Skip to main content

Treatment of Central Nervous System Diseases with Polymer-Encapsulated Xenogeneic Cells

  • Chapter
  • 78 Accesses

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

One of the major goals of neuroscience research is to develop effective treatments for clinical disorders. It is generally accepted that the discovery and development of effective, novel treatments is more efficient (i.e., faster and less costly) if those efforts are guided by a rational plan of action, based on careful consideration of the available data. Although tremendous technical and conceptual advances have been made in the neurosciences and considerable information about many neurological disorders has become available, it is still difficult to formulate a plan of action that can assure success because so many fundamental questions remain unanswered. For example, among the most problematic of the neurological disorders are those associated with the loss of brain neurons. Although we continue to learn more and more about the pathology and molecular biology of neurodegenerative diseases, congenital disorders, and strokes, very little is known about the specific mechanisms that mediate cell death. In fact, some research findings in these areas serve more to elucidate how little we truly understand about the etiology of these disorders and to stimulate the articulation of new questions that need to be addressed than to point the way toward a specific solution. As long as questions remain about the primary etiology and pathological mechanisms that mediate cell death, some uncertainty will remain about which avenues of research will produce effective preventative or palliative treatments for these disorders.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bakay, R. A., Fiandaca, M. S., Barrow, D. L., Schiff, A., and Collins, D. C. (1985) Preliminary report on the use of fetal tissue transplantation to correct MPTP-induced Parkinson-like syndrome in primates. Appl. Neurophysiol. 48, 358–361.

    PubMed  CAS  Google Scholar 

  2. Bakay, R. A., Barrow, D. L., Fiandaca, M. S., Iuvone, P. M., Schiff, A., and Collins, D. C. (1987) Biochemical and behavioral correction of MPTP Parkinson-like syndrome by fetal cell transplantation. Ann. NY Acad. Sci. 495, 623–640.

    Article  PubMed  CAS  Google Scholar 

  3. Bankiewicz, K. S., Plunkett, R. J., Jacobowitz, D. M., Porrino, L., diPorzio, U., London, W. T., et al. (1990) The effect of fetal mesencephalon implants on primate MPTP-induced parkinsonism. Histochemical and behavioral studies. J. Neurosurg. 72, 231–244.

    Article  PubMed  CAS  Google Scholar 

  4. Björklund, A., Dunnett, S. B., Stenevi, U., Lewis, M. E., and Iversen, S. D. (1980) Reinnervation of the denervated striatum by substantia nigra transplants: functional consequences as revealed by pharmacological and sensorimotor testing. Brain Res. 199, 307–333.

    Article  PubMed  Google Scholar 

  5. Björklund, A., Stenevi, U., Dunnett, S. B., and Gage, F. H. (1982) Cross-species neural grafting in a rat model of Parkinson’s disease. Nature 298, 652–654.

    Article  PubMed  Google Scholar 

  6. Björklund, A. and Stenevi, U. (1984) Intracerebral neural implants:neuronal replacement and reconstruction of damaged circuitries. Ann. Rev. Neurosci. 7, 279–308.

    Article  PubMed  Google Scholar 

  7. Brundin, P., Strecker, R. E., Widner, H., Clarke, D. J., Nilsson, O. G., Astedt, B., et al. (1988) Human fetal dopamine neurons grafted in a rat model of Parkinson’s disease: immunological aspects, spontaneous and drug-induced behaviour, and dopamine release. Exp. Brain Res. 70, 192–208.

    PubMed  CAS  Google Scholar 

  8. Freed, W. J, Morihisa, J. M., Spoor, E., Hoffer, B. J., Olson, L., Seiger, A., et al. (1981) Transplanted adrenal chromaffin cells in rat brain reduce lesion-induced rotational behavior. Nature 292, 351–352.

    Article  PubMed  CAS  Google Scholar 

  9. Perlow, M. J., Freed, W. J., Seiger, A., Olson, L., and Wyatt, R. J. (1979) Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science 204, 643–647.

    Article  PubMed  CAS  Google Scholar 

  10. Björklund, A. and Stenevi, U. (1977) Reformation of the severed septohippocampal cholinergic pathway in the adult rat by transplanted septal neurons. Cell Tiss. Res. 185, 289–302.

    Google Scholar 

  11. Björklund, A., Gage, F. H., Stenevi, U., and Dunnett, S. B. (1983) Intracerebral grafting of neuronal cell suspensions VI. Survival and growth of intrahippocampal implants of septal cell suspensions. Acta. Phsyiol. Scand. 522 (Suppl.), 49–58.

    Google Scholar 

  12. Björklund, A., Gage, F. H., Schmidt, R. H., Stenevi, U., and Dunnett, S. B. (1983) Intracerebral grafting of neuronal cell supensions VII. Recovery of choline acetyltransferase activity and acetylcholine synthesis in the denervated hippocampus reinnervated by septal suspension implants. Acta. Physiol. Scand. 522 (Suppl.), 59–66.

    Google Scholar 

  13. Emerich, D. F., Black, B. A., Kesslak, J. P., Cotman, C. W., and Walsh, T. J. (1992) Transplantation of fetal cholinergic neurons into the hippocampus attenuates the cognitive and neurochemical deficits induced by AF64A. Brain Res. Bull. 28, 219–226.

    Article  PubMed  CAS  Google Scholar 

  14. Segal, M., Greenberger, V., and Pearl, E. (1989) Septal transplants ameliorate spatial deficits and restore cholinergic function in rats with a damaged septo-hippocampal connection. Brain Res. 500, 139–148.

    Article  PubMed  CAS  Google Scholar 

  15. Sanberg, P. R., Henault, M. A., and Deckel, A. W. (1986) Locomotor hyperactivity: effects of multiple striatal transplants in an animal model of Huntington’s disease. Pharmacol. Biochem. Behay. 25, 297–300.

    Article  CAS  Google Scholar 

  16. Sanberg, P. R., Calderon, S. F., Garver, D. L., and Norman, A.B. (1987) Brain tissue transplants in an animal model of Huntington’s disease. Psychopharm. Bull. 23, 476–482.

    Google Scholar 

  17. Aebischer, P., Winn, S. R., and Galletti, P. M. (1988) Transplantation of neural tissue in polymer capsules. Brain Res. 448, 364–368.

    Article  PubMed  CAS  Google Scholar 

  18. Aebischer, P., Tresco, P.A., Winn, S. R., Greene, L. A., and Jaeger, C. B. (1991) Long-term cross-species brain transplantation of a polymer encapsulated dopamine-secreting cell line. Exp. Neurol. 111, 269–275.

    Article  PubMed  CAS  Google Scholar 

  19. Aebischer, P., Wahlberg, L., Tresco, P. A., and Winn, S. R. (1991) Macroencapsulation of dopamine-secreting cells by coextrusion with an organic polymer solution. Biomaterials 12, 50–56.

    Article  PubMed  CAS  Google Scholar 

  20. Emerich, D. F., Frydel, B., Flanagan, T. R., Palmatier, M., Winn, S. R., and Chistenson, L. (1993) Transplantation of polymer encapsulated PC12 cells: use of chitosan as an immobilization matrix. Cell Transplantation 2, 241–249.

    Google Scholar 

  21. Emerich, D. F., Frydel, B., McDermott, P., Krueger, P., Lavoie, M., Sanberg, P. R., et al. (1993) Polymer-encapsulated PC12 cells promote recovery of motor function in aged rats. Exp. Neurol. 122, 37–47.

    Article  PubMed  CAS  Google Scholar 

  22. Emerich, D. F., Winn, S. R., Harper, J., Hammang, J. P., Baetge, E. E., and Kordower, J. H. (1994) Implants of polymer-encapsulated human NGF-secreting cells in the nonhuman primate:rescue and sprouting of degenerating cholinergic basal forebrain neurons. J. Comp. Neurol. 349, 148–164.

    Article  PubMed  CAS  Google Scholar 

  23. Emerich, D. F., Hammang, J. P., Baetge, E. E., and Winn, S. R. (1994) Implantation of polymer-encapsulated human nerve growth factor-secreting fibroblasts attenuates the behavioral and neuropathological consequences of quinolinic acid injections into rodent striatum. Exp. Neurol. 130, 141–150.

    Article  PubMed  CAS  Google Scholar 

  24. Joseph, J. M., Goddard, M. B., Mills, J., Padrun, V., Zum, A., Zelinski, B., et al. (1994) Transplantation of encapsulated bovine chromaffin cells in the sheep subarachnoid space: a preclinical study for the treatment of chronic pain. Cell Transplantation 3, 355–362.

    PubMed  CAS  Google Scholar 

  25. Aebischer, P., Buschser, E., Joseph, J. M., Favre, J., deTribolet, N., Lysaght, M. J., et al. (1994) Transplantation in humans of encapsulated xenogeneic cells without immunosuppression—a preliminary report. Transplantation 58, 1275–1277.

    Article  PubMed  CAS  Google Scholar 

  26. Aebischer, P., Goddard, M., Signore, P., and Timpson, R. (1994) Functional recovery in hemiparkinsonian primates transplanted with polymer encapsulated PC12 cells. Exp. Neurol. 126, 1.

    Article  Google Scholar 

  27. Kordower, J. H., Liu, Y.-T., Winn, S. R., and Emerich, D. F. (1995) Encapsulated PC12 cell transplants into hemiparkinsonian monkeys: a behavioral, neuroanatomical and neurochemical analysis. Cell Transplantation 4, 155–171.

    Article  PubMed  CAS  Google Scholar 

  28. Chick, W. L., Perna, J. J., Lauris, V., Law, D., Galletti, P. M., Panol, G., et al. (1977) Artificial pancreas using living beta cells: effects of glucose homeostasis in diabetic rats. Science 197, 780.

    Article  PubMed  CAS  Google Scholar 

  29. Lacy, P. E., Hegre, O. H., Gerasimidi-Vazeou, A., Gentile, F. T., and Dionne, K. E. (1991) Maintenance of normoglycemia in diabetic mice by subcutaneous xenografts of encapsulated islets. Science 254, 1782–1784.

    Article  PubMed  CAS  Google Scholar 

  30. Scharp, D. W., Mason, N. S., and Sparks, R. E. (1984) Islet immuno-isolation: the use of artificial organs to prevent tissue rejection. World J. Surg. 8, 221.

    Article  PubMed  CAS  Google Scholar 

  31. Sagot, Y., Tan, S. A., Baetge, E. E., Schmalbruch, H., Kato, A. C., and Aebischer, P. (1995) Polymer encapsulated cell lines genetically engineered to release ciliary neurotrophic factor can slow down progressive motor neuronopathy in the mouse. Eur. J. Neurosci. 7, 1313–1320.

    Article  PubMed  CAS  Google Scholar 

  32. Dunn, J. C. Y., Tompkins, R. G., and Yarmush, M. L. (1991) Long-term in vitro function of adult hepatocytes in a collagen sandwich configuration. Biotechnol. Prog. 7, 237–245.

    Article  PubMed  CAS  Google Scholar 

  33. Mooney, D. J., Hansen, L., Vacanti, J. P., Langer, R., Farmer, S., and Ingber, D. (1992) Switching from differentiation to growth in hepatocytes—control by extracellular-matrix. J. Cell Physiol. 151, 497–505.

    Article  PubMed  CAS  Google Scholar 

  34. Rotem, A., Toner, M., Tompkins, R. G., and Yarmush, M. L. (1992) Oxygen-uptake rates in cultured hepatocytes. Biotechnol. Bioeng. 40, 1286–1291.

    Article  PubMed  CAS  Google Scholar 

  35. Uyama, S., Kaufmann, P. M., Takeda, T., and Vacanti, J. P. (1995) Delivery of whole liver equivalent hepatocyte mass using polymer devices and hepatotrophic stimulation. Transplantation 55:4, 932–935.

    Google Scholar 

  36. Tachibana, M., Nagamatsu, G. R., and Addonizio, J. C. (1985) Ureteral replacement using collagen sponge tube grafts. J. Urol. 133:5, 932–935.

    Google Scholar 

  37. Atala, A., Vacanti, J.P., Peters, C. A., Madel, J., and Retik, A. B. (1992) Formation of urothelial structures in vivo from dissociated cells attached to biodegradable polymer scaffolds in vitro. J. Urol. 148:2, 658–662.

    Google Scholar 

  38. Strathmann, H. (1985) Production of microporous media by phase inversion processes, in Material Science of Synthetic Membranes ( Lloyd, D. R., ed.), American Chemical Society, Washington DC, pp. 165–196.

    Chapter  Google Scholar 

  39. Brauker, J. H., Carrbrendel, V. E., Martinson, L. A., Crudele, J., Johnston, W. D., and Johnson, W.0. (1995) Neovascularization of synthetic membranes directed by membrane microarchitecture. J. Biomed. Materials Res. 29:12, 1517–1524.

    Google Scholar 

  40. Martinson, L., Pauley, R., Boggs, D., Brauker, J. H., Sternberg, S. M., and Johnson, R. C. (1994) Protection of xenografts with immunoisolation membranes. Cell Transplantation 3:3, 249.

    Google Scholar 

  41. Chistenson, L., Dionne, K. E., and Lysaght, M. J. (1993) Biomedical applications of immobilized cells, in Fundamentals of Animal Cell Encapsulation and Immobilization ( Goosen, M. F. A., ed.), CRC, Boca Raton, pp. 7–41.

    Google Scholar 

  42. Langer, R. and Vacanti, J. P. (1993) Tissue engineering. Science 260, 920–925.

    Article  PubMed  CAS  Google Scholar 

  43. Lysaght, M. J., Frydel, B., Gentile, F. T., Emerich, D. F., and Winn S. R. (1994) Recent progress in immunoisolated cell therapy. J. Cell Biochem. 56, 196–204.

    Article  PubMed  CAS  Google Scholar 

  44. Lysaght, M. J. and Baurmeister, U., (1993) Dialysis, in Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed., vol. 8 ( Kroschwitz, J., ed.), John Wiley, New York, pp. 59–74.

    Google Scholar 

  45. Dionne, K. E., Cain, B. M., Li, R. H., Doherty, E. J., Lysaght, M. J., Rein, D. H., et al. (1996) Transport characterization of membranes for immunoisolation. Biomaterials, 17, 257–266.

    Article  PubMed  CAS  Google Scholar 

  46. Fahn, S. (1982) Fluctuations of disability in Parkinson’s disease: pathophysiological aspects, in Movement Disorders ( Marsden, C. D. and Fahn, S., eds.), Butterworth Scientific, London, pp. 123–145.

    Google Scholar 

  47. Becker, J., Robinson, T. E., Barton, P., Sintov, A., Siden, R., and Levy, R. J. (1990) Sustained behavioral recovery from unilateral nigrostriatal damage produced by the controlled release of dopamine from a silicone polymer pellet placed into the denervated striatum. Brain Res. 508, 60–64.

    Article  PubMed  CAS  Google Scholar 

  48. DeYebens, J. G., Fahn, S., Mena, M. A., Pardo, B., and Casarejos, M. J. (1988) Intracerebroventricular infusion of dopamine and its agonists in rodents and primates: an experimental approach to the treatment of Parkinson’s disease. Trans. Am. Soc. Artif. Intern. Organs 34, 951–957

    Google Scholar 

  49. Hargraves, R. and Freed, W. J. (1987) Chonic intrastriatal dopamine infusions in rats with unilateral lesions of the substantia nigra. Life Sci. 40, 959–966.

    Article  PubMed  CAS  Google Scholar 

  50. Winn, S. R., Wahlberg, L., Tresco, P. A., and Aebischer, P. (1989) An encapsulated dopamine-releasing polymer alleviates experimental parkinsonism in rats. Exp. Neurol. 105, 244–250.

    Article  PubMed  CAS  Google Scholar 

  51. Vahlsing, H. L., Varon, S., Hagg, T., Fass-Holmes, B., Dekker, A., Mamley, M., et al. (1989) An improved device for continuous intraventricular infusions prevents the introduction of pump-derived toxins and increases the effectiveness of NGF treatments. Exp. Neurol. 105, 233–243.

    Article  PubMed  CAS  Google Scholar 

  52. Winn, S. R., Aebischer, P., and Galletti, P. M. (1989) Brain tissue reaction to perm-selective polymer capsules. J. Biomed. Materials Res. 23, 31–44.

    Article  CAS  Google Scholar 

  53. Emerich, D. F., McDermott, P. E., Chistenson, L., Palmatier, M. A., Kaplan, F., Flanagan, T. R., et al. (1991) Encapsulated PC12 cells ameliorate spontaneous and drug-induced behaviors in the 6-OHDA lesioned rat. Soc. Neurosci. Abstracts 17, New Orleans, LA.

    Google Scholar 

  54. Tresco, P. A., Winn, S. R., Jaeger, C. B., Greene, L. A., and Aebischer, P. (1992) Polymer-encapsulated PC12 cells: Longterm survival and associated reduction in lesioned-induced rotational behavior. Cell Transplantation 1, 255–264.

    PubMed  CAS  Google Scholar 

  55. Winn, S. R., Zielinski, B., Tresco, P. A., Signore, A. P., Jaeger, C. B., Greene, L. A., et al. (1991) Behavioral recovery following intrastriatal implantation of microencapsulated PC 12 cells. Exp. Neurol. 113, 322–329.

    Article  PubMed  CAS  Google Scholar 

  56. Joseph, J. A., Bartus, R. T., Clody, D., Morgan, D., Finch, C., Beer, B., et al. (1983) Psychomotor performance in the senescent rodent: reduction of deficits via striatal dopamine receptor up-regulation. Neurobiol. Aging 4, 313–319.

    Google Scholar 

  57. Joseph, J. A. and Roth, G. S. (1988) Upregulation of striatal dopamine receptors and improvement of motor performance in senescence, in Central Determinants of Age-Related Declines in Motor Function (Joseph, J. A., ed.), Ann. NY Acad. Sci. 515, 355–362.

    Google Scholar 

  58. Marshall, J. F. and Berrios, N. (1979) Movement disorders of aged rats: reversal by dopamine receptor stimulation. Science 206, 477–479.

    Article  PubMed  CAS  Google Scholar 

  59. Korsching, S., Auberger, G., Heuman, R., Scott, J., and Thoenen, H. (1985) Levels of nerve growth factor and its mRNA in the central nervous system of the rat correlate with cholinergic innervation. EMBO J. 4, 1389–1393.

    PubMed  CAS  Google Scholar 

  60. Sheldon, D. L. and Reichardt, L. F. (1986) Studies on the expression of beta NGF gene in the central nervous system: Level and regional distribution of NGF mRNA suggest that NGF functions as a trophic factor for several neuronal populations. Proc. Natl. Acad. Sci. USA 83, 2714–2718.

    Article  Google Scholar 

  61. Schwab, M. E., Otten, U., Agid, Y., and Thoenen, H. (1979) Nerve growth factor (NGF) in the rat CNS: absence of specific retrograde transport and tyrosine hydroxylase induction in locus coeruleus and substantia nigra. Brain Res. 168, 473–483.

    Article  PubMed  CAS  Google Scholar 

  62. Seiler, M. and Schwab, M. E. (1984) Specific retrograde transport of nerve growth factor (NGF) from cortex to nucleus basalis in the rat. Brain Res. 300, 33–39.

    Article  PubMed  CAS  Google Scholar 

  63. Hefti, F., Hartikka, J., Salviaterra, P., Weiner, W. J., and Mash, D. C. (1986) Localization of nerve growth factor receptors on cholinergic neurons of the human basal forebrain. Neurosci. Lett. 69, 275–281.

    Article  Google Scholar 

  64. Kordower, J. H., Bartus, R. T., Bothwell, M., Schatteman, G., and Gash D. M. (1988) Nerve growth factor receptor immunoreactivity in the nonhuman primate (Cebus apella): Distribution, morphology, and colocalization with cholinergic enzymes. J. Comp. Neurol. 277, 465–486.

    Article  PubMed  CAS  Google Scholar 

  65. Kordower, J. H., Gash, D. M., Bothwell, M., Hersh, L., and Mufson, E. J. (1989) Nerve growth factor receptor and choline acetyltransferase remain colocalized in the nucleus basalis (Ch4) of Alzheimer’s patients. Neurobiol. Aging 10, 287–294.

    Article  Google Scholar 

  66. Batchelor, P. E., Armstrong, D. M., Blaker, S. N., and Gage, F. H. (1989) Nerve growth factor receptor and choline acetyltransferase colocalization in neurons within the rat forebrain: response to fimbria-fornix transection. J. Comp. Neurol. 284, 187–204.

    Article  PubMed  CAS  Google Scholar 

  67. Koh, S., Oyler, G. A., and Higgins, G. A. (1989) Localization of nerve growth factor receptor messenger RNA and protein in the adult rat brain. Exp. Neurol. 106, 209–221.

    Article  PubMed  CAS  Google Scholar 

  68. Mufson, E. J., Bothwell, M., Hersh, L. B., and Kordower, J. H. (1989) Nerve growth factor receptor immunoreactive profiles in the normal aged human basal forebrain: colocalization with cholinergic neurons. J. Comp. Neurol. 285, 196–217.

    Article  PubMed  CAS  Google Scholar 

  69. Steininger, T. L., Wainer, B. H., Klein, R., Barbacid, M., and Palfrey, H. C. (1993) High affinity nerve growth factor receptor (trk) immunoreactivity is localized in cholinergic neurons of the basal forebrain and striatum in the adult rat. Brain Res. 612, 330–335.

    Article  PubMed  CAS  Google Scholar 

  70. Hefti, F. (1986) Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transections. J. Neurosci. 6, 2155–2162.

    PubMed  CAS  Google Scholar 

  71. Koliatsos, V. E., Applegate, M. D., Knusel, B., Junard, E. O., Burton, L. E., Mobley, W. C., et al. (1991) Recombinant human nerve growth factor prevents retrograde degeneration of axotomized basal forebrain cholinergic neurons in the rat. Exp. Neurol. 112, 161–173.

    Article  PubMed  CAS  Google Scholar 

  72. Koliatsos, V. E., Clatterbuck, R. E., Nauta, H. J. W., Knusel, B., Burton, L. E., Hefti, F., et al. (1991) Human nerve growth factor prevents degeneration of basal forebrain cholinergic neurons in primates. Ann. Neurol. 30, 831–840.

    Article  PubMed  CAS  Google Scholar 

  73. Koliatsos, V. E., Nauta, H. J. W., Clatterbuck, R. E., Holtzman, D. M., Mobley, W. C., and Breakefield, X. O. (1989) Combining CNS transplantation and gene transfer. Neurobiol. Aging 10, 647–648.

    Article  Google Scholar 

  74. Kromer, L. F. (1987) Nerve growth factor treatment after brain injury prevents neuronal death. Science 235, 214–216.

    Article  PubMed  CAS  Google Scholar 

  75. Kawaja, M. D., Rosenberg, M. B., Yoshida, K., and Gage, F. H. (1992) Somatic gene transfer of nerve growth factor promotes the survival of axotomized septal neurons and the regeneration of their axons in adult rats. J. Neurosci. 12, 2849–2864.

    PubMed  CAS  Google Scholar 

  76. Montero, C. N. and Hefti, F. (1988) Rescue of lesioned septal cholinergic neurons by nerve growth factor: specificity and requirement for chronic treatment. J. Neurosci. 8, 2986–2999.

    PubMed  CAS  Google Scholar 

  77. Tuszynski, M. H., U, H. S., Amaral, D. G., and Gage, F. H. (1990) Nerve growth factor infusion in the primate brain reduces lesion-induced cholinergic neuronal degeneration. J. Neurosci. 10, 3604–3614.

    CAS  Google Scholar 

  78. Tuszynski, M. H., U, H. S., Yoshida, K., and Gage, F. H. (1991) Recombinant human nerve factor infusions prevent cholinergic neuronal degeneration in the adult primate brain. Ann. Neurol. 30, 625–636.

    Google Scholar 

  79. Williams, L., Varon, S., Peterson G. M., Wictorin, K., Fischer, W., Björklund, A., et al. (1986) Continous infusion of nerve growth factor prevents basal forebrain neuronal death after fimbria fornix transection. Proc. Natl. Acad. Sci. USA 83, 9231–9235.

    Article  PubMed  CAS  Google Scholar 

  80. Fischer, W., Wictorin, K., Björklund, A., Williams, L. R., Varon, S., and Gage, F. H. (1987) Amelioration of cholinergic neuron atrophy and spatial memory impairment in aged rats by nerve growth factor. Nature 329, 65–67.

    Article  PubMed  CAS  Google Scholar 

  81. Olson, L., Nordberg, A., von Holst, H., Backman, L., Ebendal, T., Alafuzoff, I., et al. (1992) Nerve growth factor affects 11C-nicotine binding, blood flow, EEG, and verbal episodic memory in an Alzheimer patient (case report). J. Neuronal Trans. (P-D. Sect.) 4, 79–495.

    Article  CAS  Google Scholar 

  82. Phelps, C. H., Gage, F. H., Growdon, J. H., Hefti, F., Harbaugh, R., Johnston, M. V., et al. (1989) Potential use of nerve growth factor to treat Alzheimer’s disease. Neurobiol. Aging 10, 205–207.

    Google Scholar 

  83. Gage, F. H., Wolf, J. A., Rosenberg, M. B., Xu, L., and Yee, J. K. (1987) Grafting genetically modified cells to the brain: possibilities for the future. Neuroscience 23, 795–807.

    Article  PubMed  CAS  Google Scholar 

  84. Rosenberg, M. B., Friedman, T., Robertson, R. C., Tuszynski, M., Wolff, J. A., Breakefield, X. O., et al. (1988) Grafting genetically modified cells to the damaged brain: restorative effects of NGF expression. Science 242, 1575–1578.

    Article  PubMed  CAS  Google Scholar 

  85. Breakefield, X.O. (1989) Combining CNS transplantation and gene transfer. Neurobiol. Aging 10, 647–648.

    Article  PubMed  CAS  Google Scholar 

  86. Ernfors, P., Ebendal, T., Olson, L., Mouton, P., Stromberg, I., and Persson, H. (1989) A cell line producing recombinant nerve growth factor evokes growth responses in intrinsic and grafted central cholinergic neurons. Proc. Natl. Acad. Sci. USA 86, 4756–4760.

    Article  PubMed  CAS  Google Scholar 

  87. Strömberg, I., Wetmore, C. J., Ebendal, T., Ernfors, P., Persson, H., and Olson, L. (1990) Rescue of basal forebrain cholinergic neurons after implantation of genetically modified cells producing recombinant NGF. J. Neurosci. Res. 25, 405–411.

    Article  PubMed  Google Scholar 

  88. Maysinger, D., Piccardo, P., Goiny, M., and Cuello, A. C. (1992) Grafting of genetically modified cells: effects of acetylcholine release in vivo. Neurochem. Intern. 21, 543–548.

    Article  CAS  Google Scholar 

  89. Winn, S. R., Hammang, J. P., Emerich, D. F., Lee, A., Palmiter, R. D., and Baetge, E. E. (1994) Polymer-encapsulated cells genetically modified to secrete human nerve growth factor promote the survival of axotomized septal cholinergic neurons. Proc. Natl. Acad. Sci. USA 91, 2324–2328.

    Article  PubMed  CAS  Google Scholar 

  90. Emerich, D. F., Winn, S. R., Harper, J., Hammang, J. P., Baetge, E. E., and Kordower, J. H. (1994) Implants of polymer-encapsulated human NGF-secreting cells in the nonhuman primate:rescue and sprouting of degenerating cholinergic basal forebrain neurons. J. Comp. Neurol. 349, 148–164.

    Article  PubMed  CAS  Google Scholar 

  91. Kordower, J. H., Winn, S. R., Liu, Y.-T., Mufson, E. J., Sladek, J. R. Jr., Baetge, E. E., et al. (1994) The aged monkey basal forebrain:rescue and sprouting of axotomized basal forebrain neurons after grafts of encapsulated cells secreting human nerve growth factor. Proc. Natl. Acad. Sci. USA 91, 10,898–10, 902.

    Google Scholar 

  92. Fischer, W., Wictorin, K., Björklund, A., Williams, L. R., Varon, S., and Gage, F. H. (1987) Amelioration of cholinergic neuron atrophy and spatial memory impairment in aged rats by nerve growth factor. Nature 329, 65–67.

    Article  PubMed  CAS  Google Scholar 

  93. Lindner, M. D., Kearns, C. E., Winn, S. R., Frydel, B. R., and Emerich, D. F. (1996) Effects of intraventricular encapsulated hNGF-secreting fibroblasts in aged rats. Cell Transplantation 5, 205–223.

    Article  PubMed  CAS  Google Scholar 

  94. Winn, S. R., Lindner, M. D., Haggett, G., Francis, J. M., and Emerich, D. F. (1996) Polymer-encapsulated genetically-modified cells continue to secrete human nerve growth factor for over one year in rat ventricles:behavioral and anatomical consequences. Exp. Neurol. 140, 126–138.

    Article  PubMed  CAS  Google Scholar 

  95. Emerich D. F, and Sanberg P. R. (1992) Animal Models in Huntington’s disease, in Neuromethods, vol. 17, Animal Models of Neurological Disease ( Boulton, A. A., Baker G. B., Butterworth, R. F., eds.), Humana Press, Totowa, NJ, pp. 65–134.

    Google Scholar 

  96. Beal, M. F., Kowall, N. W., Ellison, D. W., Mazurek, M. F., Swartz, K. J., and Martin, J. B. (1986) Replication of the neurochemical characteristics Huntington’s disease by quinolinic acid. Nature 321, 168–171.

    Article  PubMed  CAS  Google Scholar 

  97. Beal, M. F., Mazurek, M. F., Ellison, D. W., Swartz, K. J., McGarvey, U., Bird, E. D., et al. (1988) Somatostatin and neuropeptide Y concentrations in pathologically graded cases of Huntington’s disease. Ann. Neurol. 23, 562–569.

    Article  PubMed  CAS  Google Scholar 

  98. Beal, M. F., Kowall, N. W., Swartz, K. J., Ferranti, R. J., and Martin, J. B. (1989) Differential sparing of somatostatin-neuropeptide Y and cholinergic neurons following striatal excitotoxin lesions. Synapse 3, 38–47.

    Article  PubMed  CAS  Google Scholar 

  99. Sanberg, P. R., Calderon, S. F., Giordano, M., Tew, J. M., and Norman, A.B. (1989) The quinolinic acid model of Huntington’s disease: locomotor abnormalities. Exp. Neurol. 105, 45–53.

    Article  PubMed  CAS  Google Scholar 

  100. Block, F., Kunkel, M., and Schwarz, M. (1993) Quinolinic acid lesion of the striatum induces impairment in spatial learning and motor performance in rats. Neurosci. Lett. 149, 126–128.

    Article  PubMed  CAS  Google Scholar 

  101. Emerich, D. F., Zubricki, E. M., Shipley, M. T., Norman, A. B., and Sanberg, P. R. (1991) Female rats are more sensitive to the locomotor alterations following quinolinic acid-induced striatal lesions: effects of striatal transplants. Exp. Neurol. 111, 369–378.

    Article  PubMed  CAS  Google Scholar 

  102. Frim, D. M., Schumacher, J. M., Short, M. P., Breakefield, X. O., and Isacson, O. (1992) Local response to intracerebral grafts of NGF-secreting fibroblasts: induction of a peroxidative enzyme. Neurosci. Abstracts 18, 1100.

    Google Scholar 

  103. Frim, D. M., Uhler, T. A., Short, M. P., Exxedine, Z. D., Klagsbrun, M., Breakefield, X. O., et al. (1993) Effects of biologically delivered NGF, BDNF, and bFGF on striatal excitotoxic lesions. Neuroreport 4, 367–370.

    Article  PubMed  CAS  Google Scholar 

  104. Frim, D. M., Simpson, J., Uhler, T. A., Short, M. P., Bossi, S. R., Breakefield, X. O., et al. (1993) Striatal degeneration induced by mitochondrial blockade is prevented by biologically delivered NGF. J. Neurosci. Res. 35, 452–458.

    Article  PubMed  CAS  Google Scholar 

  105. Schumacher, J. M., Short, M. P., Hyman, B. T., Breakefield, X. O., and Isacson, O. (1991) Intracerebral implantation of nerve growth factor-producing fibroblasts protects striatum against neurotoxic levels of excitatory amino acids. Neuroscience 45, 561–570.

    Article  PubMed  CAS  Google Scholar 

  106. Norman, A. B., Calderon, S. F., Giordano, M., and Sanberg, P. R. (1988) Striatal tissue transplants attenuate apomorphine-induced rotational behavior in rats with unilateral kainic acid lesions. Neuropharmacology 7, 333–336.

    Article  Google Scholar 

  107. Björklund, A., Campbell, K., Sirinathsinghji, D. J., Fricker, R. A., and Dunnett, S. B. (1994). Functional capacity of striatal transplants in the rat Huntington model, in Functional Neural Transplantation ( Dunnett, S. B. and Björklund, A., eds.), Raven, New York, pp. 157–195.

    Google Scholar 

  108. Emerich, D. F., Winn, S. R., Lindner, M. D., Frydel, B. R., and Kordower, J. H. (1996) Implants of encapsulated human CNTF-producing fibroblasts prevent behavioral deficits and striatal degeneration in a rodent model of Huntington’s disease. J. Neurosci. 16, 5168–5181.

    PubMed  CAS  Google Scholar 

  109. Montoya, C. P., Campbell-Hope, L. J., Pemberton, K. D., and Dunnett, S. B. (1991) The “staircase test”: a measure of independent forelimb reaching and grasping abilities in rats. J. Neurosci. Methods 36, 219–228.

    Article  PubMed  CAS  Google Scholar 

  110. Gonzales, G. R., Elliot, K. J., Portenoy, R. K., and Foley, K. M. (1991) The impact of comprehensive evaluation in the management of cancer pain. Pain 47, 141–144.

    Article  PubMed  CAS  Google Scholar 

  111. Moulin, D. E. and Foley, K. M. (1990) A review of hospital-based pain service, in Advances in Pain Research and Therapy, vol. 16 (Foley, K. M., Bonica, J. J., and Ventafridda, V., eds.), Raven Press, New York, pp. 413–428.

    Google Scholar 

  112. Yaksh, T. L. and Reddy, S. V. R. (1981) Studies in the primate on the analgesic effects associated with intrathecal actions of opiates, alpha-adrenergic agonists and baclofen. Anesthesiology 54, 451–467.

    Article  PubMed  CAS  Google Scholar 

  113. Yaksh, T. L. and Malmberg, A. B. (1994) Interaction of spinal modulatory receptor systems, in Progress in Pain Research and Management, vol 1 ( Fields, H. L. and Liebeskind, D. L., eds.), IASP Press, Seattle, pp. 151–217.

    Google Scholar 

  114. Sagen, J., Pappas, G. D., and Pollard, H. B. (1986) Analgesia induced by isolated bovine chromaffin cells implanted in the rat spinal cord. Proc. Natl. Acad. Sci USA 83, 7522–7526.

    Article  PubMed  CAS  Google Scholar 

  115. Livett, B. G., Dean, D. M., Whelan, L. G., Udenfriend, S., and Rossier, J. (1981) Co-release of enkephalin and catecholamines from cultured adrenal chromaffin cells. Nature 289, 317–319.

    Article  PubMed  CAS  Google Scholar 

  116. Rökaus, A., Prus, R. M., and Eiden, L. (1990) Galanin gene expression in chromaffin cells is controlled by calcium and protein kinase signalling pathways. Endocrinology 127, 3096–3102.

    Article  Google Scholar 

  117. Bylund, D. B. (1992) Subtypes of al-and a2-adrenergic receptors FASEB J. 6, 832–839.

    PubMed  CAS  Google Scholar 

  118. Reisine, T. and Bell, G. I. (1993) Molecular biology of opioid receptors. (1993) Trends Neurosci. 16, 506–515.

    Article  PubMed  CAS  Google Scholar 

  119. Wiesenfeld-Hallin, Z., Villar, M. J., and Hökfelt, T. (1989) The effects of intrathecal galanin and C-fiber stimulation on the flexor reflex in the rat. Brain Res. 486, 205–213.

    Article  CAS  Google Scholar 

  120. Barbaz, B. S., Autry, W. L., Ambrose, F. G., Hall, N. R., and Liebman, J M. (1986) Antinociceptive profile of sulfated CCK-8: comparison with CCK-4, unsulfated CCK-8 and other neuropeptides. Neuropharmacology 25, 823–829.

    Google Scholar 

  121. Hama, A. T., Tresco, P. A., Aebischer, P., Winn, S. R., and Sagen, J. (1993) Polymer-encapsulated bovine chromaffin cells reduces pain in rats with painful peripheral mononeuropathy. 7th World Congress on Pain, Paris, France, Abstract 982.

    Google Scholar 

  122. Hama, A. T. and Sagen, J. (1994) Alleviation of neuropathic pain symptoms by xenogeneic chromaffin cell grafts in the spinal subarachnoid space. Brain Res. 651, 183–193.

    Article  PubMed  CAS  Google Scholar 

  123. Sagan, J., Wang, H., Tresco, P., and Aebisher, P. (1993) Transplants of immunologically isolated xenogeneic cgromaffin cells provide a long-term source of pain-reducing neuroactive substances. J. Neurosci. 13, 2415–2423.

    Google Scholar 

  124. Yu, W., Hao, J.-X., Xu, X.-J., Saydoff, J., Haegerstrand, A., and Wiesenfeld-Hallin, Z. (1996) Intrathecal bovine chromaffin cells alleviate chronic allodynia-like response in spinally injured rats. International Assoc. Study of Pain 8th World Congress on Pa in Abstract.

    Google Scholar 

  125. Wang, H. and Sagen, J. (1994) Absence of appreciable tolerance and morphine cross-tolerance in rats with adrenal medullary transplants in the spinal cord. Neuropharmacology 33, 681–692.

    Article  PubMed  CAS  Google Scholar 

  126. Lazorthes, Y., Bès, J. C., Sagen, J., Tafani, M., Tkaczuk, J., Sallerin, B., et al. (1995) Transplantation of human chromaffin cells for intractable cancer pain control. Acta Neurochir. 64, 97–100.

    Article  CAS  Google Scholar 

  127. Winnie, A., Pappas, G. D., Gupta, T. K., Wang, H., Ortega, J., and Sagen, J. (1993) Subarachnoid adrenal medullary implants for terminal cancer pain. Anesthesiology 79, 644–653.

    Article  PubMed  CAS  Google Scholar 

  128. Vaquero, J., Martinez, R., Oya, S., Cocal, S., Salazar, F. G., and Colado, M. I. (1988) Transplantation of adrenal medulla into spinal cord for pain relief. Lancet 12, 1315.

    Article  Google Scholar 

  129. Aebischer, P., Buscher, E., Joseph, J. M., de Tribollet, N., Lysaght, M., Rudnick, S., et al. (1994) Transplantation in humans of encapsulated xenogeneic cells without immunosuppression: a preliminary report. Transplantation 58, 1–3.

    Article  Google Scholar 

  130. Buscher, E., Goddard, M., Heyd, B., Joseph, J. M., Favre, J., de Tribollet, N., Lysaght, M., et al. (1996) Immunoisolated xenogeneic chromaffin cell therapy for chronic pain: initial clinical experience. Anesthesiology 85, 1005–1012.

    Article  Google Scholar 

  131. Kaplan, F. A., Kreuger, P. M., Harvey, J., and Goddard, M. B. (1996) Peripheral Xenogeneic immunological response to encapsulated bovine adrenal chromaffin cells implanted within the sheep lumbar intrathecal space. Transplantation 61, 1215–1221.

    Article  PubMed  CAS  Google Scholar 

  132. Henderson, C. E. (1994) GDNF: A potent survival factor of motoneurons present in peripheral nerve and muscle. Science 266, 1062–1064.

    Article  PubMed  CAS  Google Scholar 

  133. Hughes, R. A., Sendtner, M., and Thoenen, H. (1993) Members of several gene families influence survival of rat motoneurons in vitro and in vivo. J. Neurosci. Res. 36, 663–671.

    Article  PubMed  CAS  Google Scholar 

  134. Kato, A. C. and Lindsay, R. M. (1994) Overlapping and additive effects of neurotrophins and CNTF on cultured human spinal cord neurons. Exp. Neurol. 130, 196–201.

    Article  PubMed  CAS  Google Scholar 

  135. Lewis, M. E., Neff, N. T., Contreras, P. C., Stong, D. B., Oppenheim, R. W., Grebow, P. E., et al. (1993) Insulin-like growth factor-I: Potential for treatment of motor neuronal disorders. Exp. Neurol. 124, 73–88.

    Article  PubMed  CAS  Google Scholar 

  136. Mitsumoto, H., Ikeda, K, Klinkosz, B., Cedarbaum, J. M., Wong, V., and Lindsay, R. M. (1994) Arrest of motor neuron disease in wobbler mice cotreated with CNTF and BDNF. Science 265, 1107–1110.

    Article  PubMed  CAS  Google Scholar 

  137. Sagot, Y., Tan, S. A., Baetge, E., Schmalbruch, H., Kato, A. C., and Aebischer, P. (1995) Polymer encapsulated cell lines genetically engineered to release ciliary neurotrophic factor can slow down progressive motor neuropathy in the mouse. Eur. J. Neurosci. 7, 1313–1322.

    Article  PubMed  CAS  Google Scholar 

  138. Sendtner, M., Schmalbruch, H., Stöckli, K. A., Carroll, P., Kreutzberg, G. W., and Thoenen, H. (1992) Ciliary neurotrophic factor prevents degeneration of motor neurons in mouse mutant progressive motor neuronopathy. Nature 358, 502–504.

    Article  PubMed  CAS  Google Scholar 

  139. Sendtner, M., Holtmann, B., Kolbeck, R., Thoenen, H., and Barde, Y. A. (1992) Brain-derived neurotrophic factor prevents the death of motor neurons in newborn rats after nerve section. Nature 360, 757–759.

    Article  PubMed  CAS  Google Scholar 

  140. Wong, V., Arriaga, R., Ip, N. Y., and Lindsay, R. M. (1993) The neurotrophins BDNF, NT-3 and NT-4/5, but not NGF, up-regulate the cholinergic phenotype of developing motor neurons. Eur. J. Neurosci. 5, 466–474.

    Article  PubMed  CAS  Google Scholar 

  141. Zum, A. D., Baetge, E. E., Hammang, J. P., Tan, S. A., and Aebischer, P. (1994) Glial cell line-derived neurotrophic factor (GDNF), a new neurotrophic factor for moto-neurones. NeuroReport 6, 113–118.

    Article  Google Scholar 

  142. The ALS CNTF Treatment Study (ACTS) Phase I-II Study Group (1995) The pharmacokinetics of subcutaneously administered recombinant human ciliary neurotrophic factor (rhCNTF) in patients with amytrophic lateral sclerosis: relationship to parameters of the acute phase response. Clin. Neuropharmacol. 18, 500–514.

    Article  Google Scholar 

  143. The ALS CNTF Treatment Study (ACTS) Phase I-II Study Group (1995) A phase I study of recombinant human ciliary neurotrophic factor (rHCNTF) in patients with amyotrophic lateral sclerosis. Clin. Neuropharmacol. 18, 515–532.

    Article  Google Scholar 

  144. Dittrich, F., Thoenen, H., and Sendtner, M. (1994) Ciliary neurotrophic factor: pharmacokinetics and acute-phase response in rat. Ann. Neurol. 35, 151–163.

    Article  PubMed  CAS  Google Scholar 

  145. Aebischer, P., Pochon, N.A.-M., Heyd, B., Déglon, N., Joseph, J.-M., Zum, A. D., et al. (1995) Gene therapy for amyotrophic lateral sclerosis (ALS) using a polymer encapsulated xenogenic cell line engineered to secrete hCNTF. Hum. Gene Ther. 7, 851–860.

    Google Scholar 

  146. Aebischer, P., Schleup, M., Déglon, N., Joseph, J.-M., Hirt, L., Heyd, B., et al. (1996) Intrathecal delivery of CNTF using encapsulated genetically modified xenogenic cells in amyotrophic lateral sclerosis patients. Nature Med. 2, 696–699.

    Google Scholar 

  147. Andres, P. L., Finison, L. J., Conlon, T., Thibobeau, L. M., and Munsat, T. L. (1986) Quantitative motor assessment in amyotrophic lateral sclerosis. Neurology 36, 937–941.

    Article  PubMed  CAS  Google Scholar 

  148. Norris, F. H., Calanchini, P. R., Fallat, R. J., Panchari, S., and Jewett, B. (1974) The administration of guanidine in amyotrophic lateral sclerosis. Neurology 24, 721–728.

    Article  PubMed  Google Scholar 

  149. Kordower, J. H., Freeman, T. B., Snow, B. J., Vingerhoets, F. J. G., Mufson, E. J., Sanberg, P. R., et al. (1995) Neuropathological evidence of graft survival and striatla reinnervation after the transplantatrion of fetal mesencephalic tissue in a patient with Parkinson’s disease. N. Engl. J. Med. 332, 1118–1124.

    Article  PubMed  CAS  Google Scholar 

  150. Kordower, J. H., Rosenstein, J. M., Collier, T. J., Burke, M. A., Chen, E.-Y., Li, J. M., et al. (1996) Functional fetal nigral grafts in a patient with Parkinson’s disease: chemoanatomic, ultrastructural, and metabolic studies. J. Comp. Neurol. 370, 203–230.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Emerich, D.F., Lindner, M.D., Saydoff, J., Gentile, F.T. (1998). Treatment of Central Nervous System Diseases with Polymer-Encapsulated Xenogeneic Cells. In: Freeman, T.B., Widner, H. (eds) Cell Transplantation for Neurological Disorders. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-476-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-476-4_13

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-043-4

  • Online ISBN: 978-1-59259-476-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics