidasetreated tumor cells, and 1-(2-chloroethyl)-3-cyclohexyl- 1 -nitrosourea. Cancer Res. 35, 658–665.

    PubMed  CAS  Google Scholar 

  186. Scheinberg, L. C., Suzuki, K., Edelman, F., and Davidoff, L. M. (1963) Studies in immunization against a transplantable cerebral mouse glioma. J. Neurosurg. 20, 312–317.

    Article  PubMed  CAS  Google Scholar 

  187. Scheinberg, L. C., Edelman, F. L., and Levy, W. A. (1964) Is the brain “an immunologically privileged site?” 1. Studies based on intracerebral tumor homotransplantation and isotransplantation to sensitized hosts. Arch. Neurol. 11, 248–264.

    Article  PubMed  CAS  Google Scholar 

  188. Siesjo, P., Visse, E., Lindvall, M., Salford, L., and Sjogren, H. O. (1993) Immunization with mutagen-treated (turn-) cells causes rejection of nonimmunogenic rat glioma isografts. Cancer Immunol. Immunother. 37, 67–74.

    Article  PubMed  CAS  Google Scholar 

  189. Wilkins, R. H. and Ketcham, A. S. (1963) Studies of glioma growth in mice II Immunity after excision. Arch. Neurol. 9, 671–676.

    Article  Google Scholar 

  190. Staib, L., Harel, W., and Mitchell, M. S. (1993) Protection against experimental cerebral metastases of murine melanoma B16 by active immunization. Cancer Res. 53, 1113–1121.

    PubMed  CAS  Google Scholar 

  191. Brem, S. S., de Tribolet, N., Dohan Jr., F. C., and Kornblith, P. L. (1972) Demonstration of cell-mediated immunity to a human brain tumor: use of an in vitro microcytotoxicity assay. Surg. Forum 23, 428–430.

    PubMed  CAS  Google Scholar 

  192. Jagarlamoody, S. M., Aust, J. C., Tew, R. H., and McKhann, C. F. (1971) In vitro detection of cytotoxic cellular immunity against tumor-specific antigens by a radioisotopic technique. Proc. Natl. Acad. Sci. USA 68, 1346–1350.

    Article  PubMed  CAS  Google Scholar 

  193. Kumar, S., Taylor, G., Steward, J. K., Waghe, M. A., and Morris-Jones, P. (1973) Cell-mediated immunity and blocking factors in patients with tumours of the central nervous system. Int. J. Cancer 12, 194–205.

    Article  PubMed  CAS  Google Scholar 

  194. Levy, N. L. (1973) Use of an in vitro microcytotoxicity test to assess human tumor-specific cell-mediated immunity and its serum-mediated abrogation. Natl. Cancer Inst. Monogr. 37, 85–92.

    PubMed  CAS  Google Scholar 

  195. Levy, N. L. (1978) Specificity of lymphocyte-mediated cytotoxicity in patients with primary intracranial tumors. J. Immunol. 121, 903–915.

    PubMed  CAS  Google Scholar 

  196. Woosley, R. E., Mahaley Jr., M. S., Mahaley, J. L., Miller, G. M., and Brooks, W. H. (1977) Immunobiology of primary intracranial tumors. Part 3: Microcytotoxicity assays of specific immune responses of brain tumor patients. J. Neurosurg. 47, 871–885.

    Article  PubMed  CAS  Google Scholar 

  197. Ausman, J. I., Shapiro, W. R., and Rall, D. P. (1970) Studies on the chemotherapy of experimental brain tumors: development of an experimental model. Cancer Res. 30, 2394–2400.

    PubMed  CAS  Google Scholar 

  198. Rubin, R. C. and Ames, R. P. (1973) Mammary tumor virus in experimental ependymoblastoma. Prog. Neuropathol. 2, 335–349.

    Google Scholar 

  199. Naidu, A. K., Wiranowska, M., Kori, S. H., Roetzheim, K. C., and Kulkarni, A. P. (1993) Inhibition of cell proliferation and glutathione S-transferase by ascorbyl esters and interferon in mouse glioma. J. Neurooncol. 16, 1–10.

    Article  PubMed  CAS  Google Scholar 

  200. Rubin, R., Sutton, C. H., and Zimmerman, H. M. (1968) Experimental ependymoblastoma (Fine structure). J. Neuropathol. Exp. Neurol. 27, 421–438.

    Article  Google Scholar 

  201. Rubinstein, L. J. (1977) Correlation of animal brain tumor models with human neurooncology. Natl. Cancer Inst. Monogr. 46, 43–49.

    PubMed  CAS  Google Scholar 

  202. Akbasak, A., Oldfield, E. H., and Saris, S. C. (1991) Expression and modulation of major histocompatibility antigens on murine primary brain tumor in vitro. J. Neurosurg. 75, 922–929.

    Article  PubMed  CAS  Google Scholar 

  203. Scheinberg, L. C., Suzuki, K., Davidoff, L. M., and Beilin, R. L. (1962) Immunization against intracerebral transplantation of a glioma in mice. Nature 193, 1194–1195.

    Article  PubMed  CAS  Google Scholar 

  204. Rubin, R., Ames, R. P., Sutton, C. H., and Zimmerman, H. M. (1969) Virus-like particles in murine ependymoblastoma. J. Neuropathol. Exp. Neurol. 28, 371–387.

    Article  PubMed  CAS  Google Scholar 

  205. Zimmerman, H. M. and Arnold, H. (1941) Experimental brain tumors. I. Tumors produced with methylcholanthrene. Cancer Res. 1, 919–938.

    CAS  Google Scholar 

  206. Netsky, M. G., Shapiro, J., Hoffman, M., Corsentino, B., Fried, J. R., and Zimmerman, H. M. (1956) The effect of single doses of roentgen radiation on experimentally induced gliomas: with a critical review of the effects of roentgen radiation on gliomas in man. Am. J. Roentgenology Radium Ther. Nucl. Med. 76, 351–366.

    CAS  Google Scholar 

  207. Zimmerman, H. M. and Arnold, H. (1944) Experimental brain tumors. IV. The incidence in different strains of mice. Cancer Res. 4, 98–101.

    CAS  Google Scholar 

  208. Scheinberg, L. C., Levine, M. C., Suzuki, K., and Terry, R. D. (1962) Induced host resistance to a transplantable mouse glioma. Cancer Res. 22, 67–72.

    PubMed  CAS  Google Scholar 

  209. Seligman, A. M. and Shear, M. J. (1939) Studies in carcinogenesis. VIII. Experimental production of brain tumors in mice with methylcholanthrene. Am. J. Cancer 37, 364–399.

    CAS  Google Scholar 

  210. Sugiura, K. (1969) Tumor transplantation in Methods of Animal Experimentation (Gay, W. I., ed.), Academic, New York, pp. 171–222.

    Google Scholar 

  211. Hewitt, H. B., Blake, E. R., and Walder, A. S. (1976) A critique of the evidence for active host defence against cancer, based on personal studies of 27 murine tumours of spontaneous origin. Br. J. Cancer 33, 241–259.

    Article  PubMed  CAS  Google Scholar 

  212. Fraser, H. (1971) Astrocytomas in an inbred mouse strain. J. Pathol. 103, 266–270.

    Article  PubMed  CAS  Google Scholar 

  213. Fraser, H. (1986) Brain tumours in mice, with particular reference to astrocytoma. Food Chem. Toxicol. 24, 105–111.

    Article  PubMed  CAS  Google Scholar 

  214. Fraser, H. and McConnell, I. (1975) Experimental brain tumours. Lancet 1, 44.

    Article  PubMed  CAS  Google Scholar 

  215. Serano, R. D., Pegram, C. N., and Bigner, D. D. (1980) Tumorigenic cell culture lines from a spontaneous VM/Dk murine astrocytoma (SMA). Acta Neuropathol. (Berlin) 51, 53–64.

    Article  CAS  Google Scholar 

  216. Bradford, R., Darling, J. L., Sier, N., and Thomas, D. G. (1990) The VM model of glioma: preparation of multicellular tumour spheroids (MTS) and their response to chemotherapy. J. Neurooncol. 9, 105–114.

    Article  PubMed  CAS  Google Scholar 

  217. Bradford, R., Darling, J. L., and Thomas, D. G. (1990) The chemotherapeutic response of a murine (VM) model of human glioma. Br. J. Cancer 61, 46–50.

    Article  PubMed  CAS  Google Scholar 

  218. Pilkington, G. J., Darling, J. L., Lantos, P. L., and Thomas, D. G. (1983) Cell lines (VMDk) derived from a spontaneous murine astrocytoma. Morphological and immunocytochemical characterization. J. Neurol. Sci. 62, 115–139.

    Article  PubMed  CAS  Google Scholar 

  219. Pilkington, G. J., Lantos, P. L., Darling, J. L., and Thomas, D. G. (1982) Three cell lines from a spontaneous murine astrocytoma show variation in astrocytic differentiation. Neurosci. Lett. 34, 315–320.

    Article  PubMed  CAS  Google Scholar 

  220. Bernard, C. C. and Carnegie, P. R. (1975) Experimental autoimmune encephalomyelitis in mice: immunologic response to mouse spinal cord and myelin basic proteins. J. Immunol. 114, 1537–1540.

    PubMed  CAS  Google Scholar 

  221. Fritz, R. B. and McFarlin, D. E. (1989) Encephalitogenic epitopes of myelin basic protein. Chem. Immunol. 46, 101–125.

    Article  PubMed  CAS  Google Scholar 

  222. Wechsler, W., Ramadan, M. A., and Gieseler, A. (1972) Isogenic transplantation of ethylnitrosourea-induced tumors of the central and peripheral nervous system in two different inbred rat strains. Naturwissenschaften 59, 474.

    Article  PubMed  CAS  Google Scholar 

  223. Benda, P., Someda, K., Messer, J., and Sweet, W. H. (1971) Morphological and immunochemical studies of rat glial tumors and clonal strains propagated in culture. J. Neurosurg. 34, 310–323.

    Article  PubMed  CAS  Google Scholar 

  224. Barker, M., Hoshino, T., Gurcay, O., Wilson, C. B., Nielsen, S. L., Downie, R., and Eliason, J. (1973) Development of an animal brain tumor model and its response to therapy with 1,3-bis(2-chloroethyl)-1-nitrosourea. Cancer Res. 33, 976–986.

    PubMed  CAS  Google Scholar 

  225. Tapscott, S. J., Miller, A. D., Olson, J. M., Berger, M. S., Groudine, M., and Spence, A. M. (1994) Gene therapy of rat 9L gliosarcoma tumors by transduction with selectable genes does not require drug selection. Proc. Natl. Acad. Sci. USA 91, 8185–8189.

    Article  PubMed  CAS  Google Scholar 

  226. Benda, P., Lightbody, J., Sato, G., Levine, L., and Sweet, W. (1968) Differentiated rat glial cell strain in tissue culture. Science 161, 370–371.

    Article  PubMed  CAS  Google Scholar 

  227. Beutler, A. S., Banck, M. S., Wedekind, D., Hedrich, H. J., and Aguzzi, A. (1997) Curing rat gliomas: immunotherapy or graft rejection? (Personal communication.)

    Google Scholar 

  228. Trojan, J., Johnson, T. R., Rudin, S. D., Ilan, J., and Tykocinski, M. L. (1993) Treatment and prevention of rat glioblastoma by immunogenic C6 cells expressing antisense insulin-like growth factor I RNA. Science 259, 94–97.

    Article  PubMed  CAS  Google Scholar 

  229. Kruse, C. A., Molleston, M. C., Parks, E. P., Schultz, P. M., Kleinschmidt-DeMasters, B. K., and Hickey, W. F. (1994) A rat glioma model, CNS-1, with invasive characteristics similar to those of human gliomas: a comparison to 9L gliosarcoma. J. Neurooncol. 22, 191–200.

    Article  PubMed  CAS  Google Scholar 

  230. Mark, D. F., Lu, S. D., Creasey, A. A., Yamamoto, R., and Lin, L. S. (1984) Site-specific mutagenesis of the human fibroblast interferon gene. Proc. Natl. Acad. Sci. USA 81, 5662–5666.

    Article  PubMed  CAS  Google Scholar 

  231. Bogdahn, U. (1983) Chemosensitivity of malignant human brain tumors. Preliminary results. J. Neurooncol. 1, 149–166.

    Article  PubMed  CAS  Google Scholar 

  232. Lundblad, D. and Lundgren, E. (1981) Block of glioma cell line in S by interferon. Int. J. Cancer 27, 749–754.

    Article  PubMed  CAS  Google Scholar 

  233. Yung, W. K., Steck, P. A., Kelleher, P. J., Moser, R. P., and Rosenblum, M. G. (1987) Growth inhibitory effect of recombinant alpha and beta interferon on human glioma cells. J. Neurooncol. 5, 323–330.

    Article  PubMed  CAS  Google Scholar 

  234. Numa, Y., Kawamoto, K., Sakai, N., and Matsumura, H. (1991) Flow cytometric analysis of antineoplastic effects of interferon-alpha, beta and gamma labelled with fluorescein isothiocyanate on cultured brain tumors. J. Neurooncol. 11, 225–234.

    Article  PubMed  CAS  Google Scholar 

  235. Vita, J. R., Edwalds, G. M., Gorey, T., Housepian, E. M., Fetell, M. R., Guarini, L., Langer, J. A., and Fisher, P. B. (1988) Enhanced in vitro growth suppression of human glioblastoma cultures treated with the combination of recombinant fibroblast and immune interferons. Anticancer Res. 8, 297–302.

    PubMed  CAS  Google Scholar 

  236. Dick, R. S. and Hubbell, H. R. (1987) Sensitivities of human glioma cell lines to interferons and double-stranded RNAs individually and in synergistic combinations. J. Neurooncol. 5, 331–338.

    Article  PubMed  CAS  Google Scholar 

  237. Zhang, W., Hara, A., Murakawa, T., Niikawa, S., Andoh, T., Sakai, N., and Yamada, H. (1993) Effect of interferon-gamma on ACNU-induced DNA damage and cytotoxicity in human glioblastoma cells. Neurol. Med. Chir. (Tokyo) 33, 275–279.

    CAS  Google Scholar 

  238. Cook, A. W., Carter, W. A., Nidzgorski, F., and Akhtar, L. (1983) Human brain tumor—derived cell lines: growth rate reduced by human fibroblast interferon. Science 219, 881–883.

    Article  PubMed  CAS  Google Scholar 

  239. Korosue, K., Takeshita, I., Mannoji, H., and Fukui, M. (1983) Interferon effects on multiplication, cytoplasmic protein and GFAP content, and morphology in human glioma cells. J. Neurooncol. 1, 69–76.

    Article  PubMed  CAS  Google Scholar 

  240. Yates, A. J., Stephens, R. E., Elder, P. J., Markowitz, D. L., and Rice, J. M. (1985) Effects of interferon and gangliosides on growth of cultured human glioma and fetal brain cells. Cancer Res. 45, 1033–1039.

    PubMed  CAS  Google Scholar 

  241. Bradley, N. J., Darling, J. L., Oktar, N., Bloom, H. J., Thomas, D. G., and Davies, A. J. (1983) The failure of human leukocyte interferon to influence the growth of human glioma cell populations: in vitro and in vivo studies. Br. J. Cancer 48, 819–825.

    Article  PubMed  CAS  Google Scholar 

  242. Nederman, T. and Benediktsson, G. (1982) Effects of interferon on growth rate and radiation sensitivity of cultured, human glioma cells. Acta Radiol. Oncol. 21, 231–234.

    Article  PubMed  CAS  Google Scholar 

  243. Gresser, I., Bandu, M. T., and Brouty-Boye, D. (1974) Interferon and cell division. IX. Interferon-resistant L1210 cells: characteristics and origin. J. Natl. Cancer Inst. 52, 553–559.

    PubMed  CAS  Google Scholar 

  244. Kuwata, T., Fuse, A., Suzuki, N., and Morinaga, N. (1979) Comparison of the suppression of cell and virus growth in transformed human cells of leukocyte and fibroblast interferon. J. Gen. Virol. 43, 435–439.

    Article  PubMed  CAS  Google Scholar 

  245. Quesada, J R and Gutterman, J. U. (1987) Interferons in the treatment of human neoplasms. J. Interferon. Res. 7, 575–581.

    Article  PubMed  CAS  Google Scholar 

  246. Jereb, B., Petric-Grabnar, G., Klun, B., Lamovec, J., Skrbec, M., and Soos, E. (1994) Addition of IFN-alpha to treatment of malignant brain tumors. Acta Oncol. 33, 651–654.

    Article  PubMed  CAS  Google Scholar 

  247. Jereb, B., Petric, J., Lamovec, J., Skrbec, M., and Soss, E. (1989) Intratumor application of human leukocyte interferon-alpha in patients with malignant brain tumors. Am. J. Clin. Oncol. 12, 1–7.

    Article  PubMed  CAS  Google Scholar 

  248. Mahaley Jr., M. S., Urso, M. B., Whaley, R. A., Blue, M., Williams, T. E., Guaspari, A., and Selker, R. G. (1985) Immunobiology of primary intracranial tumors. Part 10: Therapeutic efficacy of interferon in the treatment of recurrent gliomas J. Neurosurg. 63, 719–725.

    Article  PubMed  Google Scholar 

  249. Sunami, K., Uozumi, A., Semba, A., Yamaura, A., Makino, H., and Miyoshi, T. (1987) Evaluation of treatment for childhood medulloblastoma, with special reference to combination therapy with interferon and radiation. Neurol. Med. Chir. (Tokyo) 27, 623–627.

    CAS  Google Scholar 

  250. Buckner, J. C., Brown, L. D., Kugler, J. W., Cascino, T. L., Krook, J. E., Mailliard, J. A., et al. (1995) Phase II evaluation of recombinant interferon alpha and BCNU in recurrent glioma. J. Neurosurg. 82, 430–435.

    Article  PubMed  CAS  Google Scholar 

  251. Boethius, J., Blomgren, H., Collins, V. P., Greitz, T., and Strander, H. (1983) The effect of systemic human interferon-alpha administration to patients with glioblastoma multiforme. Acta Neurochir. (Wien) 68, 239–251.

    CAS  Google Scholar 

  252. Hirakawa, K., Ueda, S., Nakagawa, Y., Suzuki, K., Fukuma, S., Kita, M., Imanishi, J., and Kishida, T. (1983) Effect of human leukocyte interferon on malignant brain tumors. Cancer 51, 1976–1981.

    Article  PubMed  CAS  Google Scholar 

  253. Salford, L. G., Strömblad, L.-G., Nordström, C.-H., Hornmark-Stenstam, B., Brandt, L., Brismar, J., et al. (1981) Intratumoral administration of interferon in malignant gliomas. Acta Neurochir. (Wien) 56, 130–131 (Abstract).

    Google Scholar 

  254. Otsuka, S., Handa, H., and Yamashita, J. (1984) High titer of interferon (IFN)-neutralizing antibody in a patient with glioblastoma treated with IFN-alpha. Case report. J. Neurosurg. 61, 591–593.

    Article  PubMed  CAS  Google Scholar 

  255. Obbens, E. A., Feun, L. G., Leavens, M. E., Savaraj, N., Stewart, D. J., and Gutterman, J. U. (1985) Phase I clinical trial of intralesional or intraventricular leukocyte interferon for intracranial malignancies. J. Neurooncol. 3, 61–67.

    Article  PubMed  CAS  Google Scholar 

  256. Nakagawa, Y., Hirakawa, K., Ueda, S., Suzuki, K., Fukuma, S., Kishida, T., Imanishi, J., and Amagai, T. (1983) Local administration of interferon for malignant brain tumors. Cancer Treatment Rep. 67, 833–835.

    CAS  Google Scholar 

  257. Mahaley Jr., M. S., Urso, M. B., Whaley, R. A., Staab, E. V., Williams, T E, and Guaspari, A. (1984) Immunobiology of primary intracranial tumors: IX. Phase I study of human lymphoblastoid interferon. J. Biol. Response Mod. 3, 19–25.

    PubMed  CAS  Google Scholar 

  258. Mahaley Jr., M. S., Urso, M. B., Whaley, R. A., Williams, T. E., and Guaspari, A. (1984) Interferon as adjuvant therapy with initial radiotherapy of patients with anaplastic gliomas. J. Neurosurg. 61, 1069–1071.

    Article  PubMed  Google Scholar 

  259. Vaquero, J. and Martinez, R. (1992) Intratumoral immunotherapy with interferon-alpha and interleukin-2 in glioblastoma. Neuroreport 3, 981–983.

    Article  PubMed  CAS  Google Scholar 

  260. Hamada, H., Asakura, T., Maeda, Y., Yokoyama, S., and Niiro, M. (1986) A study on the direct antitumoral effect of interferon-alpha on human glioma. Gan. To. Kagaku. Ryoho. 13, 464–471.

    PubMed  CAS  Google Scholar 

  261. Nagai, M., Arai, T., Kohno, S., and Iizuka, E. (1983) Current status of interferon therapy on malignant brain tumor. Gan No Rinsho—Jpn. J. Cancer Clin. 29, 608–615.

    CAS  Google Scholar 

  262. Meyers, C. A., Obbens, E. A., Scheibel, R. S., and Moser, R. P. (1991) Neurotoxicity of intraventricularly administered alpha-interferon for leptomeningeal disease. Cancer 68, 88–92.

    Article  PubMed  CAS  Google Scholar 

  263. Maleci, A., Antonelli, G., Guidetti, B., and Dianzani, F (1987) Pharmacokinetics of recombinant interferon-alpha 2 following intralesional administration in malignant glioma patients. J. Interferon Res. 7, 107–109.

    Article  PubMed  CAS  Google Scholar 

  264. Farkkila, M., Jaaskelainen, J., Kallio, M., Blomstedt, G., Raininko, R., Virkkunen, P., et al. (1994) Randomised, controlled study of intratumoral recombinant gamma-interferon treatment in newly diagnosed glioblastoma. Br. J. Cancer 70, 138–141.

    Article  PubMed  CAS  Google Scholar 

  265. Mahaley Jr., M. S., Bertsch, L., Cush, S., and Gillespie, G. Y. (1988) Systemic gamma-interferon therapy for recurrent gliomas. J. Neurosurg. 69, 826–829.

    Article  PubMed  Google Scholar 

  266. Maasilta, P., Holsti, L. R., Halme, M., Kivisaari, L., Cantell, K., and Mattson, K. (1992) Natural alpha-interferon in combination with hyperfractionated radiotherapy in the treatment of non-small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 23, 863–868.

    Article  PubMed  CAS  Google Scholar 

  267. Tanaka, N., Nagao, S., Tohgo, A., Sekiguchi, F., Kohno, M., Ogawa, H., Matsui, T., and Matsutani, M. (1983) Effects of human fibroblast interferon on human gliomas transplanted into nude mice. Gann 74, 308–316.

    PubMed  CAS  Google Scholar 

  268. Tanaka, S., Okada, M., Murakami, M., Hirakawa, M., Manaka, S., and Nagashima, T. (1995) Human interferon-beta therapy for cerebral primitive neuroectodermal tumors—two case reports. Neurol. Med. Chir. (Tokyo) 35, 82–86.

    CAS  Google Scholar 

  269. Wakabayashi, T., Yoshida, J., Mizuno, M., Kito, A., and Sugita, K. (1992) Effectiveness of interferon-beta, ACNU, and radiation therapy in pediatric patients with brainstem glioma. Neurol. Med. Chir. (Tokyo) 32, 942–946.

    CAS  Google Scholar 

  270. Boiardi, A., Silvani, A., Milanesi, I., Munari, L., Broggi, G., and Botturi, M. (1991) Local immunotherapy (beta-IFN) and systemic chemotherapy in primary glial tumors. Ital. J. Neurol. Sci. 12, 163–168.

    Article  PubMed  CAS  Google Scholar 

  271. Yoshida, J., Kajita, Y., Wakabayashi, T., and Sugita, K. (1994) Long-term follow-up results of 175 patients with malignant glioma: importance of radical tumour resection and postoperative adjuvant therapy with interferon, ACNU and radiation. Acta Neurochir. (Wien) 127, 55–59.

    Article  CAS  Google Scholar 

  272. Bogdahn, U., Fleischer, B., Hilfenhaus, J., Rothig, H. J., Krauseneck, P., Mertens, H. G., and Przuntek, H. (1985) Interferon-beta in patients with low-grade astrocytomas—a phase I study. J. Neurooncol. 3, 125–130.

    Article  PubMed  CAS  Google Scholar 

  273. Duff, T. A., Borden, E., Bay, J., Piepmeier, J., and Sielaff, K. (1986) Phase II trial of interferon-beta for treatment of recurrent glioblastoma multiforme. J. Neurosurg. 64, 408–413.

    Article  PubMed  CAS  Google Scholar 

  274. von Wild, K. R. and Knocke, T. H. (1991) The effects of local and systemic interferon beta (Fiblaferon) on supratentorial malignant cerebral glioma—a phase II study. Neurosurg. Rev. 14, 203–213.

    Article  Google Scholar 

  275. Packer, R. J., Prados, M., Phillips, P., Nicholson, H. S., Boyett, J. M., Goldwein, J., et al. (1996) Treatment of children with newly diagnosed brain stem gliomas with intravenous recombinant beta-interferon and hyperfractionated radiation therapy: a children’s cancer group phase I/II study. Cancer 77, 2150–2156.

    Article  PubMed  CAS  Google Scholar 

  276. Yung, W. K., Castellanos, A. M., Van Tassel, P., Moser, R. P., and Marcus, S. G. (1990) A pilot study of recombinant interferon beta (IFN-beta ser) in patients with recurrent glioma. J. Neurooncol. 9, 29–34.

    Article  PubMed  CAS  Google Scholar 

  277. Allen, J., Packer, R., Bleyer, A., Zeltzer, P., Prados, M., and Nirenberg, A. (1991) Recombinant interferon beta: a phase I-II trial in children with recurrent brain tumors. J. Clin. Oncol. 9, 783–788.

    PubMed  CAS  Google Scholar 

  278. Mahaley Jr., M. S., Dropcho, E. J., Bertsch, L., Tirey, T., and Gillespie, G. Y. (1989) Systemic beta-interferon therapy for recurrent gliomas: a brief report. J. Neurosurg. 71, 639–641.

    Article  PubMed  Google Scholar 

  279. Yung, W. K., Prados, M., Levin, V. A., Fetell, M. R., Bennett, J., Mahaley, M. S., Salcman, M., and Etcubanas, E. (1991) Intravenous recombinant interferon beta in patients with recurrent malignant gliomas: a phase I/II study. J. Clin. Oncol. 9, 1945–1949.

    PubMed  CAS  Google Scholar 

  280. Fete11, M. R., Housepian, E. M., Oster, M. W., Cote, D. N., Sisti, M. B., Marcus, S. G., and Fisher, P. B. (1990) Intratumor administration of beta-interferon in recurrent malignant gliomas. A phase I clinical and laboratory study. Cancer 65, 78–83.

    Article  PubMed  CAS  Google Scholar 

  281. Nagai, M. and Arai, T. (1984) Clinical effect of interferon in malignant brain tumours. Neurosurg. Rev. 7, 55–64.

    Article  PubMed  CAS  Google Scholar 

  282. Nagai, M., Arai, T., Kohno, S., and Kohase, M. (1981) Local application of interferon to malignant brain tumors. Texas Rep. Biol. Med. 41, 693–698.

    Google Scholar 

  283. Takakura, K. (1987) Clinical trials of interferon-B (MR-21) on malignant brain tumors. J. Jpn. Soc. Cancer Ther. 22, 801–808.

    CAS  Google Scholar 

  284. Yoshida, J., Wakabayashi, T., Kato, K., Enomoto, H., Kito, A., and Kageyama, N. (1986) Combination therapy with IFN-beta, ACNU and radiation (IAR) in malignant brain tumors. Gan. To. Kagaku. Ryoho. 13, 520–524.

    PubMed  CAS  Google Scholar 

  285. Miyao, Y., Shimizu, K., Okamoto, Y., Matsui, Y., Tsuda, N., Yamada, M., Tamura, K., and Mogami, H. (1987) Antitumor efficacy of recombinant interferon-beta on human glioma. Gan. To. Kagaku. Ryoho. 14, 490–494.

    PubMed  CAS  Google Scholar 

  286. Shitara, N., Nakamura, H., Genka, S., and Takakura, K. (1987) Efficacy of interferon-B and interleukin-2 as cytokines for malignant brain tumor treatment. Jpn. J. Cancer Chemother. 14, 3235–3244.

    CAS  Google Scholar 

  287. Rosenberg, S. A., Grimm, E. A., McGrogan, M., Doyle, M., Kawasaki, E., Koths, K., and Mark, D. F. (1984) Biological activity of recombinant human interleukin-2 produced in Escherichia coli. Science 223, 1412–1414.

    CAS  Google Scholar 

  288. Fukui, M., Sawa, H., Takeshita, I., Kitamura, K., Satoh, Y., and Kasama, K. (1986) High concentration of locally administered human fibroblast interferon in a glioblastoma multiforme. Discrepancy between clinical response and sensitivity of the tumor cells to the interferon in vitro. Fukuoka Igaku Zasshi—Fukuoka Acta Med. 77, 135–143.

    CAS  Google Scholar 

  289. Conley, F. K., Adler Jr., J. R., Duncan, J. A., Kennedy, J. D., and Sutton, R. C. (1990) Intralesional immunotherapy of brain tumors with combined Corynebacterium parvum and recombinant interleukin-2 in mice. J. Natl. Cancer Inst. 82, 1340–1344.

    Article  PubMed  CAS  Google Scholar 

  290. Watts, R. G. and Merchant, R. E. (1992) Cerebrovascular effects and tumor kinetics after a single intratumoral injection of human recombinant interleukin-2 alone or in combination with intravenous chemotherapy in a rat model of glioma. Neurosurgery 31, 89–99.

    Article  PubMed  CAS  Google Scholar 

  291. Sutton 3d, R. C., Kennedy, J., Duncan, J., and Conley, F. K. (1989) Toxicity of IL-2 and corynebacterium parvum following direct intracranial injection. J. Neurooncol. 7, 261–267.

    Article  PubMed  Google Scholar 

  292. Ellison, M. D., Povlishock, J. T., and Merchant, R. E. (1987) Blood-brain barrier dysfunction in cats following recombinant interleukin-2 infusion. Cancer Res. 47, 5765–5770.

    PubMed  CAS  Google Scholar 

  293. Ellison, M. D., Krieg, R. J., and Merchant, R. E. (1990) Cerebral vasomotor responses after recombinant interleukin 2 infusion. Cancer Res. 50, 4377–4381.

    PubMed  CAS  Google Scholar 

  294. Jacobs, S. K., Wilson, D. J., Kornblith, P. L., and Grimm, E. A. (1986) Interleukin-2 or autologous lymphokine-activated killer cell treatment of malignant glioma: phase I trial. Cancer Res. 46, 2101–2104.

    PubMed  CAS  Google Scholar 

  295. Salmaggi, A., Dufour, A., Silvani, A., Ciusani, E., Nespolo, A., and Boiardi, A. (1994) Immunological fluctuations during intrathecal immunotherapy in three patients affected by CNS tumours disseminating via CSF. Int. J. Neurosci. 77, 117–125.

    Article  PubMed  CAS  Google Scholar 

  296. Merchant, R. E., McVicar, D. W., Merchant, L. H., and Young, H. F. (1992) Treatment of recurrent malignant glioma by repeated intracerebral injections of human recombinant interleukin-2 alone or in combination with systemic interferon-alpha. Results of a phase I clinical trial. J. Neurooncol. 12, 75–83.

    Article  PubMed  CAS  Google Scholar 

  297. Jacobs, S. K., Wilson, D. J., Komblith, P. L., and Grimm, E. A. (1986) Interleukin-2 and autologous lymphokine-activated killer cells in the treatment of malignant glioma. Preliminary report. J. Neurosurg. 64, 743–749.

    Article  PubMed  CAS  Google Scholar 

  298. Jacobs, S. K., Wilson, D. J., Melin, G., Parham, C. W., Holcomb, B., Komblith, P. L., and Grimm, E. A. (1986) Interleukin-2 and lymphokine activated killer (LAK) cells in the treatment of malignant glioma: clinical and experimental studies. Neurol. Res. 8, 81–87.

    PubMed  CAS  Google Scholar 

  299. Hayes, R. L., Koslow, M., Hiesiger, E. M., Hymes, K. B., Hochster, H. S., Moore, E. J., et al. (1995) Improved long-term survival after intracavitary interleukin-2 and lymphokine-activated killer cells for adults with recurrent malignant glioma. Cancer 76, 840–852.

    Article  PubMed  CAS  Google Scholar 

  300. Yoshida, S., Tanaka, R., Takai, N., and Ono, K. (1988) Local administration of autologous lymphokine-activated killer cells and recombinant interleukin 2 to patients with malignant brain tumors. Cancer Res. 48, 5011–5016.

    PubMed  CAS  Google Scholar 

  301. Merchant, R. E., Merchant, L. H., Cook, S. H., McVicar, D. W., and Young, H. F. (1988) Intralesional infusion of lymphokine-activated killer (LAK) cells and recombinant interleukin-2 (rIL-2) for the treatment of patients with malignant brain tumor. Neurosurgery 23, 725–732.

    Article  PubMed  CAS  Google Scholar 

  302. Merchant, R. E., Grant, A. J., Merchant, L. H., and Young, H. F. (1988) Adoptive immunotherapy for recurrent glioblastoma multiforme using lymphokine activated killer cells and recombinant interleukin-2 Cancer 62, 665–671.

    Article  PubMed  CAS  Google Scholar 

  303. Barba, D., Saris, S. C., Holder, C., Rosenberg, S. A., and Oldfield, E. H. (1989) Intratumoral LAK cell and interleukin-2 therapy of human gliomas. J. Neurosurg. 70, 175–182.

    Article  PubMed  CAS  Google Scholar 

  304. Hayes, R. L. (1992) The cellular immunotherapy of primary brain tumors. Rev. Neurol. (Paris) 148, 454–466.

    CAS  Google Scholar 

  305. Nakagawa, K., Kamezaki, T., Shibata, Y., Tsunoda, T., Meguro, K., and Nose, T. (1995) Effect of lymphokine-activated killer cells with or without radiation therapy against malignant brain tumors. Neurol. Med. Chir. (Tokyo) 35, 22–27.

    CAS  Google Scholar 

  306. Ibayashi, Y., Yamaki, T., Kawahara, T., Daibo, M., Kubota, T., Uede, T., Tanabe, S., and Hashi, K. (1993) Effect of local administration of lymphokine-activated killer cells and interleukin-2 on malignant brain tumor patients. Neurol. Med. Chir. (Tokyo) 33, 448–457.

    CAS  Google Scholar 

  307. Boiardi, A., Silvani, A., Ruffini, P. A., Rivoltini, L., Parmiani, G., Broggi, G., and Salmaggi, A. (1994) Loco-regional immunotherapy with recombinant interleukin-2 and adherent lymphokine-activated killer cells (A-LAK) in recurrent glioblastoma patients. Cancer Immunol. Immunother. 39, 193–197.

    Article  PubMed  CAS  Google Scholar 

  308. Jeffes 3d, E. W., Beamer, Y. B., Jacques, S., Silberman, R. S., Vayuvegula, B., Gupta, S., et al. (1993) Therapy of recurrent high grade gliomas with surgery, and autologous mitogen activated IL-2 stimulated killer (MAK) lymphocytes: I. Enhancement of MAK lytic activity and cytokine production by PHA and clinical use of PHA. J. Neurooncol. 15, 141–155.

    Article  PubMed  Google Scholar 

  309. Lillehei, K. O., Mitchell, D. H., Johnson, S. D., McCleary, E. L., and Kruse, C. A. (1991) Long-term follow-up of patients with recurrent malignant gliomas treated with adjuvant adoptive immunotherapy. Neurosurgery 28, 16–23.

    Article  PubMed  CAS  Google Scholar 

  310. Silvani, A., Salmaggi, A., Parmiani, G., and Boiardi, A. (1994) Successful adoptive immunotherapy with lymphokine-activated killer cells in the treatment of medulloblastoma disseminated via cerebrospinal fluid: case report. Neurosurgery 34, 1078–1080.

    Article  PubMed  CAS  Google Scholar 

  311. Shimizu, K., Okamoto, Y., Miyao, Y., Yamada, M., Ushio, Y., Hayakawa, T., Ikeda, H., and Mogami, H. (1987) Adoptive immunotherapy of human meningeal gliomatosis and carcinomatosis with LAK cells and recombinant interleukin-2. J. Neurosurg. 66, 519–521.

    Article  PubMed  CAS  Google Scholar 

  312. Denicoff, K. D., Rubinow, D. R., Papa, M. Z., Simpson, C., Seipp, C. A., Lotze, M. T., et al. (1987) The neuropsychiatric effects of treatment with interleukin-2 and lymphokine-activated killer cells. Ann. Intern. Med. 107, 293–300.

    PubMed  CAS  Google Scholar 

  313. Saris, S. C., Patronas, N. J., Rosenberg, S. A., Alexander, J. T., Frank, J., Schwartzentruber, D. J., et al. (1989) The effect of intravenous interleukin-2 on brain water content. J. Neurosurg. 71, 169–174.

    Article  PubMed  CAS  Google Scholar 

  314. Iwasaki, K., Rogers, L. R., Barnett, G. H., Estes, M. L., and Barna, B. P. (1993) Effect of recombinant tumor necrosis factor-alpha on three-dimensional growth, morphology, and invasiveness of human glioblastoma cells in vitro. J. Neurosurg. 78, 952–958.

    Article  PubMed  CAS  Google Scholar 

  315. Chen, T. C., Hinton, D. R., Apuzzo, M. L., and Hofman, F. M. (1993) Differential effects of tumor necrosis factor-alpha on proliferation, cell surface antigen expression, and cytokine interactions in malignant gliomas. Neurosurgery 32, 85–94.

    Article  PubMed  CAS  Google Scholar 

  316. Cheng, K., Sawamura, Y., Sakuma, S., Tada, M., Sudo, M., Aida, T., and Abe, H. (1994) Antiproliferative effect of tumor necrosis factor-alpha on human glioblastoma cells linked with cell cycle arrest in G1 phase. Neurol. Med. Chir. (Tokyo) 34, 274–278.

    CAS  Google Scholar 

  317. Yin, D., Kondo, S., Barnett, G. H., Morimura, T., and Takeuchi, J. (1995) Tumor necrosis factor-alpha induces p53-dependent apoptosis in rat glioma cells. Neurosurgery 37, 758–763.

    Article  PubMed  CAS  Google Scholar 

  318. Rutka, J. T., Giblin, J. R., Berens, M. E., Bar-Shiva, E., Tokuda, K., McCulloch, J. R., et al. (1988) The effects of human recombinant tumor necrosis factor on glioma-derived cell lines: cellular proliferation, cytotoxicity, morphological and radioreceptor studies. Int. J. Cancer 41, 573–582.

    Article  PubMed  CAS  Google Scholar 

  319. Sakuma, S., Sawamura, Y., Tada, M., Aida, T., Abe, H., Suzuki, K., and Taniguchi, N. (1993) Responses of human glioblastoma cells to human natural tumor necrosis factor-alpha: susceptibility, mechanism of resistance and cytokine production studies. J. Neurooncol. 15, 197–208.

    Article  PubMed  CAS  Google Scholar 

  320. Helseth, E., Unsgaard, G., Dalen, A., and Vik, R. (1988) Effects of type beta transforming growth factor in combination with retinoic acid or tumor necrosis factor on proliferation of a human glioblastoma cell line and clonogenic cells from freshly resected human brain tumors. Cancer Immunol. Immunother. 26, 273–279.

    Article  PubMed  CAS  Google Scholar 

  321. Zuber, P., Accolla, R. S., Carrel, S., Diserens, A. C., and de Tribolet, N. (1988) Effects of recombinant human tumor necrosis factor-alpha on the surface phenotype and the growth of human malignant glioma cell lines. Int. J. Cancer 42, 780–786.

    Article  PubMed  CAS  Google Scholar 

  322. Del Maestro, R. F., Lopez-Torres, M., McDonald, W. B., Stroude, E. C., and Vaithilingam, I. S. (1992) The effect of tumor necrosis factor-alpha on human malignant glial cells. J. Neurosurg. 76, 652–659.

    Article  PubMed  Google Scholar 

  323. Lachman, L. B., Brown, D. C., and Dinarello, C. A. (1987) Growth-promoting effect of recombinant interleukin 1 and tumor necrosis factor for a human astrocytoma cell line. J. Immunol. 138, 2913–2916.

    PubMed  CAS  Google Scholar 

  324. Vaquero, J., Zurita, M., and Oya, S. (1995) Growth-inhibiting effect of intratumoral recombinant human tumor necrosis factor on an experimental model of primitive neuroectodermal tumor. J. Neurooncol. 23, 9–14.

    Article  PubMed  CAS  Google Scholar 

  325. Kido, G., Wright, J. L., and Merchant, R. E. (1991) Acute effects of human recombinant tumor necrosis factor-alpha on the cerebral vasculature of the rat in both normal brain and in an experimental glioma model. J. Neurooncol. 10, 95–109.

    Article  PubMed  CAS  Google Scholar 

  326. Vaquero, J., Arias, A., Zurita, M., Coca, S., Oya, S., and Morales, C. (1992) Influence of recombinant interleukin-2 and tumor necrosis factor-alpha on the development of ethyl nitrosourea-induced brain tumors. Oncol. Res. 4, 275–280.

    PubMed  CAS  Google Scholar 

  327. Selmaj, K. W. and Raine, C. S. (1988) Tumor necrosis factor mediates myelin and oligodendrocyte damage in vitro. Ann. Neurol. 23, 339–346.

    Article  PubMed  CAS  Google Scholar 

  328. Yoshida, S., Minakawa, T., Takai, N., and Tanaka, R. (1989) Effects of cytokines on cultured microvascular endothelial cells derived from gerbil brain. Neurosurgery 25, 373–377.

    Article  PubMed  CAS  Google Scholar 

  329. Ellison, M. D. and Merchant, R. E. (1991) Appearance of cytokine-associated central nervous system myelin damage coincides temporally with serum tumor necrosis factor induction after recombinant interleukin-2 infusion in rats. J. Neuroimmunol. 33, 245–251.

    Article  PubMed  CAS  Google Scholar 

  330. Yoshida, J., Wakabayashi, T., Mizuno, M., Sugita, K., Yoshida, T., Hori, S., et al. (1992) Clinical effect of intra-arterial tumor necrosis factor-alpha for malignant glioma. J. Neurosurg. 77, 78–83.

    Article  PubMed  CAS  Google Scholar 

  331. Yamasaki, T., Moritake, K., Paine, J. T., Fukuda, M., Ohta, F., and Naitoh, H. (1994) Intratumoral administration of tumor necrosis factor-alpha for malignant gliomas-two case reports. Neurol. Med. Chir. (Tokyo) 34, 216–220.

    CAS  Google Scholar 

  332. Koga, H., Mukawa, J., Miyagi, K., Higa, Y., Nakasone, S., Mekaru, S., and Ingram, M. (1993) Human recombinant interleukin-1 beta-mediated growth inhibition of cultured malignant glioma cells. Neurol. Med. Chir. (Tokyo) 33, 1–6.

    CAS  Google Scholar 

  333. Gordon, C. R., Merchant, R. S., Marmarou, A., Rice, C. D., Marsh, J. T., and Young, H. F. (1990) Effect of murine recombinant interleukin-1 on brain oedema in the rat. Acta Neurochir. (Wien) 51 (Suppl.), 268–270.

    Google Scholar 

  334. Giulian, D., Woodward, J., Young, D. G., Krebs, J. F., and Lachman, L. B. (1988) Interleukin-1 injected into mammalian brain stimulates astrogliosis and neovascularization. J. Neurosci. 8, 2485–2490.

    PubMed  CAS  Google Scholar 

  335. Rice, C. D. and Merchant, R. E. (1992) Systemic treatment with murine recombinant interleukin-1 beta inhibits the growth and progression of malignant glioma in the rat. J. Neurooncol. 13, 43–55.

    Article  PubMed  CAS  Google Scholar 

  336. Lim, R., Hicklin, D. J., Ryken, T. C., Han, X. M., Liu, K. N., Miller, J. F., and Baggenstoss, B. A. (1986) Suppression of glioma growth in vitro and in vivo by glia maturation factor. Cancer Res. 46, 5241–5247.

    PubMed  CAS  Google Scholar 

  337. Matsuoka, T., Uozumi, T., Kurisu, K., Maeda, H., Kawamoto, K., and Monden, S. (1994) Antitumor effects of human recombinant macrophage colony-stimulating factor against rat brain tumors. Biotherapy 8, 51–62.

    Article  PubMed  CAS  Google Scholar 

  338. Woodruff, M. F., Hitchcock, E., and Whitehead, V. L. (1977) Effect of C. parvum and active specific immunotherapy on intracerebral transplants of a murine fibrosarcoma. Br. J. Cancer 35, 687–692.

    Article  PubMed  CAS  Google Scholar 

  339. Selker, R. G., Wolmark, N., Fisher, B., and Moore, P. (1978) Preliminary observations on the use of Corynebacterium parvum in patients with primary intracranial tumors: effect on intracranial pressure. J. Surg. Oncol. 10, 299–303.

    Article  PubMed  CAS  Google Scholar 

  340. Yumitori, K., Ito, Y., and Handa, H. (1982) Protective effect of immunization with virus-infected glioma cells against intracerebrally implanted glioma in mice. Eur. J. Cancer Clin. Oncol. 18, 177–181.

    Article  PubMed  CAS  Google Scholar 

  341. Long, R. G., O’Connor, J. S., and Jelsma, L. F. (1962) Studies on glioma immunity in the mouse. Arch. Neurol. 7, 538–544.

    Article  Google Scholar 

  342. Bloom, H. J. (1975) Combined modality therapy for intracranial tumors. Cancer 35, 111–120.

    Article  PubMed  CAS  Google Scholar 

  343. Jaeckle, K. A., Mittelman, A., and Hill, F. H. (1990) Phase H trial of Serratia marcescens extract in recurrent malignant astrocytoma. J. Clin. Oncol. 8, 1408–1418.

    PubMed  CAS  Google Scholar 

  344. Eggers, A. E., Miller, J. I., and Sclafani, S. (1992) Intralymphatic immunotherapy of glioblastoma. NY State. J. Med. 92, 272–274.

    CAS  Google Scholar 

  345. Dumm, S. K. and Oppenheim, J. J. (1993) Proinflammatory cytokines and immunity, in Fundamental Immunology ( Paul, W. E., ed.). Raven, New York, pp. 801–835.

    Google Scholar 

  346. Howard, M. C., Miyajima, A., and Coffman, R. (1993) T-cell-derived cytokines and their receptors, in Fundamental Immunology ( Paul, W. E., ed.). Raven, New York, pp. 763–800.

    Google Scholar 

  347. Rosenberg, S. A. (1991) Immunotherapy and gene therapy of cancer. Cancer Res. 51, 5074s - 5079s.

    PubMed  CAS  Google Scholar 

  348. Connor, J., Bannerji, R., Saito, S., Heston, W., Fair, W., and Gilboa, E. (1993) Regression of bladder tumors in mice treated with interleukin 2 gene-modified tumor cells [published erratum appears in J. Exp. Med. 1993 Jun 1; 177(6):following 1831]. J. Exp. Med. 177, 1127–1134.

    Article  PubMed  CAS  Google Scholar 

  349. Fearon, E. R., Pardoll, D. M., Itaya, T., Golumbek, P., Levitsky, H. I., Simons, J. W., et al. (1990) Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response. Cell 60, 397–403.

    Article  PubMed  CAS  Google Scholar 

  350. Gansbacher, B., Zier, K., Daniels, B., Cronin, K., Bannerji, R., and Gilboa, E. (1990) Interleukin 2 gene transfer into tumor cells abrogates tumorigenicity and induces protective immunity. J. Exp. Med. 172, 1217–1224.

    Article  PubMed  CAS  Google Scholar 

  351. Ley, V., Langlade-Demoyen, P., Kourilsky, P., and Larsson-Sciard, E. L. (1991) Interleukin 2-dependent activation of tumor-specific cytotoxic T lymphocytes in vivo. Eur. J. Immunol. 21, 851–854.

    Article  PubMed  CAS  Google Scholar 

  352. Porgador, A., Gansbacher, B., Bannerji, R., Tzehoval, E., Gilboa, E., Feldman, M., and Eisenbach, L. (1993) Anti-metastatic vaccination of tumor-bearing mice with IL-2-geneinserted tumor cells. Int. J. Cancer 53, 471–477.

    Article  PubMed  CAS  Google Scholar 

  353. Porgador, A., Tzehoval, E., Vadai, E., Feldman, M., and Eisenbach, L. (1993) Immunotherapy via gene therapy: comparison of the effects of tumor cells transduced with the interleukin-2, interleukin-6, or interferon-gamma genes. J. Immunother. 14, 191–201.

    Article  CAS  Google Scholar 

  354. Saito, S., Bannerji, R., Gansbacher, B., Rosenthal, F. M., Romanenko, P., Heston, W. D., Fair, W. R., and Gilboa, E. (1994) Immunotherapy of bladder cancer with cytokine gene-modified tumor vaccines. Cancer Res. 54, 3516–3520.

    PubMed  CAS  Google Scholar 

  355. Vieweg, J., Rosenthal, F. M., Bannerji, R., Heston, W. D., Fair, W. R., Gansbacher, B., and Gilboa, E. (1994) Immunotherapy of prostate cancer in the Dunning rat model: use of cytokine gene modified tumor vaccines. Cancer Res. 54, 1760–1765.

    PubMed  CAS  Google Scholar 

  356. Dranoff, G., Jaffee, E., Lazenby, A., Golumbek, P., Levitsky, H., Brose, K., et al. (1993) Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting antitumor immunity. Proc. Natl. Acad. Sci. USA 90, 3539–3543.

    Article  PubMed  CAS  Google Scholar 

  357. Golumbek, P. T., Lazenby, A. J., Levitsky, H. I., Jaffee, L. M., Karasuyama, H., Baker, M., and Pardoll, D. M. (1991) Treatment of established renal cancer by tumor cells engineered to secrete interleukin-4 Science 254, 713–716.

    Article  PubMed  CAS  Google Scholar 

  358. Mullen, C. A., Coale, M. M., Levy, A. T., Stetler-Stevenson, W. G., Liotta, L. A., Brandt, S., and Blaese, R. M. (1992) Fibrosarcoma cells transduced with the IL-6 gene exhibited reduced tumorigenicity, increased immunogenicity, and decreased metastatic potential. Cancer Res. 52, 6020–6024.

    PubMed  CAS  Google Scholar 

  359. Porgador, A., Tzehoval, E., Katz, A., Vadai, E., Revel, M., Feldman, M., and Eisenbach, L. (1992) Interleukin 6 gene transfection into Lewis lung carcinoma tumor cells suppresses the malignant phenotype and confers immunotherapeutic competence against parental metastatic cells. Cancer Res. 52, 3679–3686.

    PubMed  CAS  Google Scholar 

  360. Gansbacher, B., Bannerji, R., Daniels, B., Zier, K., Cronin, K., and Gilboa, E. (1990) Retroviral vector-mediated gamma-interferon gene transfer into tumor cells generates potent and long lasting antitumor immunity. Cancer Res. 50, 7820–7825.

    PubMed  CAS  Google Scholar 

  361. Porgador, A., Bannerji, R., Watanabe, Y., Feldman, M., Gilboa, E., and Eisenbach, L. (1993) Antimetastatic vaccination of tumor-bearing mice with two types of IFN-gamma gene-inserted tumor cells. J. Immunol. 150, 1458–1470.

    PubMed  CAS  Google Scholar 

  362. Watanabe, Y., Kuribayashi, K., Miyatake, S., Nishihara, K., Nakayama, E., Taniyama, T., and Sakata, T. (1989) Exogenous expression of mouse interferon gamma cDNA in mouse neuroblastoma C1300 cells results in reduced tumorigenicity by augmented anti-tumor immunity. Proc. Natl. Acad. Sci. USA 86, 9456–9460.

    Article  PubMed  CAS  Google Scholar 

  363. Tjuvajev, J., Gansbacher, B., Desai, R., Beattie, B., Kaplitt, M., Matei, C., et al. (1995) RG-2 glioma growth attenuation and severe brain edema caused by local production of interleukin-2 and interferon-gamma. Cancer Res. 55, 1902–1910.

    PubMed  CAS  Google Scholar 

  364. Harada, K., Yoshida, J., Mizuno, M., Kurisu, K., and Uozumi, T. (1995) Growth inhibition of intracerebral rat glioma by transfection-induced human interferon-beta. J. Surg. Oncol. 59, 105–109.

    Article  PubMed  CAS  Google Scholar 

  365. Yagi, K., Hayashi, Y., Ishida, N., Ohbayashi, M., Ohishi, N., Mizuno, M., and Yoshida, J. (1994) Interferon-beta endogenously produced by intratumoral injection of cationic liposome-encapsulated gene: cytocidal effect on glioma transplanted into nude mouse brain. Biochem. Mol. Biol. Int. 32, 167–171.

    PubMed  CAS  Google Scholar 

  366. Aoki, T., Tashiro, K., Miyatake, S., Kinashi, T., Nakano, T., Oda, Y., Kikuchi, H., and Honjo, T. (1992) Expression of murine interleukin 7 in a murine glioma cell line results in reduced tumorigenicity in vivo. Proc. Natl. Acad. Sci. USA 89, 3850–3854.

    Article  PubMed  CAS  Google Scholar 

  367. Glick, R. P., Lichtor, T., Kim, T. S., Ilangovan, S., and Cohen, E. P. (1995) Fibroblasts genetically engineered to secrete cytokines suppress tumor growth and induce antitumor immunity to a murine glioma in vivo. Neurosurgery 36, 548–555.

    Article  PubMed  CAS  Google Scholar 

  368. Yamada, G., Kitamura, Y., Sonoda, H., Harada, H., Taki, S., Mulligan, R. C., et al. (1987) Retroviral expression of the human IL-2 gene in a murine T cell line results in cell growth autonomy and tumorigenicity. EMBO J. 6, 2705–2709.

    PubMed  CAS  Google Scholar 

  369. Markowitz, D., Goff, S., and Bank, A. (1988) Construction and use of a safe and efficient amphotropic packaging cell line. Virology 167, 400–406.

    PubMed  CAS  Google Scholar 

  370. Lichtor, T., Glick, R. P., Kim, T. S., Hand, R., and Cohen, E. P. (1995) Prolonged survival of mice with glioma injected intracerebrally with double cytokine-secreting cells. J. Neurosurg. 83, 1038–1044.

    Article  PubMed  CAS  Google Scholar 

  371. Ewend, M. G., Thompson, R. C., Jaffee, E., Pardoll, D., and Brem, H. (1995) Development of immunologic memory against intracranial metastatic melanoma after exposure to interleukin-2 transfected melanoma cells. Neurosurgery 37, 575–576 (Abstract).

    Google Scholar 

  372. Ram, Z., Walbridge, S., Heiss, J. D., Culver, K. W., Blaese, R. M., and Oldfield, E. H. (1994) In vivo transfer of the human interleukin-2 gene: negative tumoricidal results in experimental brain tumors. J. Neurosurg. 80, 535–540.

    Article  PubMed  CAS  Google Scholar 

  373. Schmidt, W., Schweighoffer, T., Herbst, E., Maass, G., Berger, M., Schilcher, F., Schaffner, G., and Birnstiel, M. L. (1995) Cancer vaccines: the interleukin 2 dosage effect. Proc. Natl. Acad. Sci. USA 92, 4711–4714.

    Article  PubMed  CAS  Google Scholar 

  374. Culver, K. W., Ram, Z., Wallbridge, S., Ishii, H., Oldfield, E. H., and Blaese, R. M. (1992) In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 256, 1550–1552.

    Article  PubMed  CAS  Google Scholar 

  375. Yu, J. S., Wei, M. X., Chiocca, E. A., Martuza, R. L., and Tepper, R. I. (1993) Treatment of glioma by engineered interleukin 4-secreting cells. Cancer Res. 53, 3125–3128.

    PubMed  CAS  Google Scholar 

  376. Wei, M. X., Tamiya, T., Hurford Jr., R. K., Boviatsis, E. J., Tepper, R. I., and Chiocca, E. A. (1995) Enhancement of interleukin-4-mediated tumor regression in athymic mice by in situ retroviral gene transfer. Hum. Gene Ther. 6, 437–443.

    Article  PubMed  CAS  Google Scholar 

  377. Tepper, R. I., Pattengale, P. K., and Leder, P. (1989) Murine interleukin-4 displays potent anti-tumor activity in vivo. Cell 57, 503–512.

    Article  PubMed  CAS  Google Scholar 

  378. Tepper, R. I., Coffman, R. L., and Leder, P. (1992) An eosinophil-dependent mechanism for the antitumor effect of interleukin-4 Science 257, 548–551.

    Article  PubMed  CAS  Google Scholar 

  379. Danos, O. and Mulligan, R. C. (1988) Safe and efficient generation of recombinant retro-viruses with amphotropic and ecotropic host ranges. Proc. Natl. Acad. Sci. USA 85, 6460–6464.

    Article  PubMed  CAS  Google Scholar 

  380. Tamiya, T., Wei, M. X., Chase, M., Ono, Y., Lee, F., Breakefield, X. O., and Chiocca, E. A. (1995) Transgene inheritance and retroviral infection contribute to the efficiency of gene expression in solid tumors inoculated with retroviral vector producer cells. Gene Ther. 2, 531–538.

    PubMed  CAS  Google Scholar 

  381. Sampson, J. H., Ashley, D. M., Archer, G. E., Fuchs, H. E., Dranoff, G., Hale, L. P., and Bigner, D. D. (1997) Characterization of a spontaneous murine astrocytoma and abrogation of its tumorigenicity by cytokine secretion. Neurosurgery, in press.

    Google Scholar 

  382. Hurford Jr., R. K., Dranoff, G., Mulligan, R. C., and Tepper, R. I. (1995) Gene therapy of metastatic cancer by in vivo retroviral gene targeting. Nature Genet. 10, 430–435.

    Article  PubMed  CAS  Google Scholar 

  383. Sampson, J. H., Archer, G. E., Ashley, D. M., Fuchs, H. E., Hale, L. P., Dranoff, G., and Bigner, D. D. (1996) Subcutaneous vaccination with irradiated, cytokine-producing tumor cells stimulates CD8+ cell-mediated immunity against tumors located in the “immunologically privileged” central nervous system. Proc. Natl. Acad. Sci. USA 93, 10,399–10, 404.

    Google Scholar 

  384. Coligan, J. E., Kruisbeek, A. M., Margulies, D. H., Shevach, E. M., and Strober, W. (1994) Current Protocols in Immunology, Greene and Wiley Interscience, New York.

    Google Scholar 

  385. Sanan, A., LeBien, T., and Katsanis, E. (1996) Transduction of granulocyte-macrophage colony stimulating factor (GM-CSF) abolishes the tumorigenicity of the C6 rat glioma cell line. Neurosurgery 39, 648 (Abstract).

    Google Scholar 

  386. Mizuno, M., Yoshida, J., Sugita, K., Inoue, I., Seo, H., Hayashi, Y., Koshizaka, T., and Yagi, K. (1990) Growth inhibition of glioma cells transfected with the human beta-interferon gene by liposomes coupled with a monoclonal antibody. Cancer Res. 50, 7826–7829.

    PubMed  CAS  Google Scholar 

  387. Walther, W., Stein, U., and Pfeil, D. (1995) Gene transfer of human TNF alpha into glioblastoma cells permits modulation of mdrl expression and potentiation of chemosensitivity. Int. J. Cancer 61, 832–839.

    Article  PubMed  CAS  Google Scholar 

  388. Yu, J. S., Esteves, M. S., Breakefield, X. O., and Reeves, S. (1996) Gene therapy for brain tumors by controled expression of interleukin-1B-converting enzyme. J. Neurosurg. 84, 338A (abstract).

    Google Scholar 

  389. Yu, J. S., Sena-Esteves, M., Paulus, W., and Breakefield, X. O. (1997) Retroviral delivery and tetracycline-dependent expression of IL-IB-converting enzyme (ICE) in a rat glioma model provides controlled induction of apoptotic deathin tumor cells. Cancer Res. 56, 5423–5427.

    Google Scholar 

  390. Cikes, M., Friberg Jr., S., and Klein, G. (1973) Progressive loss of H-2 antigens with concomitant increase of cell-surface antigen(s) determined by Moloney leukemia virus in cultured murine lymphomas. J. Natl. Cancer Inst. 50, 347–362.

    PubMed  CAS  Google Scholar 

  391. Yu, J. S., Burwick, J. A., Dranoff, G., and Breakefield, X. O. (1995) Gene therapy for brain tumors by autologous vaccination with engineered Gm-Csf secreting tumor cells. Neurosurgery 37, 573 (abstract).

    Google Scholar 

  392. Caux, C., Dezutter-Dambuyant, C., Schmitt, D., and Banchereau, J. (1992) GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells. Nature 360, 258–261.

    Article  PubMed  CAS  Google Scholar 

  393. Zhou, L. J. and Tedder, T. F. (1996) CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells. Proc. Natl. Acad. Sci. USA 93, 2588–2592.

    Article  PubMed  CAS  Google Scholar 

  394. Fakhrai, H., Dorigo, O., Shawler, D. L., Lin, H., Mercola, D., Black, K. L., Royston, I., and Sobol, R. E. (1996) Eradication of established intracranial rat gliomas by transforming growth factor beta antisense gene therapy. Proc. Natl. Acad. Sci. USA 93, 2909–2914.

    Article  PubMed  CAS  Google Scholar 

  395. Trojan, J., Blossey, B. K., Johnson, T. R., Rudin, S. D., Tykocinski, M., and Ilan, J. (1992) Loss of tumorigenicity of rat glioblastoma directed by episome-based antisense cDNA transcription of insulin-like growth factor I. Proc. Natl. Acad. Sci. USA 89, 4874–4878.

    Article  PubMed  CAS  Google Scholar 

  396. Sobol, R. E., Fakhrai, H., Shawler, D., Gjerset, R., Dorigo, 0., Carson, C., et al. (1995) Interleukin-2 gene therapy in a patient with glioblastoma. Gene Ther. 2, 164–167.

    PubMed  CAS  Google Scholar 

  397. Harsh IV, G. R. and Wilson, C. B. (1992) Neuroepithelial tumors of the adult brain, in Neurological Surgery ( Youmans, J. R., ed.), W. B. Saunders, Philadelphia, pp. 3040–3136.

    Google Scholar 

  398. Prados, M. D., Gutin, P. H., Phillips, T. L., Wara, W. M., Sneed, P. K., Larson, D. A., et al. (1992) Interstitial brachytherapy for newly diagnosed patients with malignant gliomas: the UCSF experience. Int. J. Radiat. Oncol. Biol. Phys. 24, 593–597.

    Article  PubMed  CAS  Google Scholar 

  399. Sullivan, F. J., Herscher, L. L., Cook, J. A., Smith, J., Steinberg, S. M., Epstein, A. H., et al. (1994) National Cancer Institute (phase II) study of high-grade glioma treated with accelerated hyperfractionated radiation and iododeoxyuridine: results in anaplastic astrocytoma. Int. J. Radiat. Oncol. Biol. Phys. 30, 583–590.

    Article  PubMed  CAS  Google Scholar 

  400. Imperato, J. P., Paleologos, N. A., and Vick, N. A. (1990) Effects of treatment on long-term survivors with malignant astrocytomas. Ann. Neurol. 28, 818–822.

    Article  PubMed  CAS  Google Scholar 

  401. Ekstrand, A. J., Sugawa, N., James, C. D., and Collins, V. P. (1992) Amplified and rearranged epidermal growth factor receptor genes in human glioblastomas reveal deletions of sequences encoding portions of the N- and/or C-terminal tails. Proc. Natl. Acad. Sci. USA 89, 4309–4313.

    Article  PubMed  CAS  Google Scholar 

  402. Mochizuki, H., Nishi, T., Bruner, J. M., Lee, P. S., Levin, V. A., and Saya, H. (1992) Alternative splicing of neurofibromatosis type 1 gene transcript in malignant brain tumors: PCR analysis of frozen-section mRNA. Mol. Carcinog. 6, 83–87.

    Article  PubMed  CAS  Google Scholar 

  403. Wikstrand, C. J., He, X., Fuller, G. N., Bigner, S. H., Fredman, P., Svennerholm, L., and Bigner, D. D. (1991) Occurrence of lacto series gangliosides 3’-isoLMl and 3’,6’-isoLDl in human gliomas in vitro and in vivo. J. Neuropathol. Exp. Neurol. 50, 756–769.

    Article  PubMed  CAS  Google Scholar 

  404. Yang, H. Y., Lieska, N., Glick, R., Shao, D., and Pappas, G. D. (1993) Expression of 300kilodalton intermediate filament-associated protein distinguishes human glioma cells from normal astrocytes. Proc. Natl. Acad. Sci. USA 90, 8534–8537.

    Article  PubMed  CAS  Google Scholar 

  405. Wong, A. J., Zoltick, P. W., and Moscatello, D. K. (1994) The molecular biology and molecular genetics of astrocytic neoplasms. Semin. Oncol. 21, 139–148.

    PubMed  CAS  Google Scholar 

  406. Wong, A. J., Ruppert, J. M., Bigner, S. H., Grzeschik, C. H., Humphrey, P. A., Bigner, D. D., and Vogelstein, B. (1992) Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc. Natl. Acad. Sci. USA 89, 2965–2969.

    Article  PubMed  CAS  Google Scholar 

  407. Wiranowska, M., Gonzalvo, A. A., Saporta, S., Gonzalez, O. R., and Prockop, L. D. (1992) Evaluation of blood-brain barrier permeability and the effect of interferon in mouse glioma model. J. Neurooncol. 14, 225–236.

    Article  PubMed  CAS  Google Scholar 

  408. Reifenberger, G., Bilzer, T., Seitz, R. J., and Wechsler, W. (1989) Expression of vimentin and glial fibrillary acidic protein in ethylnitrosourea-induced rat gliomas and glioma cell lines. Acta Neuropathol. (Berlin) 78, 270–282.

    CAS  Google Scholar 

  409. Van Meir, E. G. (1995) Cytokines and tumors of the central nervous system. GLIA 15, 264–288.

    Article  PubMed  Google Scholar 

  410. Constam, D. B., Philipp, J., Malipiero, U. V., ten Dijke, P., Schachner, M., and Fontana, A. (1992) Differential expression of transforming growth factor-beta 1, -beta 2, and -beta 3 by glioblastoma cells, astrocytes, and microglia. J. Immunol. 148, 1404–1410.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sampson, J.H., Bigner, D.D., Dranoff, G. (1998). Cytokine-Based Gene Therapy for Brain Tumors. In: Chiocca, E.A., Breakefield, X.O. (eds) Gene Therapy for Neurological Disorders and Brain Tumors. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-478-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-478-8_13

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5314-1

  • Online ISBN: 978-1-59259-478-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics