Advertisement

Evidence for and Mechanism of Action of Neurotoxicity of Amphetamine Related Compounds

  • R. Lew
  • J. E. Malberg
  • George A. Ricuarte
  • Lewis S. Seiden
Part of the Contemporary Neuroscience book series (CNEURO)

Abstract

The purpose of this chapter is to review the evidence that substituted amphetamines (AMPHs), such as methamphetamine (METH), have neurotoxic potential, discuss critical determinants of AMPH neurotoxicity, and consider possible mechanisms underlying the neurotoxic action of AMPH and some of its derivatives. This evidence indicates that METH, AMPH, methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA), m-trifluoromethyl-N-ethylamphetamine fenfluramine (FEN), and the combination of phentermine (PHEN) and FEN can cause long-lasting deficits in brain dopamine (DA) and/or serotonin (5HT) systems. For many of these drugs, the pharmacological properties are quite similar across species, including humans. Therefore, the possibility that the neurotoxic effects of AMPH derivatives may generalize from nonhuman mammals to humans must be considered.

Keywords

Glial Fibrillary Acidic Protein Quinolinic Acid Uptake Site Tryptophan Hydroxylase Activity Mdma Neurotoxicity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cavanagh, J. B. (1994) Principles of neurotoxicology, in Principles of Neurotoxicology ( Chang, L. W., ed.), Marcel Decker, New York, pp. xv-xviii.Google Scholar
  2. 2.
    Seiden, L. S., Sabol, K. E., and Dyer, R. S. (1995) Neurotoxicity of methamphetaminerelated drugs and cocaine, in Handbook of Neurotoxicology ( Chang, L. W., ed.), Marcel Dekker, New York, pp. 825–843.Google Scholar
  3. 3.
    Uretsky, N. J. and Snodgrass, S. R. (1977) Studies on the mechanism of stimulation of dopamine synthesis by amphetamine in striatal slices. J. Pharmacol. Exp. Ther. 202, 565–580.Google Scholar
  4. 4.
    Hedreen, J. C. and Chalmers, J. P. (1972) Neuronal degeneration in rat brain induced by 6-hydroxydopamine; a histological and biochemical study. Brain Res. 47, 1–36.CrossRefPubMedGoogle Scholar
  5. 5.
    Baumgarten, H. B. and Zimmerman, B. (1992) Neurotoxic phenylalkalyamines and indolealkylamines, in Handbook of Experimental Pharmacology: Selective Neurotoxicity ( Herken, H. and Hucho, F., eds.), Springer-Verlag, New York, 225–276.Google Scholar
  6. 6.
    Sanders-Busch, E., Bushing, J. A., and Sulser, F. (1972) Long-term effects of p-chloroamphetamine on tryptophan hydroxylase activity and on the levels of 5-hydroxytryptamine and 5-hydroxyindole acetic acid in brain. Eur. J. Pharm. 20, 385–388.CrossRefGoogle Scholar
  7. 7.
    Seiden, L. S., Sabol, K. E., and Ricaurte, G. A. (1993) Amphetamine: effects on catecholamine systems and behavior [Review]. Annu. Rev. Pharmacol. Toxicol. 33, 639–677.CrossRefPubMedGoogle Scholar
  8. 8.
    Raiteri, M., Cerrito, F., Cervoni, A. M., and Levi, G. (1979) Dopamine can be released by two mechanisms differentially affected by the dopamine transport inhibitor nomifensine. J. Pharmacol. Exp. Ther. 208, 195–202.PubMedGoogle Scholar
  9. 9.
    Kandel, E. R. and Schwartz, J. H. (1985) Principles of Neural Science, Elsevier, New York.Google Scholar
  10. 10.
    Wichems, C. H., Hollingsworth, C. K., and Bennet, B. A. (1995) Release of serotonin induced by 3,4-methylenedioxymethamphetamine (MDMA) and other substituted amphetamines in cultured fetal raphe neurons: further evidence for calcium-independent mechanisms of release. Brain Res. 695, 10–18.CrossRefPubMedGoogle Scholar
  11. 11.
    Heikkila, R. E., Orlansky, H., and Cohen, G. (1975) Studies on the distinction between uptake inhibition and release of (3H)dopamine in rat brain tissue slices. Biochem. Pharmacol. 24, 847–852.CrossRefPubMedGoogle Scholar
  12. 12.
    Fischer, J. F. and Cho, A. K. (1979) Chemical release of dopamine from striatal homogenates: evidence for an exchange diffusion model. J. Pharmacol. Exp. Ther. 208, 203–209.PubMedGoogle Scholar
  13. 13.
    Parker, E. M. and Cubeddu, L. X. (1986) Effects of d-amphetamine and dopamine synthesis inhibitors on dopamine and acetylcholine neurotransmission in the striatum. Release in the absence of vesicular transmitter stores. J. Pharmacol. Exp. Ther. 237, 179–192.PubMedGoogle Scholar
  14. 14.
    Liang, N. Y. and Rutledge, C. O. (1982) Comparison of the release of [3H]dopamine from isolated corpus striatum by amphetamine, fenfluramine and unlabelled dopamine. Biochem. Pharmacol. 31, 983–992.CrossRefPubMedGoogle Scholar
  15. 15.
    Rudnick, G. and Wall, S. C. (1992) The molecular mechanism of “ecstasy” [3,4-methylenedioxymethamphetamine (MDMA)]: serotonin transporters are targets for MDMAinduced serotonin release. Proc. Acad. Sci. USA 89, 1817–1821.CrossRefGoogle Scholar
  16. 16.
    Berger, U. V., Gu, X. E, and Azmitia, E. C. (1992) The substituted amphetamines 3,4-methylenedioxymethamphetamine, methamphetamine, p-chloroamphetamine and fenfluramine induce 5-hydroxytryptamine release via a common mechanism blocked by fluoxetine and cocaine. Eur. J. Pharmacol. 215, 153–160.CrossRefPubMedGoogle Scholar
  17. 17.
    Johnson, M. P., Conarty, P. F., and Nichols D. (1991) [3H] Monoamine releasing and uptake inhibition properties of 3,4-methylenedioxymethamphetamine and p-chloramphetamine analogues. Eur. J. Pharm. 200, 9–16.Google Scholar
  18. 18.
    Laferrere, B. and Wurtman, R. J. (1989) Effect of D-fenfluramine on serotonin release in brains of anaesthetized rats. Brain Res. 504, 258–263.CrossRefPubMedGoogle Scholar
  19. 19.
    McKenna, D. J., Guan, X. M., and Shulgin, A. T. (1991) Methylenedioxyamphetamine (MDA)) analogues exhibit differential effects on synaptosomal release of 3H-dopamine and 3H-5-hydroxytryptamine. Pharmacol. Biochem. Behay. 38, 505–512.CrossRefGoogle Scholar
  20. 20.
    Nichols, D. E., Lloyd, D. H., Hoffman, A. J., Nichols, M. B., and Yim, G. K. W. (1982) Effects of certain hallucinogenic amphetamine analogues on the release of [3H]serotonin from rat brain synaptosomes. J. Med. Chem. 25, 530–535.CrossRefPubMedGoogle Scholar
  21. 21.
    Sabol, K. E., Richards, J. B., and Seiden, L. S. (1992) Fenfluramine-induced increases in extracellular hippocampal serotonin and progressively attentuated in vivo during a four-day fenfluramine regimen in rats. Brain Res. 571, 64–72.CrossRefPubMedGoogle Scholar
  22. 22.
    Mennini, T., Garattini, S., and Caccia, S. (1985) Anorectic effect of fenfluramine isomers and metabolites: relationship between brain levels and in vitro potencies on serotonergic mechanisms. Psychopharmacology 85, 111–114.CrossRefPubMedGoogle Scholar
  23. 23.
    Sarkissian, C. R, Wurtman, R. J., Morse, A. N., and Gleason, R. (1990) Effects of fluoxetine or D-fenfluramine on serotonin release from, and levels in, rat frontal cortex. Brain Res. 529, 294–301.CrossRefPubMedGoogle Scholar
  24. 24.
    Schmidt, C. J. (1987) Acute administration of methylenedioxymethamphetamine: comparison with the neurochemical effects of its N-desmethyl and N-ethyl analogs. Eur. J. Pharmacol. 136, 81–88.CrossRefPubMedGoogle Scholar
  25. 25.
    Schmidt, C. J., Wu, L., and Lovenberg, W. (1986) Methylenedioxymethamphetamine: a potentially neurotoxic amphetamine analogue. Eur. J. Pharmacol. 124, 175–178.CrossRefPubMedGoogle Scholar
  26. 26.
    Ellinwood, E. H. (1969) Amphetamine psychosis: a multidimensional process. Simin. Psychiatry 1, 208–226.Google Scholar
  27. 27.
    Schuster, C. R. and Thompson, T. (1969) Self administration of and behavioral dependence on drugs. Annu. Rev. Pharmacol. 9, 483–502.CrossRefPubMedGoogle Scholar
  28. 28.
    Angrist, B. M., Schweitzer, J. W., Gershon, S., and Friedhoff, A. J. (1970) Mephentermine psychosis: misuse of the Wyamine inhaler. Am. J. Psychiatry 126, 1315–1317.PubMedGoogle Scholar
  29. 29.
    Griffith, J. (1966) A study of illicit amphetamine drug traffic in Oklahoma City. Am. J. Psychiatry 123, 560–569.PubMedGoogle Scholar
  30. 30.
    Kramer, J. C., Fischman, V. S., and Littlefield, D. C. (1967) Amphetamine abuse. Pattern and effects of high doses taken intravenously. JAMA 201, 305–309.CrossRefPubMedGoogle Scholar
  31. 31.
    Seiden, L. S. and Ricaurte, G. (1987) Neurotoxicity of methamphetamine and related drugs, in Psychopharmacology: The Third Generation of Progress ( Meltzer, H. Y., ed.), Raven, New York, pp. 359–365.Google Scholar
  32. 32.
    Seiden, L. S., Fischman, M. W., and Schuster, C. R. (1977) Changes in brain catecholamines induced by long-term methamphetamine administration in rhesus monkeys, in Cocaine and Other Stimulants ( Ellinwood, E. H., ed.), Plenum, New York, pp. 179–185.CrossRefGoogle Scholar
  33. 33.
    Wagner, G. C., Ricaurte, G. A., Seiden, L. S., Schuster, C. R., Miller, R. J., and Westley, J. (1980) Long-lasting depletions of striatal dopamine and loss of dopamine uptake sites following repeated administration of methamphetamine. Brain Res. 181, 151–160.CrossRefPubMedGoogle Scholar
  34. 34.
    Axt, K. J., Commins, D. L., Vosmer, G., and Seiden, L. S. (1990) Alpha-methyl-ptyrosine pretreatment partially prevents methamphetamine-induced endogenous neurotoxin formation. Brain Res. 515, 269–276.CrossRefPubMedGoogle Scholar
  35. 35.
    O’Hearn, E., Battaglia, G., Desouza, E. B., Kuhar, M. J., and Molliver, M. E. (1988) Methylenedioxyamphetamine (MDA) and methylenedioxymethamphetamine (MDMA) cause selective ablation of serotonergic axon terminals in forebrain: immunocytochemical evidence for neurotoxicity. J. Neurosci. 8, 2788–2803.PubMedGoogle Scholar
  36. 36.
    Ryan, L. J., Linder, J. C., Martone, M. E., and Groves, P. M. (1990) Histological and ultrastructural evidence that D-amphetamine causes degeneration in neostriatum and frontal cortex of rats. Brain Res. 518, 67–77.CrossRefPubMedGoogle Scholar
  37. 37.
    Steranka, L. R. and Sanders, B. E. (1980) Long-term effects of continuous exposure to amphetamine on brain dopamine concentration and synaptosomal uptake in mice. Eur. J. Pharmacol. 65, 439–443.CrossRefPubMedGoogle Scholar
  38. 38.
    Wagner, G. C., Ricaurte, G. A., Johanson, C. E., Schuster, C. R., and Seiden, L. S. (1980) Amphetamine induces depletion of dopamine and loss of dopamine uptake sites in caudate. Neurology 30, 547–550.CrossRefPubMedGoogle Scholar
  39. 39.
    Seiden, L. S., Fischman, M. W., and Schuster, C. R. (1976) Long-term methamphetamine induced changes in brain catecholamines in tolerant rhesus monkeys. Drug Alcohol Depend. 1, 215–219.CrossRefPubMedGoogle Scholar
  40. 40.
    Ricaurte, G. A., Schuster, C. R., and Seiden, L. S. (1980) Long-term effects of repeated methylamphetamine administration on dopamine and serotonin neurons in the rat brain: a regional study. Brain Res. 193, 153–163.CrossRefPubMedGoogle Scholar
  41. 41.
    Hotchkiss, A. and Gibb, J. W. (1980) Blockade of methamphetamine-induced depression of tyrosine hydroxylase by GABA transaminase inhibitors. Eur. J. Pharmacol. 66, 201–205.CrossRefPubMedGoogle Scholar
  42. 42.
    Wagner, G. C., Schuster, C. R., and Seiden, L. S. (1979) Methamphetamine induced changes in brain catecholamines in rats and guinea pigs. Drug Alcohol Depend. 4, 435–439.CrossRefPubMedGoogle Scholar
  43. 43.
    Levine, M., Hull, C. D., Garcia-Rill, E., Erinoff, L., Buchwald, N. A., and Heller, A. (1980) Long-term decreases in spontaneous firing of caudate neurons induced by amphetamine in cats. Brain Res. 194, 263–268.CrossRefPubMedGoogle Scholar
  44. 44.
    Hotchkiss, A. J. and Gibb, J. W. (1980) Long-term effects of multiple doses of methamphetamine on tryptophan hydroxylase and tyrosine hydroxylase activity in rat brain. J. Pharmacol. Exp. Ther. 214, 257–262.PubMedGoogle Scholar
  45. 45.
    Nwanze, E. and Jonsson, G. (1980) Amphetamine toxicity on dopamine nerve terminals in the caudate nucleus of mice. Neurosci. Lett. 26, 163–168.CrossRefGoogle Scholar
  46. 46.
    Wagner, G. C., Ricaurte, G. A., Seiden, L. S., Schuster, C. R., Miller, R. J., and Westley, J. (1980) Long-lasting depletions of striatal dopamine and loss of dopamine uptake sites following repeated administration of methamphetamine. Brain Res. 181, 151–160.CrossRefPubMedGoogle Scholar
  47. 47.
    Wagner, G. C., Seiden, L. S., and Schuster, C. R. (1979) Methamphetmine-induced changes in brain catecholamines in rats and guinea pigs. Drug Alcohol Depend. 4, 435–438.CrossRefPubMedGoogle Scholar
  48. 48.
    Lorez, H. (1981) Fluorescence histochemistry indicates damage of striatal dopamine nerve terminals in rats after multiple doses of methamphetamine. Life Sci. 28, 911–916.CrossRefPubMedGoogle Scholar
  49. 49.
    Ricaurte, G. A., Guillery, R. W., Seiden, L. S., Schuster, C. R., and Moore, R. Y. (1982) Dopamine nerve terminal degeneration produced by high doses of methylamphetamine in the rat brain. Brain Res. 235, 93–103.CrossRefPubMedGoogle Scholar
  50. 50.
    Woolverton, W. L., Ricaurte, G. A., Forno, L. S., and Seiden, L. S. (1989) Long-term effects of chronic methamphetamine administration in rhesus monkeys. Brain Res. 486, 73–78.CrossRefPubMedGoogle Scholar
  51. 51.
    Walsh, S. L. and Wagner, G. C. (1990) The effects of methamphetamine-induced neurotoxicity on motor performance in the rat (56.8) [Abstract]. Soc. Neurosci. Abstracts 16.Google Scholar
  52. 52.
    Richards, J. B., Baggott, M. J., Sabol. K. E., and Seiden, L. S. (1993) A high-dose methamphetamine regimen results in long lasting deficits on the performance of a reaction time task. Brain Res. 627, 254–260.Google Scholar
  53. 53.
    Ando, K., Johanson, C. E., and Schuster, C. R. (1986) Effects of dopaminergic agents on eye tracking before and after repeated methamphetamine. Pharmacol. Biochem. Behay. 24, 693–699.CrossRefGoogle Scholar
  54. 54.
    Ando, K., Johanson, C. E., Seiden, L. S., and Schuster, C. R. (1985) Sensitivity changes to dopaminergic agents in fine motor control of rhesus monkeys after repeated methamphetamine administration. Pharmacol. Biochem. Behay. 22, 737–743.CrossRefGoogle Scholar
  55. 55.
    Finnegen, K. T., Ricaurte, G., Seiden, L. S., and Schuster, C. R. (1982) Altered sensitivity to d-methylamphetamine, apomorphine, and haloperidol in rhesus monkeys depleted of caudate dopamine by repeated administration of d-methylamphetamine Psychopharmacology (Berlin) 77, 43–52.CrossRefGoogle Scholar
  56. 56.
    Fischman, M. W. and Schuster, C. R. (1977) Long-term behavioral changes in the rhesus monkey after multiple daily injections of d-methylamphetamine. J. Pharmacol. Exp. Ther. 201, 593–605.PubMedGoogle Scholar
  57. 57.
    Nencini, P., Woolverton, W. L., and Seiden, L. S. (1988) Enhancement of morphine-induced analgesia after repeated injections of methylenedioxymethamphetamine Brain Res. 457, 136–142.CrossRefPubMedGoogle Scholar
  58. 58.
    Johanson, C. E., Aigner, T. G., Seiden, L. S., and Schuster, C. R. (1979) The effects of methamphetamine on fine motor control in rhesus monkeys. Pharmacol. Biochem. Behay. 11, 273–278.CrossRefGoogle Scholar
  59. 59.
    Preston, K. L. and Schuster, C. R. (1982) A comparison of the central and peripheral effects of atropine on force lever performance Pharmacol. Biochem. Behay. 16, 423–427.CrossRefGoogle Scholar
  60. 60.
    Carter, C. J. and Pycock, C. J. (1978) Differential effects of central serotonin manipulation on hyperactive and stereotyped behaviour. Life Sci. 23, 953–960.CrossRefPubMedGoogle Scholar
  61. 61.
    Zenick, H. and Goldsmith, M. (1981) Drug discrimination learning in lead-exposed rats. Science 212, 569–571.CrossRefPubMedGoogle Scholar
  62. 62.
    Green, A. R., Cross, A. J., and Goodwin, G. M. (1995) Review of the pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA or “ecstacy”). Psychopharmacology 119, 247–260.CrossRefPubMedGoogle Scholar
  63. 63.
    Steele, T. D., McCann, U. D., and Ricaurte, G. A. (1994) Methylenedioxymethamphetamine (MDMA, “Ecstasy”): pharmacology and toxicology in animals and humans [Review]. Addiction 89, 539–551.CrossRefPubMedGoogle Scholar
  64. 64.
    Nichols, D. (1986) Differences between the mechanism of action of MDMA, MBDB and the classic hallucinogens. Identification of a new therapeutic class: entactogens. J. Psychoactive Drugs 18, 305–313.CrossRefPubMedGoogle Scholar
  65. 65.
    Eisner, B. (1989) Ecstacy: The MDMA Story. Ronin Publications, Berkeley, CA.Google Scholar
  66. 66.
    Peroutka, S. J., Newman, H., and Harris, H. (1988) Subjective effects of 3,4-methylenedioxymethamphetamine in recreational users. Neuropsychopharmacology 1, 273–277.PubMedGoogle Scholar
  67. 67.
    Grinspoon, L. and Bakalar, J. B. (1986) Can drugs be used to enhance the psychotherapeutic process? Am. J. Psychother. 40, 393–404.PubMedGoogle Scholar
  68. 68.
    Henry, J. A. (1992) Toxicity and deaths from 3,4-methylenedioxymethamphetamine (“ecstacy”). Lancet 340, 384–387.CrossRefPubMedGoogle Scholar
  69. 69.
    Peroutka, S. J. (1987) Incidence of recreational use of 3,4-methylenediomethoxymethamphetamine (MDMA, “ecstasy”) on an undergraduate campus [Letter]. N. Engl. J. Med. 317, 1542–1543.PubMedGoogle Scholar
  70. 70.
    Cuomo, M. J., Dyment, P. G., and Gammino, V. M. (1994) Increasing use of “Ecstasy” (MDMA) and other hallucinogens on a college campus. J. Am. Coll. Health 42, 271–274.CrossRefPubMedGoogle Scholar
  71. 71.
    Randall, T. (1992) Ecstacy-fueled “Rave” parties become dances of death for english youths. JAMA 268, 1505–1506.CrossRefPubMedGoogle Scholar
  72. 72.
    Farfel, G. M. and Seiden, L. S. (1995) Role of hypothermia in the mechanism of protection against serotonergic toxicity. I. Experiments using 3,4-methylenedioxymethamphetamine, dizocilpine, CGS 19755 and NBQX. J. Pharmacol. Exp. Ther. 272, 860–867.PubMedGoogle Scholar
  73. 73.
    Battaglia, G., Yeh, S. Y., and Desouza, E. B. (1988) MDMA-induced neurotoxicity: parameters of degeneration and recovery of brain serotonin neurons. Pharmacol. Biochem. Behan 29, 269–274.CrossRefGoogle Scholar
  74. 74.
    Stone, D. M., Hanson, G. R., and Gibb, J. W. (1987) Differences in the central serotonergic effects of methylenedioxymethamphetamine (MDMA) in mice and rats. Neuropharmacology 26, 1657–1661.CrossRefPubMedGoogle Scholar
  75. 75.
    Battaglia, G., Brooks, B. P., Kulsakdinun, C., and De S. E. (1988) Pharmacologie profile of MDMA (3,4-methylenedioxymethamphetamine) at various brain recognition sites. Eur. J. Pharmacol. 149, 159–163.CrossRefPubMedGoogle Scholar
  76. 76.
    Insel, T. R., Battaglia, G., Johanssen, J., Marra, S., and Desouza, E. B. (1989) 3,4-Methylenedioxymethamphetamine (“Ecstacy”) selectively destroys brain serotonin nerve terminals in rhesus monkeys. J. Pharmacol. Exp. Ther. 249, 713–720.Google Scholar
  77. 77.
    Ricaurte, G. A., Martello, A. L., Katz, J. L., and Martello, M. B. (1992) Lasting effects of (+-)-3,4-methylenedioxymethamphetamine (MDMA) on central serotonergic neurons in nonhuman primates: neurochemical observations. J. Pharmacol. Exp. Ther. 261, 616–622.PubMedGoogle Scholar
  78. 78.
    Ricaurte, G. A. and McCann, U. D. (1992) Neurotoxic amphetamine analogues: effects in monkeys and implications for humans [Review]. Ann. NYAcad. Sci. 648, 371–382.CrossRefPubMedGoogle Scholar
  79. 79.
    Schmidt, C. J. and Taylor, V. L. (1987) Depression of rat brain tryptophan hydroxylase activity following the acute administration of methylenedioxymethamphetamine. Biochem. Pharmacol. 36, 4095–4102.CrossRefPubMedGoogle Scholar
  80. 80.
    Stone, D. M., Johnson, M., Hanson, G. R., and Gibb, J. W. (1988) Role of endogenous dopamine in the central serotonergic deficits induced by 3,4-methylenedioxymethamphetamine. J. Pharmacol. Exp. Ther. 247, 79–87.PubMedGoogle Scholar
  81. 81.
    Commins, D. L., Vosmer, G., Virus, R. M., Woolveerton, W. L., Schuster, C. R., and Seiden, L. S. (1987) Biochemical and histological evidence that methylenedioxymethamphetamine (MDMA) is toxic to neurons in the rat brain. J. Pharmacol. Exp. Ther. 241, 338–345.PubMedGoogle Scholar
  82. 82.
    Lew, R., Sabol, K. E., Chou, C., Vosmer, G. L., Richards, J., and Seiden, L. S. (1996) Methylenedioxymethamphetamine (MDMA)-induced serotonin deficits are followed by partial recovery over a 52 week period. Part II: Radioligand binding and autoradiographic studies. J. Pharmacol. Exp. Ther. 276, 855–865.PubMedGoogle Scholar
  83. 82a.
    Molliver, M. E., Mamounas, L. A., and Wilson, M. A. (1989) Effects of neurotoxic amphetamines on serotonergic neurons: immunocytochemical studies, in Pharmacology and Toxicology of Amphetamine and Related Designer Drugs ( Asghar, K. and De Souza, E., eds.), NIDA Research Monograph, US Department of Health and Human Service, Washington, DC, pp. 270–305.Google Scholar
  84. 83.
    Scanzello, C. R., Hatzidimitriou, G., Martello, A. L., Katz, J. L., and Ricaurte, G. A. (1993) Serotonergic recovery after (+/—)3,4-(methylenedioxy) methamphetamine injury: observations in rats. J. Pharmacol. Exp. Ther. 264, 1484–1491.PubMedGoogle Scholar
  85. 83a.
    Scheffel, U. and Ricaurte, G. A. (1990) Paroxetine as an in vivo indicator of 3,4-methylenedioxymethamphetamine neurotoxicity: a presynaptic serotonergic positron emission tomography ligand? Brain Res. 527, 89–95.CrossRefPubMedGoogle Scholar
  86. 84.
    Bowyer, J. F., Davies, D. L., Schmued, L., Broening, H. W., Newport, G. D., Slikker, W. J., and Holson, R. R. (1994) Further studies of the role of hyperthermia in methamphetamine neurotoxicity. J. Pharmacol. Exp. Ther. 268, 1571–1580.PubMedGoogle Scholar
  87. 85.
    Fischer, C., Hatzidimitriou, G., Wlos, J., Katz, J., and Ricaurte, G. (1995) Reorganization of ascending 5-HT axon projections in animals previously exposed to the recreational drug (+/—)3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”). J. Neuroscience 15, 5476–5485.Google Scholar
  88. 86.
    Sabol, K. E., Lew, R., Richards, J. B., Vosmer, G. L., and Seiden, L. S. (1996) Methylenedioxymethamphetamine (MDMA)-induced serotonin deficits are followed by partial recovery over a 52 week period. Part I: Synaptosomal uptake and tissue concentrations. J. Pharmacol. Exp. Ther. 276, 846–854.PubMedGoogle Scholar
  89. 87.
    Ricaurte, G. A., Forno, L. S., Wilson, M. A., Delanney, L. E., Irwin, I., Molliver, M. E., and Langston, J. W. (1988) (+/—)3,4-Methylenedioxymethamphetamine selectively damages central serotonergic neurons in nonhuman primates. JAMA 260, 51–55.Google Scholar
  90. 88.
    Ricaurte, G. A., Delanney, L. E., Irwin, I., and Langston, J. W. (1988) Toxic effects of MDMA on central serotonergic neurons in the primate: importance of route and frequency of drug administration. Brain Res. 446, 165–168.CrossRefPubMedGoogle Scholar
  91. 89.
    Battaglia, G., Yeh, S. Y., O’Hearn, E., Molliver, M. E., Kuhar, M. J., and De Souza, E. B. (1987) 3,4-Methylenedioxymethamphetamine and 3,4-methylenedioxyamphetamine destroy serotonin terminals in rat brain: quantification of neurodegeneration by measurement of [3H]paroxetine-labeled serotonin uptake sites. J. Pharmacol. Exp. Ther. 242, 911–916.Google Scholar
  92. 90.
    Ricaurte, G. A., Finnegan, K. T., Irwin, I., and Langston, J. W. (1990) Aminergic metabolites in cerebrospinal fluid of humans previously exposed to MDMA: Preliminary observations. Ann. NYAcad. Sci. 600, 699–710.CrossRefPubMedGoogle Scholar
  93. 91.
    Atkinson, R. L. and Hubbard, V. S. (1994) Report on the NIH workshop on pharmacologic treatment of obesity. Am. J. Clin.. Nutr. 60, 153–156.PubMedGoogle Scholar
  94. 92.
    Le Douarec, P., Neveu, C., and Garattini, S. (1970) Pharmacology and biochemistry of fenfluramine, in Amphetamine and Related Compounds ( Costa, E., ed.), Raven, New York, pp. 75–105.Google Scholar
  95. 93.
    Kleven, M. S. and Seiden, L. S. (1989) DL-fenfluramine cause long-lasting depletions of serotonin in rat brain. Brain Res. 505, 351–353.CrossRefPubMedGoogle Scholar
  96. 94.
    Nicolaidis, S. (1997) Obesity Management Redux. Academic, San Diego.Google Scholar
  97. 95.
    Clineschmidt, B. V., Zacchei, A. G., Totaro, J. A., Pfluger, A. B., McGuffin, J. C., and Wishousky, T. I. (1978) Fenfluramine and brain serotonin. Ann. NY Acad. Sci. 305, 222–241.CrossRefPubMedGoogle Scholar
  98. 96.
    Harvey, J. A., McMaster, S. E., and Fuller, R. W. (1977) Comparison between the neurotoxic and serotonin depleting effects of various halogenated derivatives of amphetamine in the rat. J. Pharmacol. Exp. Ther. 202, 581–589.PubMedGoogle Scholar
  99. 97.
    Harvey, J. A. and McMaster, S. E. (1975) Fenfluramine: evidence for a neurotoxic action on a long-term depletion of serotonin. Psychopharmacol. Commun. 1, 217–228.PubMedGoogle Scholar
  100. 98.
    Kleven, M. S., Schuster, C. R., and Seiden, L. S. (1988) Effect of depletion of brain serotonin by repeated fenfluramine on neurochemical and anorectic effects of acute fenfluramine. J. Pharmacol. Exp. Ther. 246, 822–828.PubMedGoogle Scholar
  101. 99.
    Sanders-Bush, E., Bushing, J. A., and Sulser, F. (1975) Long-term effects of p-chloroamphetamine and related drugs on central serotonergic mechanisms. J. Pharmacol. Exper. Ther. 192, 33–41.Google Scholar
  102. 100.
    Schuster, C. R., Lewis, M., and Seiden, L. S. (1986) Fenfluramine: neurotoxicity. Psychopharmacol. Bull. 22, 148–151.PubMedGoogle Scholar
  103. 101.
    Steranka, L. R. and Sanders-Bush, E. (1979) Long-term effects of fenfluramine on central serotonergic mechanisms. Neuropharmacology 18, 895–903.CrossRefPubMedGoogle Scholar
  104. 102.
    Zaczek, R., Battaglia, G., Culp, S., Appel, N. M., Contrera, J. F., and DeSouza, E. B. (1990) Effects of repeated fenfluramine administration on indices of monoamine function in rat brain: pharmacokinetic, dose response, regional specificity and time course data. Pharmacol. Exp. Ther. 253, 104–112.Google Scholar
  105. 103.
    McCann, U., Hatzidimitriou, G., Ridenour, A., Fischer, C., Yuan, J., Katz, J., and Ricaurte, G. (1994) Dexfenfluramine and serotonin neurotoxicity: further preclinical evidence that clinical caution is indicated. J. Pharmacol. Exp. Ther. 269, 792–798.PubMedGoogle Scholar
  106. 104.
    Ricaurte, G. A., Molliver, M. E., Martello, M. B., Katz, J. L., Wilson, M. A., and Martello, A. L. (1991) Dexfenfluramine neurotoxicity in brains of non-human primates [see comments]. Lancet 338, 1487–1488.CrossRefPubMedGoogle Scholar
  107. 105.
    Scheffel, U., Szabo, Z., Mathews, W. B., Finley, P. A., Yuan, J., Callahan, B., Hatzidimitriou, G., Dannals, R. F., Ravert, H. T., and Ricaurte, G. A. (1996) Fenfluramine-induced loss of serotonin transporters in baboon brain visualized with PET. Synapse.Google Scholar
  108. 106.
    Appel, N. M., Contrera, J. F., and De Souza, E. B. (1989) Fenfluramine selectively and differentially decreases the density of serotonergic nerve terminals in rat brain: evidence from immunocytochemical studies. J. Pharmacol. Exp. Ther. 249, 928–943.PubMedGoogle Scholar
  109. 107.
    Molliver, D. C. and Molliver, M. E. (1990) Anatomic evidence for a neurotoxic effect of (+/—)-fenfluramine upon serotonergic projections in the rat. Brain Res. 511, 165–168.CrossRefPubMedGoogle Scholar
  110. 108.
    Appel, N. M., Mitchell, W. M., Contrera, J. F., and De Souza, E. B. (1990) Effects of high-dose fenfluramine treatment on monoamine uptake sites in rat brain: assessment using quantitative autoradiography. Synapse 6, 33–44.CrossRefPubMedGoogle Scholar
  111. 109.
    Lew, R., Weisenberg, B., Vosmer, G., and Seiden, L. S. (1997) Combined phentermine/fenfluramine administration enhances depletion of serotonin from central terminal fields. Synapse 26, 36–45.CrossRefPubMedGoogle Scholar
  112. 110.
    Kalia, M. (1991) Reversible, short-lasting, and dose-dependent effect of (+)-fenfluramine on neocortical serotonergic axons. Brain Res. 548, 111–125.CrossRefPubMedGoogle Scholar
  113. 111.
    Sotelo, C. (1991) Immunohistochemical study of short-and long-term effects of DL-fenfluramine on the serotonergic innervation of the rat hippocampal formation. Brain Res. 541, 309–326.CrossRefPubMedGoogle Scholar
  114. 112.
    Caccia, S., Ballabio, M., Guiso, G., Rocchetti, M., and Garattini, S. (1982) Species diffrences in the kinetics and metabolism of fenfluramine isomers. Arch. Int. Pharmacodyn. 258, 15–28.PubMedGoogle Scholar
  115. 113.
    Westphalen, R. I. and Dodd, P. R. (1995) The nature of d,l-fenfluramine-induced 5-HT reuptake transporter loss in rats. Mol. Neurobiol. 11, 165–175.CrossRefPubMedGoogle Scholar
  116. 114.
    Westphalen, R. I. and Dodd, P. R. (1993) New evidence for a loss of serotonergic nerve terminals in rats treated with d,l-fenfluramine. Pharmacol. Toxicol. 72, 249–255.CrossRefPubMedGoogle Scholar
  117. 115.
    Westphalen, R. I. and Dodd, P. R. (1993) The regeneration of d,/-fenfluraminedestroyed serotonergic nerve terminals. Eur. J. Pharmacol. 238, 399–402.CrossRefPubMedGoogle Scholar
  118. 116.
    Battaglia, G., Norman, A. B., Newton, P. L., and Creese, I. (1986) In vitro and in vivo irreversible blockade of cortical S2 serotonin receptors by N-ethoxycarbonyl-2ethoxy-1,2-dihydroquinoline: a technique for investigating S2 serotonin receptor recovery. J. Neurochem. 46, 589–593.CrossRefPubMedGoogle Scholar
  119. 117.
    Norton, W. T., Aquino, D. A., Hozumi, I., Chiu, F. C., and Brosnan, C. F. (1992) Quantitative aspects of reactive gliosis: a review. Neurochem. Res. 17, 877–885.CrossRefPubMedGoogle Scholar
  120. 118.
    O’Callaghan, J. P. and Miller, D. B. (1994) Neurotoxicity profiles of substituted amphetamines in the C57BL/6J mouse. J. Pharmacol. Exp. Ther. 270, 741–751.PubMedGoogle Scholar
  121. 118a.
    Miller, D. B. and O’Callaghan, J. P. (1994) Environment-, drug-and stress-induced alterations in body temperature affect the neurotoxicity of substituted amphetamines in the C57BL/6J mouse. J. Pharmacol. Exp. Ther. 270, 752–760.PubMedGoogle Scholar
  122. 119.
    Rowland, N. E., Kalehua, A. N., Li, B. H., Semple-Rowland, S. L., and Streit, W. J. (1993) Loss of serotonin uptake sites and immunoreactivity in rat cortex after dexfenfluramine occur without parallel glial cell reactions. Brain Res. 624, 35–43.CrossRefPubMedGoogle Scholar
  123. 120.
    Roth, B. L. (1994) Multiple serotonin receptors: clinical and experimental aspects [Review]. Ann. Clin. Psychiatry 6, 67–78.CrossRefPubMedGoogle Scholar
  124. 121.
    Hoebel, B. G., Hernandez, L., Schwartz, D. H., Mark, G. P., and Hunter, G. A. (1989) Microdialysis studies of brain norepinephrine, serotonin, and dopamine release during ingestive behavior. Theoretical and clinical implications [Review]. Ann. of Acad. Sci. 575, 171–191.CrossRefGoogle Scholar
  125. 122.
    Kleven, M. S., Woolverton, W. L., and Seiden, L. S. (1991) Evaluation of potential neurotoxic effects of amphetamine-related anorectic agents on brain serotonin and dopamine in the rat [Abstract]. Proc. Soc. Neurosci. 17.Google Scholar
  126. 123.
    Weintraub, M., Sundaresan, P. R., Madan, M., Schuster, B., Balder, A., Lasagna, L., and Cox, C. (1992) Long-term weight control study. I (weeks 0 to 34). The enhancement of behavior modification, caloric restriction, and exercise by fenfluramine plus phentermine versus placebo. Clin. Pharmacol. Ther. 51, 586–594.CrossRefPubMedGoogle Scholar
  127. 124.
    Weintraub, M., Sundaresan, P. R., Schuster, B., Ginsberg, G., Madan, M., Balder, A., Stein, E. C., and Byrne, L. (1992) Long-term weight control study. II (weeks 34 to 104). An open-label study of continuous fenfluramine plus phentermine versus targeted intermittent medication as adjuncts to behavior modification, caloric restriction, and exercise. Clin. Pharmacol. Ther. 51, 595–601.CrossRefPubMedGoogle Scholar
  128. 125.
    Weintraub, M., Sundaresan, P. R., Schuster, B., Moscucci, M., and Stein, E. C. (1992) Long-term weight control study. III (weeks 104 to 156). An open-label study of dose adjustment of fenfluramine and phentermine. Clin. Pharmacol. Ther. 51, 602–607.CrossRefPubMedGoogle Scholar
  129. 126.
    Weintraub, M., Sundaresan, P. R., Schuster, B., Averbuch, M., Stein, E. C., Cox, C., and Byrne, L. (1992) Long-term weight control study. IV (weeks 156 to 190). The second double-blind phase. Clin. Pharmacol. Ther. 51, 608–614.CrossRefPubMedGoogle Scholar
  130. 127.
    Weintraub, M., Sundaresan, P. R., Schuster, B., Averbuch, M., Stein, E. C., and Byrne, L. (1992) Long-term weight control study. V (weeks 190 to 210). Follow-up of participants after cessation of medication. Clin. Pharmacol. Ther. 51, 615–618.CrossRefPubMedGoogle Scholar
  131. 128.
    Weintraub, M., Hasday, J. D., Mushlin, A. I., and Lockwood, D. H. (1984) A double-blind clinical trial in weight control. Use of fenfluramine and phentermine alone and in combination. Arch. Int. Med. 144, 1143–1148.CrossRefGoogle Scholar
  132. 129.
    Weintraub, M. (1992) Long-term weight control study: Conclusions. Clin. Pharmacol. Ther. 51, 642–646.CrossRefPubMedGoogle Scholar
  133. 130.
    Silverstone, T. (1992) Appetite suppressants. A review [Review]. Drugs 43, 820–36.CrossRefPubMedGoogle Scholar
  134. 131.
    Chappell, W. R. (1989) Interspecific scaling of toxicity data: A question of interpretation. Risk Anal. 9, 13–14.CrossRefPubMedGoogle Scholar
  135. 132.
    Mordenti, J., Chen, S. A., Moore, J. A., Ferraiolo, B. L., and Green, J. D. (1991) Inter-species scaling of clearance and volume of distribution data for five therapeutic proteins. Pharm. Res. 8, 1351–1359.CrossRefPubMedGoogle Scholar
  136. 133.
    Alvares, A. P., Pratt, W. B., and Taylor, P. (1990) Pathways of drug metabolism, in Principles of Drug Action: The Basis of Pharmacology ( Pratt, W. B., ed.), pp. 365–422, Churchill Livingstone, New York.Google Scholar
  137. 134.
    Freireich, E. J., Gehan, E. A., Rall, D. P., Schmidt, L. H., and Skipper, H. E. (1966) Quantitative comparison of toxicity of anticancer agents in mouse, rat, hamster, dog, monkey and man. Cancer Cherother. Rep. 50, 219–226.Google Scholar
  138. 135.
    Guy-Grand, B. (1992) Clinical studies with d-fenfluramine. Am. J. Clin. Nutr. 55, 1735–176S.Google Scholar
  139. 136.
    Schmidt, C. J., Ritter, J. K., Sonsalla, P. K., Hanson, G. R., and Gibb, J. W. (1985) Role of dopamine in the neurotoxic effects of methamphetamine. J. Pharmacol. Exp. Ther. 233, 539–544.PubMedGoogle Scholar
  140. 137.
    Carlsson, A. (1993) Search for the neuronal circuitries and neurotransmitters involved in “Positive” and “Negative” schizophrenic symptomatology. Fidia Research Foundation Lecture Series 7.Google Scholar
  141. 138.
    Wagner, G. C., Lowndes, H. E., and Kita, T. (1993) Methamphetamine-induced 6-hydroxydopamine formation following MAO and COMT inhibition [Abstract]. Soc. Neurosci. Abstracts 19.Google Scholar
  142. 139.
    Axt, K. J. and Seiden, L. S. (1990) alpha-Methyl-p-tyrosine partially attenuates p-chloroamphetamine-induced 5-hydroxytryptamine depletions in the rat brain. Pharmacol. Biochem. Behay. 35, 995–997.Google Scholar
  143. 140.
    Giovanni, A., Hastings, T. G., Liang, L. P., and Zigmond, M. J. (1992) Metamphetamine increases hydroxyl radicals in rat striatum: Role of dopamine [Abstract] Soc. Neurosci. Abstracts 18.Google Scholar
  144. 141.
    Hastings, T. G., and Zigmond, M. J. (1992) Prostaglandin synthase-catalyzed oxidation of dopamine [Abstract]. Soc. Neurosci. Abstracts 18.Google Scholar
  145. 142.
    Liang, L. P., Hastings, T. G., Zigmond, M. J., and Giovanni, A. (1992) Use of salicylate to trap hydroxyl radicals in rat brain: a methodological study [Abstract]. Soc. Neurosci. Abstracts 18.Google Scholar
  146. 143.
    Seiden, L. S. and Vosmer, G. (1984) Formation of 6-hydroxydopamine in caudate nucleus of the rat brain after a single large dose of methylamphetamine. Pharmacol. Biochem. Behay. 21, 29–31.CrossRefGoogle Scholar
  147. 144.
    Zigmond, M. J. and Hastings, T. G. (1992) A method for measuring dopamine-protein conjugates as an index of dopamine oxidation [Abstract]. Soc. Neurosci. Abstracts 18.Google Scholar
  148. 145.
    Butcher, S. P., Fairbrother, I. S., Kelly, J. S., and Arbuthnott, G. W. (1988) Amphetamine-induced dopamine release in the rat striatum: an in vivo microdialysis study. J. Neurochem. 50, 346–355.CrossRefPubMedGoogle Scholar
  149. 146.
    Sonsalla, P. K., Gibb, J. W., and Hanson, G. R. (1986) Roles of Dl and D2 dopamine receptor subtypes in mediating the methamphetamine-induced changes in monoamine systems. J. Pharmacol. Exp. Ther. 238, 932–937.PubMedGoogle Scholar
  150. 147.
    Creese, I., Sibley, D. R., Hamblin, M. W., and Leff, S. E. (1983) Dopamine receptors in the central nervous system [Review] Adv. Biochem. Psychopharmacol. 36, 125–134.PubMedGoogle Scholar
  151. 148.
    Carlsson, A. and Lindqvist, M. (1963) Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol. Toxicol. 20, 140–144.CrossRefGoogle Scholar
  152. 149.
    Brownstein, M. J. and Palkovits, M. (1984) Catecholamines, serotonin, acetylcholine, and y-aminobutyric acid in the rat brain: biochemical studies, in Handbook of Chemical Neuroanatomy: Classical Transmitters in the CNS ( Bjorklund, A. and Hokfelt, T., eds.), Elsevier, Amsterdam, pp. 23–54.Google Scholar
  153. 150.
    Nash, J. F. (1990) Ketanserin pretreatment attenuates MDMA-induced dopamine release in the striatum as measured by in vivo microdialysis. Life Sci. 47, 2401–2408.CrossRefPubMedGoogle Scholar
  154. 151.
    Schmidt, C. J., Black, C. K., Taylor, V. L., Fadayel, G. M., Hymphreys, T. M., Nieduzak, T. R., and Sorensen, S. M. (1992) The 5-HT2 receptor antagonist, MDL, 133A, disrupts the serotonergic-dopaminergic interaction mediating the neurochemical effects of 3,4-methylenedioxymethamphetamine Eur. J. Pharmacol. 220, 151–159.CrossRefPubMedGoogle Scholar
  155. 152.
    Schmidt, C. J., Fadayel, G. M., Sullivan, C. K., and Taylor, V. L. (1992) 5-HT2 receptors exert a state-dependent regulation of dopaminergic function: studies with MDL 100,907 and the amphetamine analogue, 3,4-methylenedioxymethamphetamine. Eur. J. Pharmacol. 223, 65–74.Google Scholar
  156. 153.
    Schmidt, C. J., Taylor, V. L., Abbate, G. M., and Nieduzak, T. R. (1991) 5-HT2 antagonists stereoselectively prevent the neurotoxicity of 3,4-methylenedioxymethamphetamine by blocking the acute stimulation of dopamine synthesis: reversal by L-dopa. J. Pharmacol. Exp. Ther. 256, 230–235.Google Scholar
  157. 154.
    Minchin, M. C. W. (1985) Inositol phospholipid breakdown as an index of serotonin receptor function, in Neuropharmacology of Serotonin ( Green, A. R., ed.), Oxford, New York, pp. 117–130.Google Scholar
  158. 155.
    Berridge, M. J. and Galione, A. (1988) Cytosolic calcium oscillators. FASEB J 2, 3074–3082.PubMedGoogle Scholar
  159. 156.
    Gandhi, C. R. and Ross, D. H. (1988) Characterization of a high-affinity Mgt+-independent Ca2+-ATPase from rat brain synaptosomal membranes. J. Neurochem. 50, 248–256.CrossRefPubMedGoogle Scholar
  160. 157.
    Sonsalla, P. K., Nicklas, W. J., and Heikkila, R. E. (1989) Role for excitatory amino acids in methamphetamine-induced nigrostriatal dopaminergic toxicity. Science 243, 398–400.CrossRefPubMedGoogle Scholar
  161. 158.
    Farfel, G. M., Vosmer, G. L., and Seiden, L. S. (1992) The N-methyl-D-aspartate antagonist MK-801 protects against serotonin depletions induced by methamphetamine, 3,4-methylenedioxymethamphetamine and p-chloroamphetamine. Brain Res. 595, 121–127.CrossRefPubMedGoogle Scholar
  162. 159.
    Johnson, M., Hanson, G. R., and Gibb, J. W. (1989) Effect of MK-801 on the decrease in tryptophan hydroxylase induced by methamphetamine and its methylenedioxy analog. Eur. J. Pharm. 165, 315–318.CrossRefGoogle Scholar
  163. 160.
    Frandsen, A. and Schousboe, A. (1991) Dantrolene prevents glutamate cytotoxicity and Ca2+ release from intracellular stores in cultured cerebral cortical neurons. J. Neurochem. 56, 1075–1078.CrossRefPubMedGoogle Scholar
  164. 161.
    Lei, S. Z., Zhang, D., Abele, A. E., and Lipton, S. A. (1992) Blockade of NMDA receptor-mobilization of intracellular Ca2+ prevents neurotoxicity. Brain Res. 598, 196–202.CrossRefPubMedGoogle Scholar
  165. 162.
    Weihmuller, F. B., O’Dell, S. J., Cole, B. N., and Marshall, J. F. (1991) MK-801 attenuates the dopamine-releasing but not the behavioral effects of methamphetamine: an in vivo microdialysis study. Brain Res. 549, 230–235.CrossRefPubMedGoogle Scholar
  166. 163.
    Kashihara, K., Okumura, K., Onishi, M., and Otsuki, S. (1991) MK-801 fails to modify the effect of methamphetamine on dopamine release in the rat striatum. Neuroreport 2, 236–238.CrossRefPubMedGoogle Scholar
  167. 164.
    Bowyer, J. F., Scallet, A. C., Holson, R. R., Lipe, G. W., Slikker, W., and Ali, S. F. (1991) Interactions of MK-801 with glutamate-, glutamine-and methamphetamineevoked release of [3H]dopamine from striatal slices. J. Pharmacol. Exp. Ther. 257, 262–270.PubMedGoogle Scholar
  168. 165.
    Wagner, G. C., Carelli, R. M., and Jarvis, M. F. (1986) Ascorbic acid reduces the dopamine depletion induced by methamphetamine and the 1-methyl-4-phenyl pyridinium ion. Neuropharmacology 25, 559–561.CrossRefPubMedGoogle Scholar
  169. 166.
    Commins, D. L., Axt, K. J., Vosmer, G., and Seiden, L. S. (1987) 5,6-Dihydroxytryptamine, a serotonergic neurotoxin, is formed endogenously in the rat brain. Brain Res. 403, 7–14.Google Scholar
  170. 167.
    O’Dell, S. J., Weihmuller, F. B., McPherson, R. J., and Marshall, J. F. (1992) Excitotoxic lesions in rat striatum protect against subsequent methamphetamine-induced dopamine terminal damage [Abstract]. Soc. Neurosci. Abstracts 18.Google Scholar
  171. 168.
    Fuller, R. W. and Hemrick-Luecke, S. (1980) Long-lasting depletion of striatal dopamine by a single injection of amphetamine in iprindole-treated rats. Science 209, 305–307.CrossRefPubMedGoogle Scholar
  172. 169.
    Marek, G. J., Vosmer, G., and Seiden, L. S. (1990) Dopamine uptake inhibitors block long-term neurotoxic effects of methamphetamine upon dopaminergic neurons. Brain Res. 513, 274–279.CrossRefPubMedGoogle Scholar
  173. 170.
    Ricaurte, G. A., Fuller, R. W., Perry, K. W., Seiden, L. S., and Schuster, C. R. (1983) Fluoxetine increases long-lasting neostriatal dopamine depletion after administration of d-methamphetamine and d-amphetamine. Neuropharmacology 22, 1165–1169.CrossRefPubMedGoogle Scholar
  174. 171.
    Green, A. R., DeSouza, R. J., Williams, J. L., Murray, T. K., and Cross, A. J. (1992) The neurotoxic effects of methamphetamine on 5-hydroxytryptamine and dopamine in brain: Evidence for the protective effect of chlormethiazole. Neuropharmacology 31, 315–321.CrossRefPubMedGoogle Scholar
  175. 172.
    Cadet, J. L., Ladenheim, B., Baum, I., Carlson, E., and Epstein C. (1994) CuZnsuperoxide dismutase (CuZnSOD) transgenic mice show resistance to the lethal effects of methylenedioxyamphetamine (MDA) and of methylenedioxymethamphetamine (MDMA). Brain Res. 655, 259–262.CrossRefPubMedGoogle Scholar
  176. 173.
    Cadet, J. L., Sheng, P., Ali, S., Rothman, R., Carlson, E., and Epstein, C. (1994) Attenuation of methamphetamine-induced neurotoxicity in copper/zinc superoxide dismutase transgenic mice. J. Neurochem. 62, 380–383.CrossRefPubMedGoogle Scholar
  177. 174.
    Hiramatsu, M., Kumagai, Y., Unger, S. E., and Cho, A. K. (1990) Metabolism of methylenedioxymethamphetamine: formation of dihydroxymethamphetamine and a quinone identified as its glutathione adduct. J. Pharmacol. Exp. Ther. 254, 521–527.PubMedGoogle Scholar
  178. 175.
    Chiueh, C. C., Miyake, H., and Peng, M. T. (1993) Role of dopamine autoxidation, hydroxyl radical generation, and calcium overload in underlying mechanisms involved in MPTP-induced parkinsonism. Adv. Neurol. 60, 251–258.PubMedGoogle Scholar
  179. 176.
    Colado, M. I. and Green, A. R. (1994) A study of the mechanism of MDMA (“ecstasy”)-induced neurotoxicity of 5-HT neurones using chlormethiazole, dizocilpine and other protective compounds. Br. J. Pharmacol. 111, 131–36.CrossRefPubMedGoogle Scholar
  180. 177.
    Murray, T. K., Williams, J. L., Misra, A., Colado, M. I., and Green, A. R. (1996) The spin trap reagent PBN attenuates degeneration of 5-HT neurons in rat brain induced by p-chloroamphetamine but not fenfluramine. Neuropharmacology 35, 1615–1620.CrossRefPubMedGoogle Scholar
  181. 178.
    Colado, M. I. and Green, A. R. (1995) The spin trap reagent alpha-phenyl-N-tert-butyl nitrone prevents “ecstasy”-induced neurodegeneration of 5-hydroxytryptamine neurones. Eur. J. Pharmacol. 280, 343–346.CrossRefPubMedGoogle Scholar
  182. 179.
    Che, S., Johnson, M., Hanson, G. R., and Gibb, J. W. (1995) Body temperature effect on methylenedioxymethampheatmine-induced acute decrease in tryptophan hydroxylast acitvity. Eur. J. Pharmacol. 293, 447–453.CrossRefPubMedGoogle Scholar
  183. 180.
    Carney, J. M. and Floyd, R. A. (1991) Protection against oxidative damage to CNS by alpha-phenyl-tert-butyl nitrone (PBN) and other spin-trapping agents: a novel series of nonlipid free radical scavengers. J. Mol. Neurosci. 3, 47–57.CrossRefPubMedGoogle Scholar
  184. 181.
    Albers, D. S. and Sonsalla, P. K. (1995) Methamphetamine-induced hyperthermia and dopaminergic neurotoxicity in mice: Pharmacological profile of protective and non-protective agents. J. Pharmacol. Exp. Ther. 275, 1104–1114.PubMedGoogle Scholar
  185. 182.
    Farfel, G. M. and Seiden, L. S. (1995) Role of hypothermia in the mechanism of protection against serotonergic toxicity. II. Experiments with methamphetamine, p-chloroamphetamine, fenfluramine, dizocilpine and dextromethorphan. J. Pharmacol. Exp. Ther. 272, 868–875.PubMedGoogle Scholar
  186. 183.
    Malberg, J. E., Sabol, K. E., and Seiden, L. S. (1996) Co-administration of MDMA with drugs that protect against MDMA neurotoxicity produces different effects on body temperature. J. Pharmacol. Exp. Ther. 278, 258–267.PubMedGoogle Scholar
  187. 184.
    Malberg, J. E. and Seiden, L. S. (1996) 3,4-Methylenedioxymethamphetamine (MDMA) 5HT neurotoxicity is a function of ambient temperature and core body temperature in rats [Abstract]. Soc. Neurosci. Abstracts 22.Google Scholar
  188. 185.
    Hewitt, K. E. and Green, A. R. (1994) Chlormethiazole, dizocilpine and haloperidol prevent the degeneration of serotonergic nerve terminals induced by administration of MDMA (Ecstacy) to rats. Neuropharmacology 33, 1589–1595.CrossRefPubMedGoogle Scholar
  189. 186.
    Gordon, C. J., Watkinson, W. P., O’Callaghan, J. P., and Miller, D. B. (1991) Effects of 3,4-methylenedioxymethamphetamine on autonomic thermoregulatory responses of the rat. Pharmacol. Biochem. Behay. 38, 339–344.CrossRefGoogle Scholar
  190. 187.
    Ali, S. E, Newport, G. D., Holson, R. R., Slikker, W. J., and Bowyer, J. E (1994) Low environmental temperatures or pharmacologic agents that produce hypothermia decrease methamphetamine neurotoxicity in mice. Brain Res. 658, 33–38.CrossRefPubMedGoogle Scholar
  191. 188.
    Malberg, J. E. and Seiden, L. S. (1997) Administration of Fenfluramine at different ambient temperatures produces different core temperature and 5HT neurotoxicity profiles. Brain Res.,in press.Google Scholar
  192. 189.
    Dafters, R. I. (1994) Effect of ambient temperature on hyperthermia and hyperkinesis induced by 3,4-methylenedioxymethamphetamine (MDMA or “ecstasy”) in rats. Psychopharmacology 114, 505–508.CrossRefPubMedGoogle Scholar
  193. 190.
    Frey, H. H. (1975) Hyperthermia induced by amphetamine, p-chloroamphetamine and fenfluramine in the rat. Pharmacology 13, 163–176.CrossRefGoogle Scholar
  194. 191.
    Preston, E., Ma, S., and Hass, N. (1990) Ambient temperature modulation of fenfluramine-induced thermogenesis in the rat. Neuropharmacology 29, 277–283.CrossRefPubMedGoogle Scholar
  195. 192.
    Wilkinson, L. O., Auerbach, S. B., and Jacobs, B. L. (1991) Extracellular serotonin levels change with behavioral state but not with pyrogen-induced hyperthermia. J. Neurosci. 11, 2732–2741.PubMedGoogle Scholar
  196. 193.
    Gordon, C. J. and Fogelson, L. (1994) Metabolic and thermoregulatory responses of the rat maintained in acrylic or wire-screen cages: implications for pharmacological studies. Physiol. Behay. 56, 73–79.CrossRefGoogle Scholar
  197. 194.
    Lehninger, A. L. (1975) Biochemistry. Worth Publishers, New York.Google Scholar
  198. 195.
    Bowyer, J. E, Gough, B., Slikker, W. J., Lipe, G. W., Newport, G. D., and Holson, R. R. (1993) Effects of a cold environment or age on methamphetamine-induced dopamine release in the caudate putamen of female rats. Pharmacol. Biochem. Behan 44, 87–98.CrossRefGoogle Scholar
  199. 196.
    Pileblad, E., Slivka, A., Bratvold, B., and Cohen, G. (1988) Studies on the autoxidation of dopamine: Interaction with ascorbate. Arch. Biochem. Biophys. 263, 447–452.CrossRefPubMedGoogle Scholar
  200. 197.
    Cohen, G. and Heikkila, R. E. (1974) The generation of hydrogen peroxide, superoxide radical, and hydroxyl radical by 6-hydroxydopamine, dialuric acid, and related cytotoxic agents. J. Biol. Chem. 249, 2447–2452.PubMedGoogle Scholar
  201. 198.
    Senoh, S. and Wiktop, B. (1959) Non-enzymatic conversions of dopamine to norephinephrine and trihydroxy phenethylamines. J. Am. Chem. Soc. 81, 6222–6235.CrossRefGoogle Scholar
  202. 199.
    Riederer, P., Dirr, A., Goetz, M., Sofic, E., Jellinger, K., and Youdim, M. B. (1992) Distribution of iron in different brain regions and subcellular compartments in Parkinson’s disease [Review]. Ann. Neuro. 32 (Suppl), 5101–104.CrossRefGoogle Scholar
  203. 200.
    Halliwell, B. and Gutteridge, J. M. (1984) Role of iron in oxygen radical reactions. Methods Enzymol. 105, 47–56.CrossRefPubMedGoogle Scholar
  204. 201.
    Fornstedt, B. and Carlsson, A. (1989) A marked rise in 5-S-cysteinyl-dopamine levels in guinea-pig striatum following reserpine treatment. J. Neural Transm. 76, 155–161.CrossRefPubMedGoogle Scholar
  205. 202.
    Fornstedt, B., Rosengren, E., and Carlsson, A. (1986) Occurrence and distribution of 5-S-cysteinyl derivatives of dopamine, dopa and dopac in the brains of eight mammalian species. Neuropharmacology 25, 451–454.CrossRefPubMedGoogle Scholar
  206. 203.
    Rollema, H., De, V. J. B., Westerink, B. H., Van, P. F. M., and Horn, A. S. (1986) Failure to detect 6-hydroxydopamine in rat striatum after the dopamine releasing drugs dexamphetamine, methylamphetamine and MPTP. Eur. J. Pharmacol. 132, 65–69.CrossRefPubMedGoogle Scholar
  207. 204.
    Marek, G. J., Vosmer, G., and Seiden, L. S. (1990) Pargyline increases 6-hydroxydopamine levels in the neostriatum of methamphetamine-treated rats. Pharm. Biochem. Behay. 36, 187–190.CrossRefGoogle Scholar
  208. 205.
    Ricaurte, G., Bryan, G., Strauss, L., Seiden, L., and Schuster, C. (1985) Hallucinogenic amphetamine selectively destroys brain serotonin nerve terminals. Science 229, 986–988.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • R. Lew
  • J. E. Malberg
  • George A. Ricuarte
  • Lewis S. Seiden

There are no affiliations available

Personalised recommendations