Skip to main content

Molecular Mechanisms of Action of 5,6- and 5,7-Dihydroxytryptamine

  • Chapter
Highly Selective Neurotoxins

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

Disruption of neuronal function has frequently been employed to obtain morphological, physiological, biochemical, and behavioral information about different neuronal types and pathways. Surgical or electrolytic denervation of particular neurotransmitter systems represents methods to accomplish such disruptions. However, in an organ as complex as the brain, these techniques suffer from inherent limitations particularly with respect to selectivity. In the mid-1960s, several groups reported that a hydroxylated analog of the neurotransmitter dopamine (DA), namely 6-hydroxydopamine (6-OHDA), induced degeneration of peripheral and central nerve terminals that was remarkably selective for catecholaminergic (particularly noradrenergic) neurons (1–3). This discovery introduced the concept of chemical lesioning to the fields of neurochemical and neurobiological research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tranzer, J. P. and Thoenen, H. (1968) An electron-microscopic study of selective acute degeneration of sympathetic nerve terminals after administration of 6-hydroxydopamine. Experientia 24, 155–156.

    Article  PubMed  CAS  Google Scholar 

  2. Ungerstedt, U. (1968) 6-Hydroxydopamine-induced degeneration of central monoamine neurons. Eur. J. Pharmacol. 5, 107–110.

    Google Scholar 

  3. Uretsky, N. J. and Iversen, L. (1969) Effects of 6-hydroxydopamine on noradrenalinecontaining neurons in the rat brain. Nature 221, 557–559.

    Article  PubMed  CAS  Google Scholar 

  4. Baumgarten, H. G., Björklund, A., Lachenmayer, L., Nobin, A., and Stenevi, U. (1971) Long-lasting selective depletion of brain serotonin by 5,6-dihydroxytryptamine. Acta Physiol. Scand. Suppl. 373, 1–16.

    PubMed  CAS  Google Scholar 

  5. Jonsson, G., Fuxe, K., Hamberger, B., and Hokfelt, T. (1969) 6-Hydroxytryptamine. Tool in monoamine fluorescence histochemistry. Brain Res. 13, 190–194.

    Google Scholar 

  6. Baumgarten, H. G. and Schlossberger, H. G. (1973) Effects of 5,6-dihydroxytryptamine on brain monoamine neurons in the rat, in Serotonin and Behavior ( Barchas, J. and Usdin, E., eds.), Academic, New York, pp. 209–224.

    Google Scholar 

  7. Björklund, A., Nobin, A., and Stenevi, U. (1973) Effects of 5,6-dihydroxytryptamine on nerve terminal serotonin and serotonin uptake in the rat brain. Brain Res. 53, 117–127.

    Article  PubMed  Google Scholar 

  8. Daly, J. W., Fuxe, K., and Jonsson, G. (1973) Effects of intracerebral injections of 5,6-dihydroxytryptamine on central monoamine neurons. Evidence for selective degeneration of central 5-hydroxytryptamine neurons. Brain Res. 49, 476–482.

    Article  PubMed  CAS  Google Scholar 

  9. Baumgarten, H. G., Evetts, K. D., Holman, R. B., Iversen, L. L., Vogt, M., and Wilson, G. (1972) Effects of 5,6-dihydroxytryptamine on monoaminergic neurons in the central nervous system of the rat. J. Neurochem. 19, 1587–1597.

    Google Scholar 

  10. Baumgarten, H. G., Björklund, A., Holstein, A. F., and Nobin, A. (1972) Chemical degeneration of indoleamine axons in rat brain by 5,6-dihydroxytryptamine. Ultrastructural study. Z. Zellforsch. 129, 259–271.

    Article  CAS  Google Scholar 

  11. Björklund, A., Nobin, A., and Stenevi, U. (1973) Use of neurotoxic dihydroxytryptamines as tools for morphological studies and localized lesioning of central indol amine neurons. Z. Zellforsch. 145, 479–501.

    Article  PubMed  Google Scholar 

  12. Baumgarten, H. G. and Lachenmeyer, L. (1972) 5,7-Dihydroxytryptamine Improvement in chemical lesioning of indoleamine neurons in the mammalian brain. Z. Zell-forsch. 135, 399–414.

    Google Scholar 

  13. Baumgarten, H. G., Björklund, A., Lachenmayer, L., and Nobin, A. (1973) Evaluation of the effects of 5,7-dihydroxytryptamine on serotonin and catecholamine neurons in the CNS. Acta Physiol. Scand. Suppl. 391, 1–19.

    PubMed  CAS  Google Scholar 

  14. Horn, A., Baumgarten, H. G., and Schlossberger, H. G. (1973) Inhibition of the uptake of 5-hydroxytryptamine, noradrenaline, and dopamine into rat brain homogenates by various hydroxylated tryptamines. J. Neurochem. 21, 233–236.

    Article  PubMed  CAS  Google Scholar 

  15. Breese, G. R. and Cooper, B.R. (1975) Biochemical and behavioral interactions of 5,7-dihydroxytryptamine with various drugs when administered intracisternally to adult and developing rats. Brain Res. 98, 517–527.

    Google Scholar 

  16. Sachs, C. and Jonsson, G. (1975) Mechanisms of action of 6-hydroxydopamine. Biochem. Pharmacol. 24, 1–8.

    Article  PubMed  CAS  Google Scholar 

  17. Wuttke, W., Björklund, A., Baumgarten, H. G., Lachenmayer, L., Fenske, M., and Klemm, H. P. (1977) De-and regeneration of brain serotonin neurons following 5,7-dihydroxytryptamine treatment: Effects on serum LH, FSH and prolactin levels in male rats. Brain Res. 134, 317–331.

    Article  PubMed  CAS  Google Scholar 

  18. Björklund, A. and Baumgarten, H. G. (1975) 5,7-Dihydroxytryptamine: improvement of its selectivity for serotonin neurons in the CNS by pretreatment with desipramine. J. Neurochem. 24, 833–835.

    Google Scholar 

  19. Gerson, S., Baldessarini, R. J., and Wheeler, S. C. (1974) Biochemical effects of dihydroxylated tryptamines on central indoleamine neurons. Neuropharmacology. 13, 987–1004.

    Google Scholar 

  20. Baumgarten, H. G., Klemm, H. P., Lachenmayer, L., and Schlossberger, H. G. (1978) Effect of drugs on the distribution of [14C]-5,6-dihydroxytryptamine and [14C]-5,7-dihychoxytryptamine in rat brain. Ann. NY Acad. Sci. 305, 107–118.

    Google Scholar 

  21. Rotman, A., Daly, J. W., and Creveling, C. R. (1976) Oxygen-dependent reaction of 6- hydroxydopamine, 5,6-dihydroxytryptamine, and related compounds with proteins in vitro: a model for cytotoxicity. Mol. Pharmacol. 12, 877–899.

    Google Scholar 

  22. Heikkila, R. E. and Cohen, G. (1973) 6-Hydroxydopamine. Evidence for superoxide radical as an oxidative intermediate. Science 181, 456–457.

    Google Scholar 

  23. Cohen, G. and Heikkila, R. E. (1974) The generation of hydrogen peroxide, superoxide radical, and hydroxyl radical by 6-hydroxydopamine, dialuric acid, and related cytotoxic agents. J. Biol. Chem. 249, 2447–2452.

    PubMed  CAS  Google Scholar 

  24. Schlossberger, H. G. (1978) Synthesis and chemical properties of some indole derivatives. Ann. NY Acad. Sci. 305, 25–35.

    Article  CAS  Google Scholar 

  25. Cohen, G. and Heikkila, R. E. (1978) Mechanisms of action of hydroxylated phenylethylamine and indoleamine neurotoxins. Ann. NY Acad. Sci. 305, 74–84.

    Article  PubMed  CAS  Google Scholar 

  26. Tabatabaie, T., Wrona, M. Z., and Dryhurst, G. (1990) Autoxidation of the serotonergic neurotoxin 5,7-dihydroxytryptamine. J. Med. Chem. 33, 667–672.

    Article  PubMed  CAS  Google Scholar 

  27. Wrona, M. Z., Lemordant, D., Blank, C. L., and Dryhurst, G. (1986) Oxidation of 5-hydroxytryptamine and 5,7-dihydroxytryptamine. A new oxidation pathway and formation of a novel neurotoxin. J. Med. Chem. 29, 499–505.

    Article  PubMed  CAS  Google Scholar 

  28. Klemm, H. P., Baumgarten, H. G., and Schlossberger, H. G. (1980) Polarographic measurements of spontaneous and mitochondria-promoted oxidation 5,6- and 5,7-dihydroxytryptamine. J. Neurochem. 35, 1400–1408.

    Google Scholar 

  29. Sinhababu, A. K. and Borchardt, R. T. (1985) Mechanism and products of autoxidation of 5,7-dihydroxytryptamine. J. Am. Chem. Soc. 107, 7618–7627.

    Article  CAS  Google Scholar 

  30. Tabatabaie, T. and Dryhurst, G. (1992) Chemical and enzyme-mediated oxidation of the serotonergic neurotoxin 5,7-dihydroxytryptamine: Mechanistic insights. J. Med. Chem. 35, 2261–2273.

    Article  PubMed  CAS  Google Scholar 

  31. Finkelstein, E., Rosen, G. M., and Raukman, E. J. (1980) Spin trapping. Kinetics of the reaction of superoxide and hydroxyl radicals with nitrones. J. Am. Chem. Soc. 102, 4994–4999.

    Article  CAS  Google Scholar 

  32. Sayo, H. and Hosokawa, M. (1983) Kinetics of the organic hydroperoxide-supported oxidation of aminopyrine catalyzed by catalase. Chem. Pharm. Bull. 30, 2161–2168.

    Article  Google Scholar 

  33. Kadlubar, F. F., Morton, K. C., and Ziegler, D. M. (1973) Microsomal-catalyzed hydroperoxide-dependent C-oxidation of amines. Biochem. Biophys. Res. Commun. 54, 1255–1261.

    Article  PubMed  CAS  Google Scholar 

  34. Howard, J. A. (1973) Homogeneous liquid-phase autoxidations, in Free Radicals, vol. 2 ( Kochi, J. K., ed.), John Wiley, New York, pp. 3–62.

    Google Scholar 

  35. Sheldon, R. A. and Kochi, J. K. (eds.) (1981) Introduction to metal-catalyzed oxidations, in Metal Catalyzed Oxidation of Organic Compounds, Academic, New York, pp. 1–68.

    Chapter  Google Scholar 

  36. Nonhebel, D. C., Tedder, J. M., and Walton, J. C. (1979) Autoxidation, in Radicals, ( Nonhebel, D. C., Tedder, J. M., and Walton, J. C. eds.), Cambridge University Press, New York, pp. 150–159.

    Google Scholar 

  37. Lynch, R. E. and Fridovich, I. (1978) Effects of superoxide on the erythrocyte membrane. J. Biol. Chem. 253, 1838–1845.

    PubMed  CAS  Google Scholar 

  38. Peters, J. W. and Foote, C. S. (1976) Chemistry of superoxide ion. II. Reaction with hydroperoxides. J. Am. Chem. Soc. 98, 873–875.

    Article  CAS  Google Scholar 

  39. Sawyer, D. T., Gibian, M. J., Morrison, M. M., and Seo, E. T. (1978) On the chemical reactivity of superoxide ion. J. Am. Chem. Soc. 100, 627, 628.

    Google Scholar 

  40. Chin, D. H., Chiericato, E. J., Nanni, E. J., and Sawyer, D. T. (1982) Proton-induced disproportionation of superoxide ion in aprotic media. J. Am. Chem. Soc. 104, 1296–1299.

    Article  CAS  Google Scholar 

  41. Nanni, E. J., Stallins, M. D., and Sawyer, D. T. (1980) Does superoxide ion oxidize catechol, a-tocopherol, and ascorbic acid by direct electron transfer? J. Am. Chem. Soc. 102, 4481–4485.

    Article  CAS  Google Scholar 

  42. Behar, D., Czapski, G., Rabini, J., Dorfman, L. M., and Schwartz, H. A. (1970) Acid dissociation constant and decay kinetics of the perhydroxyl radical. J. Phys. Chem. 74, 3209–3213.

    Article  CAS  Google Scholar 

  43. Msllgard, K., Lundberg, J. J., Lachenmayer, L., Wiklund, L., and Baumgarten, H. G. (1978) Morphologic consequences of serotonin neurotoxin administration: Neuron-target cell interaction in the rat subcommissural organ. Ann. NYAcad. Sci. 305, 262–288.

    Google Scholar 

  44. Baumgarten, H. G., Klemm, H. P., Lachenmayer, L., Björklund, A., Lovenberg, W., and Schlossberger, H. G. (1978) Mode and mechanism of action of neurotoxic indoleamines: A review and progress report. Ann. NYAcad. Sci. 305, 3–24.

    Article  CAS  Google Scholar 

  45. Tamir, H. and Rapport, M. M. (1978) Effects of neurotoxins in vitro on the binding of serotonin to serotonin-binding protein. Ann. NYAcad. Sci. 305, 85–95.

    Article  CAS  Google Scholar 

  46. Creveling, C. R. and Rotman, A. (1978) Mechanism of Action of Dihydroxytryptamines. Ann. NYAcad. Sci. 305, 57–73.

    Article  CAS  Google Scholar 

  47. Klemm, H. G. and Baumgarten, H. G. (1978) Interaction of 5,6-and 5,7-dihydroxytryptamine with tissue monoamine oxidase. Ann. NY Acad. Sci. 305, 36–56.

    Article  PubMed  CAS  Google Scholar 

  48. Tabatabaie, T., Goyal, R. N., Blank, C. L., and Dryhurst, G. (1993) Further insights into the molecular mechanisms of action of the serotonergic neurotoxin 5,7-dihydroxytryptamine. J. Med. Chem. 36, 229–236.

    Article  PubMed  CAS  Google Scholar 

  49. Frank, D. M., Arora, P. K., Blumer, J. L. and Sayre, L. M. (1987) Model study on the bioreduction of paraquat, MPP+, and analogs. Evidence against a “redox cycling” mechanism in MPTP neurotoxicity. Biochem. Biophys. Res. Commun. 147, 1095–1104.

    Google Scholar 

  50. Massotti, M., Scotti de Carolis, A., and Longo, V. G. (1974) Effects of three dihydroxylated derivatives of tryptamine on the behavior and on brain amine content in mice. Pharmacol. Biochem. Behay. 2, 769–775.

    Article  CAS  Google Scholar 

  51. Halliwell, B. (1992) Reactive oxygen species and the central nervous system. J. Neurochem. 59, 1609–1623.

    Article  PubMed  CAS  Google Scholar 

  52. Kappus, H. (1986) Overview of enzyme systems involved in bioreduction of drugs and redox cycling. Biochem. Pharmacol. 35, 1–6.

    Article  PubMed  CAS  Google Scholar 

  53. Slivka, A., Mytilineou, C., and Cohen, G. (1987) Histochemical evaluation of glutathione in brain. Brain Res. 409, 275–284.

    Article  PubMed  CAS  Google Scholar 

  54. Singh, S., Jen, J-F., and Dryhurst, G. (1990) Autoxidation of the indolic neurotoxin 5,6-dihydroxytryptamine. J. Org . Chem. 55, 1484–1489.

    CAS  Google Scholar 

  55. Singh, S. and Dryhurst, G. (1990) Further insights into the oxidation chemistry and biochemistry of the serotonergic neurotoxin 5,6-dihydroxytryptamine. J. Med. Chem. 33, 3035–3044.

    Article  PubMed  CAS  Google Scholar 

  56. Singh, S. and Dryhurst, G. (1991) Reactions of the serotonergic neurotoxin 5,6-dihydroxytryptamine with glutathione. J. Org . Chem. 56, 1767–1773.

    Google Scholar 

  57. Singh, S. and Dryhurst, G. (1991) Interactions between 5,6-dihydroxytryptamine and cysteine. Bioorg. Chem. 19, 274–282.

    Article  CAS  Google Scholar 

  58. Sinhababu, A. K., Ghosh, A. K. and Borchardt, R. T. (1985) Molecular mechanism of action of 5,6-dihydroxytryptamine. Synthesis and biological evaluation of 4-methyl7-methyl-and 4,7-dimethyl-5,6-dihydroxytryptamines. J. Med. Chem. 28, 1273–1279.

    Article  PubMed  CAS  Google Scholar 

  59. Wrona, M. Z. and Dryhurst, G. (1990) Electrochemical oxidation of 5- hydroxytryptamine in aqueous solution at physiological pH. Bioorg. Chem. 18, 291–317.

    Article  CAS  Google Scholar 

  60. Wrona, M. Z. and Dryhurst, G. (1991) Interactions of 5-hydroxytryptamine with oxidative enzymes. Biochem. Pharmacol. 41, 1145–1162.

    Article  PubMed  CAS  Google Scholar 

  61. Wrona, M. Z., Yang, Z., McAdams, M., O’Connor-Coates, S., and Dryhurst, G. (1995) Hydroxyl radical-mediated oxidation of serotonin: Potential insights into the neurotoxicity of methamphetamine. J. Neurochem. 64, 1390–1400.

    Article  PubMed  CAS  Google Scholar 

  62. Wrona, M. Z., Yang, Z., Waskiewicz, J., and Dryhurst, G. (1996) Oxygen radical-mediated oxidation of serotonin: Potential relationship to neurodegenerative diseases, in Neurodegenerative Disease ( Fiskum, G., ed.), Plenum, New York, pp. 285–297.

    Chapter  Google Scholar 

  63. Slivka, A. and Cohen, G. (1985) Hydroxyl radical attack on dopamine. J. Biol. Chem. 260, 15,466–15, 472.

    Google Scholar 

  64. Floyd, R. A. (1990) Role of oxygen free radicals in carcinogenesis and brain ischemia. FASEB J. 4, 2587–2597.

    CAS  Google Scholar 

  65. Simonian, N. A. and Coyle, J. T. (1996) Oxidative stress in neurodegenerative diseases. Annu. Rev. Pharmacol. Toxicol. 36, 83–106.

    Google Scholar 

  66. DeVito, M. J. and Wagner, G. C. (1989) Methamphetamine-induced neuronal damage: A possible role for free radicals. Neuropharmacology 28, 1145–1150.

    Google Scholar 

  67. Cadet, J. L., Sheng, P., Ali, S., Rothman, R., Carlson, E., and Epstein, C. (1994) Attenuation of methamphetamine-induced neurotoxicity in copper/zinc superoxide dismutase transgenic mice. J. Neurochem. 62, 380–383.

    Google Scholar 

  68. Kondo, T., Sugita, Y., Kanazawa, A., Ito, T. and Mizuno, Y. (1992) Free dopamine and iron contribute to the hydroxyl radical generation in methamphetamine-induced experimental parkinsonism. Movement Disord. 17 (Suppl. 1) 73–79.

    Google Scholar 

  69. Bowen, D. M., Allen, S. J., Benton, J. S., Goodhart, M. J., Haan, E. A., Palmer, A. M., Sims, N. R., Smith, C. C. T., Spillane, J. A., Esiri, M. M., Neary, D., Snowden, J. S., Wilcock, G. K., and Davison, A. W. (1983) Biochemical assessment of serotonergic and cholinergic dysfunction in cerebral atrophy in Alzheimer’s disease. J. Neurochem. 41, 266–272.

    Google Scholar 

  70. Mann, D. M. A. (1988) Neuropathological and neurochemical aspects of Alzheimer’s disease, in Psychopharmacology of the Aging Nervous System (Iverson, L. L., Iversen, S. D., and Snyder, S. H., eds.), Plenum, New York, pp. 1–67.

    Google Scholar 

  71. Tejani-Butt, S. M., Yang, J., and Pawlyk, A. C. (1995) Altered serotonin transporter sits in Alzheimer’s disease raphe and hippocampus. NeuroReports 6, 1207–1210.

    Article  CAS  Google Scholar 

  72. Palmer, A. M., Francis, P. T., Benton, J. S., Sims, N. R., Mann, D. M. A., Neary, D., Snowden, J. S., and Bowen, D. M. (1987) Presynaptic serotonergic dysfunction in patients with Alzheimer’s disease. Brain Res. 48, 8–15.

    CAS  Google Scholar 

  73. Weinberger, J., Cohen, G., and Nieves-Rosa, J. (1983) Nerve terminal damage in cerebral ischemia: Greater susceptibility of catecholamine nerve terminals relative to serotonin nerve terminals. Stroke 14, 986–989.

    Article  PubMed  CAS  Google Scholar 

  74. Gibb, J. W., Hanson, G. R., and Johnson, M. (1994) Neurochemical mechanisms of toxicity, in Amphetamine and Its Analogs: Psychopharmacology, Toxicology, and Abuse ( Cho, A. K. and Segal, D. S., eds.), Academic, New York, pp. 269–295.

    Google Scholar 

  75. Bowyer, J. F. and Holson, R. R. (1995) Methamphetamine and Amphetamine neurotoxicity, in Handbook of Neurotoxicology (Chang, L. W. and Dyer, R. S., eds.), Marcel Dekker, New York, pp. 845–870.

    Google Scholar 

  76. Seiden, L. S. and Sabol, K. E. (1995) Neurotoxicity of methamphetamine-related drugs and cocaine, in Handbook of Neurotoxicology (Chang, L. W. and Dyer, R. S., eds.), Marcel Dekker, New York, pp. 825–843.

    Google Scholar 

  77. Gutteridge, J. M. C. (1996) Hydroxyl radicals, iron, oxidative stress, and neurodegeneration. Ann. NYAcad. Sci. 738, 201–213.

    Google Scholar 

  78. Halliwell, B. (1992) Oxygen radicals as key mediators in neurological disease: Fact or fiction? Ann. Neurol. 32, S 10—S 15.

    Google Scholar 

  79. Commins, D. L., Axt, K. J., Vosmer, G., and Seiden, L. S. (1987) 5,6-Dihydroxytryptamine, a serotonergic neurotoxin, is formed endogenously in rat brain. Brain Res. 403, 7–14.

    Google Scholar 

  80. Commins, D. L., Axt, K. J., Vosmer, G., and Seiden, L. S. (1987) Endogenously produced 5,6-dihydroxytryptamine may mediate the neurotoxic effects of para-chloroamphetamine. Brain Res. 419, 253–261.

    Article  PubMed  CAS  Google Scholar 

  81. Seiden, L. S. and Vosmer, G. (1984) Formation of 6-hydroxydopamine in caudate nucleus of the rat brain after a single large dose of methylamphetamine. Pharmacol. Biochem. Behay. 21, 29–31.

    Article  CAS  Google Scholar 

  82. Rollema, H., De Vries, J. B., Westerink, B. H. C., Van Putten, F. M., and Horn, A. S. (1986) Failure to detect 6-hydroxydopamine in rat striatum after the dopamine-releasing drugs dexamphetamine, methylamphetamine and MPTP. Eur. J. Pharmacol. 132, 65–69.

    Google Scholar 

  83. Karoum, F., Chrapusta, S. J., Egan, M. F., and Wyatt, R. J. (1993) Absence of 6-hydroxydopamine in the rat brain after treatment with stimulants and other dopaminergic agents: A mass fragmentographic study. J. Neurochem. 61, 1369–1375.

    Article  PubMed  CAS  Google Scholar 

  84. Yang, Z., Wrona, M. Z., and Dryhurst, G. (1997) 5-Hydroxy-3-ethylamino-2-oxindole is not formed in rat brain following a neurotoxic dose of methamphetamine: evidence that methamphetamine does not induce hydroxyl radical-mediated oxidation of serotonin. J. Neurochem. 68, 1929–1941.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tabatabaie, T., Dryhurst, G. (1998). Molecular Mechanisms of Action of 5,6- and 5,7-Dihydroxytryptamine. In: Kostrzewa, R.M. (eds) Highly Selective Neurotoxins. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-477-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-477-1_10

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-047-2

  • Online ISBN: 978-1-59259-477-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics