Skip to main content

Animal Models Used in Cerebral Ischemia and Stroke Research

  • Chapter
Book cover Clinical Pharmacology of Cerebral Ischemia

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

The central nervous system (CNS) is extremely vulnerable to ischemia. In humans, the brain accounts for approx 2% of body weight, but receives about 15% of cardiac output. The amounts of energy metabolites (glucose and glycogen) and oxygen stored in the brain are so small that cessation of blood supply for only a few minutes leads to severe CNS damage. This vulnerability of the CNS mainly derives from the vulnerability of neurons, the major component of the CNS. Therefore, many therapeutic modalities have been developed to protect neurons from ischemic damage. In this sense, cultured neurons (in vitro model) are enough to test the efficacy of a therapy. However, the results of such tests indicate only the level of cytotoxicity of a therapy. The cultured neurons never show neurological deficits. Ischemic insult to the human CNS may lead to a wide variety of signs and symptoms, from death to very slight neurological deficits. Rational therapies for cerebral ischemia should be established on a detailed understanding of the pathomechanisms involved. This is why we need experimental stroke models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Choi, D. W., Glutamate neurotoxicity in cortical cell culture is calcium dependent, Neurosci. Lett., 58 (1985) 293–297.

    PubMed  CAS  Google Scholar 

  2. Rothman, S. M., Synaptic activity mediates death of hypoxic neurons, Science, 220 (1983) 536–537.

    PubMed  CAS  Google Scholar 

  3. Vibulsreth, S., Hefti, F., Ginsberg, M. D., Dietrich, W. D., and Busto, R., Astrocytes protect cultured neurons from degeneration induced by anoxia, Brain Res., 422 (1987) 303–311.

    PubMed  CAS  Google Scholar 

  4. Seren, M. S., Aldino, C., Zanoni, R., Leon, A., and Nicoletti, F., Stimulation of inositol phospholipid hydrolysis by excitatory amino acids is enhanced in brain slices from vulnerable regions after transient global ischemia, J. Neurochem., 53 (1989) 1700–1705.

    PubMed  CAS  Google Scholar 

  5. Hudgins, W. R. and Garcia, J. H., Transorbital approach to the middle cerebral artery of the squirrel monkey: a technique for experimental cerebral infarction applicable to ultra-structural studies, Stroke, 1 (1970) 107–111.

    PubMed  CAS  Google Scholar 

  6. Garcia, J. H., Experimental ischemic stroke: a review, Stroke, 15 (1984) 5–14.

    PubMed  CAS  Google Scholar 

  7. Harvey, J. and Rasmussen, T., Occlusion of the middle cerebral artery. An experimental study, Arch. Neurol. Psychiatry, 66 (1951) 20–29.

    CAS  Google Scholar 

  8. Symon, L., Experimental model of stroke in baboon, Adv. Neurol., 10 (1975) 211–213.

    Google Scholar 

  9. Bremer, A. M., Watanabe, O., and Bourke, R. S. Artificial embolization of the middle cerebral artery in primates: description of an experimental model with extracranial technique, Stroke, 6 (1975) 387–390.

    PubMed  CAS  Google Scholar 

  10. Myers, R. E. and Yamaguchi, S., Nervous system effects of cardiac arrest in monkeys: preservation of vision, Arch. Neurol., 34 (1977) 65–74.

    PubMed  CAS  Google Scholar 

  11. O’Brien, M. D. and Waltz, A. G., Transorbital approach for occluding the middle cerebral artery without craniectomy, Stroke, 4 (1973) 201–206.

    PubMed  Google Scholar 

  12. Hayakawa, T. and Waltz, A. G., Immediate effects of cerebral ischemia: evolution and resolution of neurological deficits after experimental occlusion of one middle artery in conscious cats, Stroke, 6 (1975) 321–327.

    PubMed  CAS  Google Scholar 

  13. Todd, M. M., Dunlop, B. J., Shapiro, H. M., Chadwick, H. C., and Powell, H. C., Ventricular fibrillation in the cat: a model for global cerebral ischemia, Stroke, 12 (1981) 808–815.

    PubMed  CAS  Google Scholar 

  14. Safar, P., Stezoski, W., and Nemoto, E., Amelioration of brain damage after 12 minutes’ cardiac arrest in dogs, Arch. Neurol., 33 (1976) 91–95.

    PubMed  CAS  Google Scholar 

  15. Suzuki, J., Yoshimoto, T., Tnanka, S., and Sakamoto, T., Production of various models of cerebral infarction in the dog by of occlusion of intracranial trunk arteries, Stroke, 11 (1980) 337–41.

    PubMed  CAS  Google Scholar 

  16. Marshall, L. F., Durity, F., Lounsbury, R., Graham, G. I., Welsh, F., and Langfitt, T. W., Experimental cerebral oligemia and ischemia produced by intracranial hypertension: Part 1: pathophysiology, electroencephalography, cerebral blood flow, blood-brain barrier, and neurological function, J. Neurosurg., 43 (1975) 308–317.

    PubMed  CAS  Google Scholar 

  17. Yamamoto, K., Yoshimine, T., and Yanagihara, T., Cerebral ischemia in rabbit: a new experimental model with immunohistochemical investigation, J. Cereb. Blood Flow Metab., 5 (1985) 529–536.

    PubMed  CAS  Google Scholar 

  18. Zasslow, M. A., Pearl, R. G., Shuer, L. M., Steinberg, G. K., Lieberson, R. E., and Larson, C. P., Hyperglycemia decreases acute neuronal ischemic changes after middle cerebral artery occlusion in cats, Stroke, 20 (1989) 519–523.

    PubMed  CAS  Google Scholar 

  19. Pulsinelli, W. A. and Brierley, J. B., A new model of bilateral hemispheric ischemia in the unanesthetized rat, Stroke, 10 (1979) 267–272.

    PubMed  CAS  Google Scholar 

  20. Smith M-L., Bendek G., Dahlgren N., Rosén I., Wieloch T., K. SB. Models for studying long-term recovery following forebrain ischemia in the rat. 2. A2-vessel occlusion model. Acta Neurol. Scand., 69 (1984) 385–401.

    PubMed  CAS  Google Scholar 

  21. Robinson, R. G. and Coyle, J. T., The differential effect of right versus left hemispheric cerebral infarction on catecholamines and behavior in the rat, Brain Res., 188 (1980) 63–78.

    PubMed  CAS  Google Scholar 

  22. Tamura, A., Graham, D. I., McCulloch, J., and Teasdale, G. M., Focal cerebral ischemia in the rat: 1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion, J. Cereb. Blood Flow Metab., 1 (1981) 53–60.

    PubMed  CAS  Google Scholar 

  23. Koizumi, J., Yoshida, Y., Nakazawa, T., and Ohneda, G., Experimental studies of ischemic brain edema, I: a new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area, Jpn. J. Stroke, 8 (1986) 1–8.

    Google Scholar 

  24. Chen, S. T., Hsu, C. Y., Hogan, E. L., Maricq, H., and Balentine, J. D., A model of focal ischemic stroke in the rat: Reproducible extensive cortical infarction, Stroke, 17 (1986) 738–743.

    PubMed  CAS  Google Scholar 

  25. Brint, S., Jacewicz, M., Kiessling, M., Tanabe, J., and Pulsinelli, W., Focal brain ischemia in the rat: Methods for reproducible neocortical infarction using tandem occlusion of the distal middle cerebral and ipsilateral common carotid arteries, J. Cereb. Blood Flow Metab., 8 (1988) 474–485.

    PubMed  CAS  Google Scholar 

  26. Nakayama, H., Dietrich, W. D., Watson, B. D., Busto, R., and Ginsberg, M. D., Photothrombotic occlusion of rat middle cerebral artery: histopathological and hemodynamic sequelae of acute recanalization, J. Cereb. Blood Flow Metab., 8 (1988) 357–366.

    PubMed  CAS  Google Scholar 

  27. Levine, S. and Payan, H., Effect of ischemia and other procedures on the brain and retina of the gerbil (Meriones unguiculatus), Exp. Neurol., 16 (1966) 255–262.

    PubMed  CAS  Google Scholar 

  28. Yoshimine, T. and Yanagihara, T., Regional cerebral ischemia by occlusion of the posterior cerebral artery and the middle cerebral artery in gerbils, J. Neurosurg., 58 (1983) 362–367.

    PubMed  CAS  Google Scholar 

  29. Barone, F. C., Knudsen, D. J., Nelson, A. H., Feuerstein, G. Z., and Willette, R. N., Mouse strain differences in susceptibility to cerebral ischemia are related to cerebral vascular anatomy, J. Cereb. Blood Flow Metab., 13 (1993) 683–692.

    PubMed  CAS  Google Scholar 

  30. Moossy, J., Morphological validation of ischemic stroke models. In Price, T. R. and Nelson, E., (eds.) Eleventh Princeton Conference, Raven Press, New York, 1979, pp. 3–10.

    Google Scholar 

  31. Zeman, W. and Innes, J. R. M., Craigle’s Neuroanatomy of the rat. Academic Press, London, 1963.

    Google Scholar 

  32. Rieke, G. K., Bowers, D. E. J., and Penn, P., Vascular supply pattern to rat caudatoputamen and globus pallidus: Scanning electronmicroscopic study of vascular endocasts of stroke-prone vessels, Stroke, 12 (6) (1981) 840–847.

    PubMed  CAS  Google Scholar 

  33. Paxinos, G. and Watson, C., The Rat Brain in Sterotaxic Coodinates. 2nd ed., Academic, Sydney, 1986.

    Google Scholar 

  34. Rubino, G. J. and Young, W., Ischemic cortical lesions after permanent occlusion of individual cerebral artery branches in rats, Stroke, 19 (1988) 870–877.

    PubMed  CAS  Google Scholar 

  35. Menzies, S. A., Hoff, J. T., and Betz, A. L., Middle cerebral artery occlusion in rats: A neurological and pathological evaluation of a reproducible model, Neurosurgery, 31 (1992) 100–107.

    PubMed  CAS  Google Scholar 

  36. Watson, B. D., Dietrich, W. D., Prado, R., Nakayomia, H., Kanemitsu, H., Futrell, N. N., Yao, H., Markgraf, C. G., and Wester, P., Concepts and techniques of experimental stroke induced by cerebrovascular photothrombosis. Central Nervous System Trauma: Research Techniques, CRC, Boca Raton, FL, 1995, pp. 169–194.

    Google Scholar 

  37. Ginsberg, M. D. and Busto, R., Rodent models of cerebral ischemia, Stroke, 20 (1989) 1627–1642.

    PubMed  CAS  Google Scholar 

  38. Coyle, P., Arterial patterns of the rat rhinencephalon and related structures, Exp. Neurol., 49 (1975) 671–690.

    PubMed  CAS  Google Scholar 

  39. Yamori, Y., Horie, R., Handa, H., Sato, M., and Fukase M., Pathogenetic similarity of strokes in stroke-prone spontaneously hypertensive rats and humans, Stroke, 7 (1976) 46–53.

    PubMed  CAS  Google Scholar 

  40. Iversen, L. L., Iversen, S. D., and Snyder, S. H., Handbook of Phychopharmacology: Chemical Pathways in the Brain. Plenum, London, 1978, vol. 9.

    Google Scholar 

  41. Busto, R., Dietrich, W. D., Globus, M. Y.-T., Valdés, I., Scheinberg, P., and Ginsberg, M. D., Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury, J. Cereb. Blood Flow Metab., 7 (1987) 729–738.

    PubMed  CAS  Google Scholar 

  42. Minamisawa, H. and Smith, M.-L., and Siesjö, B. K., The effect of mild hyperthermia and hypothermia on brain damage following 5, 10, and 15 minutes of forebrain ischemia, Ann. Neurol., 28 (1990) 26–33.

    Google Scholar 

  43. Minamisawa, H., Mellergârd P., Smith, M.-L., et al., Preservation of brain temperature during ischemia in rats, Stroke, 21 (1990) 758–764.

    PubMed  CAS  Google Scholar 

  44. Onesti, S. T., Baker, C. J., Sun, P. P., and Solomon, R. A., Transient hypothermia reduces focal ischemic brain injury in the rat, Neurosurgery, 29 (1991) 369–373.

    PubMed  CAS  Google Scholar 

  45. Baker, C. J., Onesti, S. T., and Solomon, R. A., Reduction by delayed hypothermia of cerebral infarction following middle cerebral artery occlusion in the rat: a time-course study, J. Neurosurg., 77 (1992) 438–444.

    PubMed  CAS  Google Scholar 

  46. Kader, A., Brisman, M. H., Maraire, N., Huh, J.-T., and Solomon, R. A., The effect of mild hypothermia on permanent focal ischemia in the rat, Neurosurgery, 31 (1992) 1056–1061.

    PubMed  CAS  Google Scholar 

  47. Morikawa, E., Ginsberg, M. D., Dietrich, W. D., Duncan, R. C., Kraydieh, S., Globus, M. Y. T., and Busto, R., The significance of brain temperature in focal cerebral ischemia: histopathological consequences of middle cerebral artery occlusion in the rat, J. Cereb. Blood Flow Metab., 12 (1992) 380–389.

    PubMed  CAS  Google Scholar 

  48. Takagi, K., Ginsberg, M. D., Globus, M. Y.-T., Martinez, E., and Busto, R., Effect of hyperthermia on glutamate release in ischemic penumbra after middle cerebral artery occlusion in rats, Am. J. Physiol., 266 (1994) H1770 — H1776.

    Google Scholar 

  49. Carroll, M. and Beek, O., Protection against hippocampal CA1 cell loss by postischemic hypothermia is dependent on delay of initiation and duration, Metab. Brain Dis., 7 (1992) 45–50.

    PubMed  CAS  Google Scholar 

  50. Zhang, Z. G., Chopp, M., and Chen, H., Duration dependent post-ischemic hypothemia alleviates cortical damage after transient middle cerebral artery occlusion in the rat, J. Neurol. Sci.,117 (1993) 240–244.

    Google Scholar 

  51. Karibe, H., Chen, J., Zarow, G. J., Graham, S. H., and Weinstein, P. R., Delayed induction of mild Hypothermia to reduce infarct volume after temporary middle cerebral artery occlusion in rats, J. Neurosurg., 80 (1994) 112–119.

    PubMed  CAS  Google Scholar 

  52. Ginsberg, M. D., Sternau, L. L., Globus, M. Y.-T., Dietlich, W. D., and Busto, R., Therapeutic modulation of brain temperature: Relevance to ischemic brain injury, Cerebrovasc. Brain Metab. Rev., 4 (1992) 189–225.

    PubMed  CAS  Google Scholar 

  53. Ginsberg, M. D., Welsh, F. A., and Budd, W. W., Deleterious effects of glucose pretreatment on recovery from diffuse cerebral ischemia in cat. I. Local cerebral blood flow and glucose utilization, Stroke, 11 (1980) 347–354.

    PubMed  CAS  Google Scholar 

  54. Pulsinelli, W. A., Waldman, S., Rawlinson, D., and Plum, F., Moderate hyperglycemia augments ischemic brain damage: a neuropathologic study in the rat, Neurology, 32 (1982) 1239–1246.

    PubMed  CAS  Google Scholar 

  55. Nedergaard, M. and Diemer, N. H., Focal ischemia of the rat brain, with special reference to the influence of plasma glucose consentration, Acta Neuropathol. (Berl.), 73 (1987) 131–137.

    CAS  Google Scholar 

  56. Duverger, D. and MacKenzie, E. T., The quantification of cerbral infarction following focal ischemia in the rat: Influence of strain, arterial pressure, blood glucose concentration, and age, J. Cereb. Blood Flow Metab., 8 (1988) 449–461.

    PubMed  CAS  Google Scholar 

  57. de Courten-Myers, G. M., Myers, R. E., and Schoolfield, L., Hyperglycemia enlarges infarct size in cerebrovascular occlusion in cats, Stroke, 19 (1988) 623–630.

    Google Scholar 

  58. Prado, R., Ginsberg, M. D., Dietrich, W. D., Watson, B. D., and Busto, R., Hyperglycemia increases infarct size in collaterally perfused but not end-arterial vascular territories, J. Cereb. Blood Flow Metab., 8 (1988) 186–192.

    PubMed  CAS  Google Scholar 

  59. Kushner, M., Nencini, P., Reivich, M., Rango, M., Jamieson, D., Fazekas, F., Zimmerman, R., Chawluk, J., Alavi, Al, and Alres, W., Relation of hyperglycemia early in ischemic brain infarction to anatomy, metabolism, and clinical outcome, Ann. Neurol., 28 (1990) 129–135.

    PubMed  CAS  Google Scholar 

  60. Ginsberg, M. D., Prado, R., Dietrich, W. D., Busto, R., and Watson, B. D., Hyperglycemia reduces the extent of cerebral infarction in rats, Stroke, 18 (1987) 570–574.

    PubMed  CAS  Google Scholar 

  61. Kraft, S. A., Larson, C. P., Shuer, L. M., Steinberg, G. K., Benson, G. V., and Pearl, R. G., Effect of hyperglycemia on neuronal changes in a rabbit model of focal cerebral ischemia, Stroke, 21 (1990) 447–450.

    PubMed  CAS  Google Scholar 

  62. Hossmann, K.-A. and Sato, K., Recovery of neuronal function after prolonged cerebral ischemia, Science, 168 (1970) 375–376.

    PubMed  CAS  Google Scholar 

  63. Hossmann, K.-A. and Zimmermann, V., Resuscitation of the monkey brain after 1 h complete ischemia. I. Physiological and morphological observations, Brain Res., 81 (1974) 59–74.

    PubMed  CAS  Google Scholar 

  64. Osborne, K. A., Shigeno, T., Balarsky, A. M., Ford, I., McCullock, J., Teasdale, G. M., and Graham, D. I., Quantitative assessment of early brain damage in a rat model of focal cerebral ischaemia, J. Neurol. Neurosurg. Psychiatry, 50 (1987) 402–410.

    PubMed  CAS  Google Scholar 

  65. Zhu, C. Z. and Auer, R. N. Graded hypotension and MCA occlusion duration: effect in transient focal ischemia. J. Cereb. Blood Flow Metab., 15 (1995) 980–988.

    PubMed  CAS  Google Scholar 

  66. Warner, D. S., Zhou, J. G., Ramani, R., and Todd, M. M., Reversible focal ischemia in the rat: effects of halothane, isoflurane, and methohexital anesthesia, J. Cereb. Blood Flow Metab., 11 (1991) 794–802.

    PubMed  CAS  Google Scholar 

  67. Kraig, R. P., Petito, C. K., Plum, F., and Pulsinelli, W. A., Hydrogen ions kill brain at concentrations reached in ischemia, J. Cereb. Blood Flow Metab., 7 (1987) 379–386.

    PubMed  CAS  Google Scholar 

  68. Loskota, W. J., Lomax, P., Verity M. A. A stereotaxic atlas of the mongolian gerbil brain (Meriones unguiculatus), Ann Arbor Science, Ann Arbor, 1974.

    Google Scholar 

  69. Matsuyama, T., Matsumoto, M., Fujisawa, A., Handa, N., Tanaka, K., Yoneda, S., Kimuya, K., and Abe, H., Why are infant gerbils more resistant than adults to cerebral infarction after carotid ligation?, J. Cereb. Blood Flow Metab., 3 (1983) 381–385.

    PubMed  CAS  Google Scholar 

  70. Yao, H., Sadoshima, S., Ooboshi, H., Sato, Y., Uchimura, H., and Fujishima, M., Age-related vulnerability to cerebral ischemia in spontaneously hypertensive rats, Stroke, 22 (1991) 1414–1418.

    PubMed  CAS  Google Scholar 

  71. Davis, M., Mendelow, A. D., Perry, R. H., Chambers, I. R., James, O. F. W., Experimental stroke and neuroprotection in the aging rat brain, Stroke, 26 (1995) 1072–1078.

    PubMed  CAS  Google Scholar 

  72. Payan, H. M. and Conrad, J. R. Carotid ligation in gerbils. Influence of age, sex, and gonads, Stroke, 8 (1977) 194–196.

    Google Scholar 

  73. Nakatomi, Y., Fujishima, M., Tamaki, K., Ishitsuka, T., Ogata, J., and Omae, T., Influence of sex on cerebral ischemia following bilateral carotid occlusion in spontaneously hypertensive rats: a metabolic study, Stroke, 10 (1979) 196–9.

    PubMed  CAS  Google Scholar 

  74. Berry, K., Wisniewxki, J. M., Svarzbein, L., and Baez, S., On the relationship of brain vasculature to production of neurological deficit and morphological chagnes following acute unilateral common carotid artery ligation in gerbils, J. Neurol. Sci., 25 (1975) 75–92.

    PubMed  CAS  Google Scholar 

  75. Hall, E. D., Pazara, K. E., and Linseman, K. L., Sex differences in postischemic neuronal necrosis in gerbils, J. Cereb. Blood Flow Metab., 11 (1991) 292–298.

    PubMed  CAS  Google Scholar 

  76. Coyle, P. and Jokelainen, P. T., Differential outcome to middle cerebral artery occlusion in spontaneously hypertensive stroke-prone rats (SHRSP) and Wistar Kyoto (WKY) rats, Stroke, 14 (1983) 605–611.

    PubMed  CAS  Google Scholar 

  77. Xie, Y., Zacharias, E., Hoff, P., and Tegtmeier, F., Ion channel involvement in anoxic depolarization induced by cardiac arrest in rat brain, J. Cereb. Blood Flow Metab., 15 (1995) 587–594.

    PubMed  CAS  Google Scholar 

  78. De Garavilla, L., Babbs, C., and Tacker, W., An experimental circulatory arrest model in the rat to evaluate calcium antagonists in cerebral resuscitation, Am. J. Emerg. Med., 2 (1984) 321–326.

    PubMed  Google Scholar 

  79. Blomqvist, P. and Wieloch, T., Ischemic brain damage in rats following cardiac arrest using a long-term recovery model, J. Cereb. Blood Flow Metab., 5 (1985) 420–431.

    PubMed  CAS  Google Scholar 

  80. Kawai, K., Nitecka, L., Ruetzler, C. A., Nagashima, G., Joo, F., Mies, G., Nowak, T. S., Jr., Saito, N., Lohr, J. M., and Klatzo, I., Global cerebral ischemia associated with cardiac arrest in the rat.I. Dynamics of early neuronal changes, J. Cereb. Blood Flow Metab., 12 (1992) 238–249.

    PubMed  CAS  Google Scholar 

  81. Kawai, K., Penix, L., Kawahara, N., Reutzler, C. A., and Klatzo, I., Development of susceptibility to audiogenic seizures following cardiac arrest cerebral ischemia in rats, J. Cereb. Blood Flow Metab., 15 (1995) 248–258.

    PubMed  CAS  Google Scholar 

  82. Leonov, Y., Sterz, F., Safar, P., and Radovsky, A., Moderate hypothermia after cardiac arrest of 17 minutes in dogs on cerebral and cardiac outcome, Stroke, 21 (1990) 1600–1606.

    PubMed  CAS  Google Scholar 

  83. Leonov, Y., Sterz, F., Safar, P., et al., Mild cerebral hypothermia during and after cardiac arrest improves neurologic outcome in dogs, J. Cereb. Blood Flow Metab., 10 (1990) 57–70.

    PubMed  CAS  Google Scholar 

  84. Brierley, J., Brown, A., Excell, B., and Meldrum, B., Brain damage in the rhesus monkey resulting from profound arterial hypotension. I. Its nature, distribution and general physiological correlates, Brain Res., 13 (1969) 68–100.

    PubMed  CAS  Google Scholar 

  85. Yatsu, F. M., Diamond, I., Graziano, C., and Lindquist, P., Experimental brain ischemia: protection from irreversible damage with a rapid-acting barbiturate (methohexital), Stroke, 3 (1972) 726–732.

    PubMed  CAS  Google Scholar 

  86. Hallenbeck, J. M. and Bradley, M. E., Experimental model for systematic study of impaired microvascular reperfusion, Stroke, 8 (1977) 238–243.

    PubMed  CAS  Google Scholar 

  87. Ljunggren, B., Schutz, FI., and Siesjö, B. K., Changes in energy state and acid-base parameters of the rat brain during complete compression ischemia, Brain Res., 73 (1974) 277–289.

    PubMed  CAS  Google Scholar 

  88. Ross, D. and Duhaime, A.-C., Degeneration of neurons in the thalamic reticular nucleus following transient ischemia due to raised intracranial pressure: excitotoxic degeneration mediated via non-NMDA receptors?, Brain Res., 501 (1989) 129–143.

    PubMed  CAS  Google Scholar 

  89. Nemoto, E. M., Bleyaert, A. L., Stezoski, S. W., Moossy, J., Rao, G. R., and Safar, P., Global brain ischemia: a reproducible monkey model, Stroke, 8 (1977) 558–564.

    PubMed  CAS  Google Scholar 

  90. Nemoto, E. M., Hossmann, K.-A., and Cooper, H. K, Post-ischemic hypermetabolism in cat brain, Stroke, 12 (1981) 666–676.

    PubMed  CAS  Google Scholar 

  91. Osgood, C. P., Dujovny, M., and Wisotzkey, H., Acute canine cerebral ischemia: a preliminary model to evaluate microvascular mammary-carotid anastomosis, Stroke, 5 (1974) 477–482.

    PubMed  CAS  Google Scholar 

  92. Snyder, J. V., Nemoto, E. M., Carroll, R. G., and Safar, P., Global ischemia in dogs: intracranial pressures, brain blood flow and metabolism, Stroke, 6 (1975) 21–27.

    PubMed  CAS  Google Scholar 

  93. Miller, C. L., Lampard, D. G., Alexander, K., and Brown, W. A., Local cerebral blood flow following trancient cerebral ischemia. I: onset of impaired reperfusion within the first hour following global ischemia, Stroke, 11 (1980) 534–541.

    PubMed  CAS  Google Scholar 

  94. Kayama, T., Mizoi, K., and Suzuki, J., A canine model of a completely ischemic brain regulated with the perfusion method, Surg. Neurol., 16 (1981) 167–172.

    Google Scholar 

  95. Hossmann, K.-A., Schmidt-Kastner, R., and Ophoff, B. G., Recovery of integrative central nervous function after one hour global cerebro-circulatory arrest in normothermic cat, J. Neurol. Sci., 77 (1987) 305–320.

    PubMed  CAS  Google Scholar 

  96. Zaren, H. A., Weinstein, J. D., and Langfitt, T. W., Experimental ischemic brain swelling, J. Neurosurg., 32 (1970) 227–235.

    PubMed  CAS  Google Scholar 

  97. Kowada, M., Ames, A. I., Majno, G., and Wright, R. L., Cerebral ischemia. I. An improved experimental method for study; cardiovascular effects and demonstration of an early vascular lesion in the rabbit, J. Neurosurg., 28 (2) (1968) 150–157.

    PubMed  CAS  Google Scholar 

  98. Ames, A. I., Wright, L., Kowada, M., Thurston, J. M., Majno, G., Cerebral ischemia; II. The non-reflow phenomenon, Am. J. Pathol., 52 (1968) 437–453.

    PubMed  Google Scholar 

  99. Benveniste, H., The excitotoxin hypothesis in relation to cerebral ischemia, Cerebrovasc. Brain Metab. Rev., 3 (1991) 213–245.

    PubMed  CAS  Google Scholar 

  100. Gill, R., Foster, A. C., and Woodruff, G. N., Systemic administration of MK-801 protects against ischaemia-induced hippocampal neurodegeneration in the gerbil, J. Neurosci., 7 (1987) 3343–3349.

    PubMed  CAS  Google Scholar 

  101. Sheardown, M. J., Nielsen, E. O., Hansen, A. J., Jacobsen, P., and Honore, T., 2,3dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline: a neuroprotectant for cerebral ischemia, Science, 247 (1990) 571–574.

    PubMed  CAS  Google Scholar 

  102. Hara, H., Onodera, H., Yoshidomi, M., Matsuda, Y., and Kogure, K., Staurosporine, a novel protein kinase C inhibitor, prevents postischemic neuronal damage in the gerbil and rat, J. Cereb. Blood Flow Metab., 10 (1990) 646–653.

    PubMed  CAS  Google Scholar 

  103. Lee, K. S., Frank, S., Vanderklish, P., Arai, A., and Lynch, G., Inhibition of proteolysis protects hippocampal neurons from ischemia, Proc. Natl. Acad. Sci. USA, 88 (1991) 7233–7237.

    PubMed  CAS  Google Scholar 

  104. Wieloch, T., Cardell, M., Bingren, H., Zivin, J., and Saitoh, T., Changes in the activity of protein kinase C and the differential subcellular redistribution of its isozymes in the rat striatum during and following transient forebrain ischemia, J. Neurochem., 56 (1991) 1227–1235.

    PubMed  CAS  Google Scholar 

  105. Nowak, T. S. J., Localization of 70kD stress protein mRNA induction in gerbil brain after ischemia, J. Cereb. Blood Flow Metab., 11 (1991) 432–439.

    PubMed  CAS  Google Scholar 

  106. Simon, R. P., Cho, H., Gwinn, R., and Lowenstein, D. H., The temporal profile of 72-kD heat-shock protein expression following global ischemia, J. Neurosci., 11 (1991) 881–889.

    PubMed  CAS  Google Scholar 

  107. Abe, K., Kawagoe, J., Aoki, M., and Kogure, K., Changes of mitochondrial DNA and heat shock protein gene expression in gerbil hippocampus after transient forebrain ischemia, J. Cereb. Blood Flow Metab., 13 (1993) 773–780.

    PubMed  CAS  Google Scholar 

  108. Widmann, R., Kuroiwa, T., Bonnekoh, P., and Hossmann, K.-A., [14C]Leucine incorporation into brain proteins in gerbils after transient ischemia: relationship to selective vulnerability of hippocampus, J. Neurochem., 56 (1991) 789–796.

    PubMed  CAS  Google Scholar 

  109. Krause, G. S. and Tiffany, B. R., Suppression of protein synthesis in the reperfused brain, Stroke, 24 (1993) 747–756.

    PubMed  CAS  Google Scholar 

  110. Hu, B. R. and Wieloch, T., Stress-induced inhibition of protein synthesis initiation: modulation of initiation factor 2 and guanine nucleotide exchange factor activities following transient cerebral ischemia in the rat, J. Neurosci., 13 (1993) 1830–1838.

    PubMed  CAS  Google Scholar 

  111. Siesjö, B. K., Agardh C. D., and Bengtsson, F., Free radicals and brain damage, Brain Metab. Rev., 1 (1989) 165–211.

    Google Scholar 

  112. Huang, Z., Huang, PL., Panahian, N., Dalkara, T., Fishman, M. C., and Moskowitz, M. A., Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase, Science, 265 (1994) 1883–1885.

    PubMed  CAS  Google Scholar 

  113. Shigeno, T., Mima, T., Takakura, K., Graham, D. I., Kato, G., Hashimoto, Y., and Furukawa, S., Amelioration of delayed neuronal death in the hippocampus by nerve growth factor, J. Neurosci., 11 (1991) 2914–2919.

    Google Scholar 

  114. Nitatori, T., Sato, N., Waguri, S., Karasawa, Y., Araki, H., Shibanai, K., Kominami, E., and Uchiyama, Y., Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis, J. Neurosci.,15 (1995) 1001–1011.

    Google Scholar 

  115. Ito, U., Spatz, M., Walker, J. T., and Klatzo, I., Experimental cerebral ischemia in mongolian gerbils: I. Light microscopic observations, Acta Neuropathol., 32 (1975) 209–223.

    PubMed  CAS  Google Scholar 

  116. Kirino, T., Delayed neuronal death in the gerbil hippocampus following ischemia, Brain Res., 239 (1982) 57–69.

    PubMed  CAS  Google Scholar 

  117. Kuroiwa, T., Bonnekoh, P., and Hossmann, K.-A., Prevention of postischemic hyperthermia prevents ischemic injury of CA 1 neurons in gerbils, J. Cereb. Blood Flow Metab., 10 (1990) 550–556.

    PubMed  CAS  Google Scholar 

  118. Tone, O., Miller, J. C., Bell, J. M., and Papoport, S. I., Regional cerebral palmitate incorporation following transient bilateral carotid occlusion in awake gerbils, Stroke, 18 (1987) 1120–1127.

    PubMed  CAS  Google Scholar 

  119. Tomida, S., Nowak, T. S. J., Vass, K., Lohr, J. M., and Klatzo, I., Experimental model for repetitive ischemic attacks in the gerbil: the cumulative effect of repeated ischemic insults, J. Cereb. Blood Flow Metab., 7 (1987) 773–782.

    PubMed  CAS  Google Scholar 

  120. Kitagawa, K., Matsumoto, M., Tagaya, M., Hata, R., Ueda, H., Niinobe, M., Handa, N., Fukunaga, R., Kimura, K., Mikoshiba, K., and Kamada, T., `Ischemic tolerance’ phenomenon found in the brain, Brain Res., 528 (1990) 21–24.

    PubMed  CAS  Google Scholar 

  121. Kirino, T., Tsujita, Y., and Tamura A., Induced tolerance to ischemia in gerbil hippocampal neurons, J. Cereb. Blood Flow Metab., 11 (1991) 299–307.

    PubMed  CAS  Google Scholar 

  122. Brown, A. W., Brierley, J. B., Evidence for early anoxic-ischaemic cell damage in the rat brain, Experientia, 22 (1966) 546–547.

    PubMed  CAS  Google Scholar 

  123. Pulsinelli, W. A. and Buchan, A. M., The four-vessel occlusion rat model: method for complete occlusion of vertebral arteires and control of collateral circulation, Stroke, 19 (1988) 913–914.

    PubMed  CAS  Google Scholar 

  124. Pulsinelli, W. D., Levy, D. E., and Duffy, T. E., Cerebral blood flow in the four-vessel occlusion rat model, Stroke,14 (1983) 832–833 (Letter to Editor).

    Google Scholar 

  125. Furlow, T. W., Cerebral ischemia produced by four-vessel occlusion in the rat: A quantitative evaluation of cerebral bleed flow, Stroke, 13 (1982) 852–855.

    PubMed  Google Scholar 

  126. Kameyama, M., Suzuki, J., Shirane, R., and Ogawa, A., A new model of bilateral hemispheric ischemia in the rat–three vessel occlusion model, Stroke, 16 (1985) 489–493.

    PubMed  CAS  Google Scholar 

  127. Boehme, R. J., Conger, K. A., and Anderson, M. L., Computer-regulated constant pressure ischemia in the rat: the animal model, J. Cereb. Blood Flow Metab., 8 (1988) 236–243.

    PubMed  CAS  Google Scholar 

  128. Eklöf, B. and Siesjö, B. K., The effect of bilateral carotid artery ligation upon the blood flow and energy state of the rat brain, Acta Physiol. Scand., 86 (1972) 155–165.

    PubMed  Google Scholar 

  129. Smith, M.-L., Auer, R. N., and Siesjö, B. K., The density and distribution of ischemic brain injury in the rat following 2–10 min of forebrain ischemia, Acta Neuropathol. (Berl.), 64 (1984) 319–332.

    CAS  Google Scholar 

  130. Warner, D. S., Smith, M.-L., and Siesjö, B. K., Ischemia in normo-and hyperglycemic rats: effects on brain water and electrolytes, Stroke, 18 (1987) 464–471.

    PubMed  CAS  Google Scholar 

  131. Smith, M.-L., Kalimo, H., Warner, D. S., and Siesjö, B. K., Morphological lesions in the brain preceding the development of postischemic seizures, Acta Neuropathol., 76 (1988) 253–264.

    PubMed  CAS  Google Scholar 

  132. Welch, F., O’Conner, M., Marcy, V., Spatacco, A., and Johns, R., Factors limiting regeneration of ATP following temporary ischemia in cat brain, Stroke, 13 (1982) 234–242.

    Google Scholar 

  133. Fujishima, M., Ogata, J., Sugi, T., and Omae, T., Mortality and cerebral metabolism after bilateral carotid artery ligation in normotensive and spontaneously hypertensive rats, J. Neurol. Neurosurg. Psychiat., 39 (1976) 212–217.

    PubMed  CAS  Google Scholar 

  134. Ogata, J., Fujishima, M., Morotomi, Y., and Omae, T., Cerebral infarction following bilateral carotid artery ligation in normotensive and spontaneously hypertensive rats: a pathological study, Stroke, 7 (1976) 54–60.

    PubMed  CAS  Google Scholar 

  135. Coyle, P., Spatial relations of dorsal anastomoses and lesion border after cerebral artery occlusion, Stroke, 18 (1987) 1133–1140.

    PubMed  CAS  Google Scholar 

  136. Choki, J. I., Yamaguchi, T., Takeya, Y., Morotomi, Y., and Omae, T., Effect of carotid artery ligation on regional cerebral blood flow in normotensive and spontaneously hypertensive rats, Stroke, 8 (1977) 374–379.

    PubMed  CAS  Google Scholar 

  137. Sadoshima, S., Spontaneously hypertensive rats., In Sano, K., Tamura, A., Hayakawa T., and Kirino T. (eds.) Handbook of Experimental Stroke Research (in Japanese). IPC., Tokyo, 1990, pp. 115–121.

    Google Scholar 

  138. Kety, S. S. and Schmidt, C. F., The determination of cerebral blood flow in man by the use of nitrous oxide in low concentration, Am. J. Physiol., 143 (1945) 53–66.

    CAS  Google Scholar 

  139. Aukland, K., Brower, B. F., and Berliner, R. W., Measurement of local blood flow with hydrogen gas, Circ. Res., 16 (1964) 164–187.

    Google Scholar 

  140. Sakurada, O., Kennedy, C., Jehle, J., Brown, J. D., Carbin, G. L., and Sokoloff, L., Measurement of local cerebral blood flow with iodo[14C]antipyrine, Am. J. Physiol., 234 (1978) H59 - H66.

    PubMed  CAS  Google Scholar 

  141. Pasztor, E., Symon, L., Dorsch, N. W. C., and Branston, N. M., The hydrogen clearance method in assesment of blood flow in cortex, white matter and deep nuclei of baboons, Stroke, 4 (1973) 556–567.

    PubMed  CAS  Google Scholar 

  142. Symon, L., Pasztor, E., and Branston, N. M., The distribution and density of reduced cerebral blood flow following acute middle cerebral artery occlusion: an experimental study by the technique of hydrogen clearance in baboons, Stroke, 5 (1974) 355–364.

    PubMed  CAS  Google Scholar 

  143. Branston, N. M., Symon, L., Crockard, H. A., and Paszor, E., Relationship between the cortical evoked potential and local cortical blood flow following acute middle cerebral artery occlusion in the baboon, Exp. Neurol., 45 (1974) 195–208.

    PubMed  CAS  Google Scholar 

  144. Astrup, J., Symon, L., Branston, N. M., and Lassen, N. A., Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischaemia, Stroke, 8 (1977) 51–57.

    PubMed  CAS  Google Scholar 

  145. Symon, L., The relationship between CBF., evoked potentials and the clinical features in cerebral ischemia. Acta Neurol. Scand., 62 (Suppl 78) (1980) 175–190.

    Google Scholar 

  146. Astrup, J., Siesjö, B. K., and Symon, L., Thresholds in cerebral ischemia—The ischemic penumbra, Stroke, 12 (1981) 723–725.

    PubMed  CAS  Google Scholar 

  147. Astrup, J., Energy-requiring cell functions in the ischemic brain. Their critical supply and possible inhibition in protective therapy, J. Neurosurg., 56 (1982) 482–497.

    PubMed  CAS  Google Scholar 

  148. Morawetz, R. B., DeGirolami, U., Ojemann, R. G., Marcoux, F. W., and Crowell, R. M., Cerebral blood flow determined by hydrogen clearance during middle cerebral artery occlusion in unanesthetized monkeys, Stroke, 9 (1978) 143–149.

    PubMed  CAS  Google Scholar 

  149. Tamura, A., Asano, T., and Sano, K., Correlation between rCBF and histological changes following temporary middle cerebral artery occlusion, Stroke, 11 (1980) 487–493.

    PubMed  CAS  Google Scholar 

  150. Jones, T. H., Morawetz, R. B., Crowell, R. M., Marcoux, F. W., Fitzgibbon, S. I., DeGirolani, U., and Ojemann, R. G., Thresholds of focal cerebral ischemia in awake monkeys, J. Neurosurg., 54 (1981) 773–782.

    PubMed  CAS  Google Scholar 

  151. Hakim, A. M., The cerebral ischemic penumbra, Can. J. Neurol. Sci., 14 (1987) 557–559.

    PubMed  CAS  Google Scholar 

  152. Hossmann, K. A., Viability thresholds and the penumbra of focal ischemia, Ann. Neurol., 36 (1994) 557–565.

    PubMed  CAS  Google Scholar 

  153. Kaplan, B., Brint, S., Tanabe, J., Jacewicz, M., Wang, X.-J., and Pulsinelli, W., Temporal thresholds for neocortical infarction in rats subjected to reversible focal cerebral ischemia, Stroke, 22 (1991) 1032–1039.

    PubMed  CAS  Google Scholar 

  154. Buchan, A. M., Xue, D., Slivka, A., A new model of temporary focal neocortical ischemia in the rat. Stroke, 23 (1992) 273–279.

    PubMed  CAS  Google Scholar 

  155. Memezawa, H., Smith, M.-L., B.K. S., Penumbral tissues salvaged by reperfusion following middle cerebral artery occlusion in rats, Stroke, 23 (1992) 552–559.

    PubMed  CAS  Google Scholar 

  156. Kinouchi, H., Epstein, C. J., Mizui, T., Carlson, E., Chen, S. F., and Chan, P. H., Attenuation of focal cerebral ischemic injury in transgenic mice overexpressing CuZn superoxide dismutase, Proc. Natl. Acad. Sci. USA, 88 (1991) 11158–11162.

    PubMed  CAS  Google Scholar 

  157. Matsumoto, M., Hatakeyama, T., Akai, F., Brengman, J. M., and Yanagihara, T., Prediction of stroke before and after unilateral occlusion of the carotid artery in gerbils, Stroke, 19 (1988) 480–487.

    Google Scholar 

  158. Horizoe, H., Fukuda, T., and Tamura, A., (JPN) Relationship of cerebral vasculature to infarction following unilateral common carotid artery ligation in the mongolian gerbils (Japanese with English abstract), Brain Nerve (Tokyo), 33 (1981) 825–831.

    Google Scholar 

  159. Horizoe, H. and Tamura, A., Relationship of cerebral vasculature to ischemia following unilateral common carotid artery ligation in mongoian gerbils, J. Med. Soc. Toho. Univ. 33 (1986) 277–288.

    Google Scholar 

  160. Tamura, A., Horizoe, H., and Fukuda, T., Relationship of cerebral vasculature to infarcted areas following unilateral common carotid artery ligation in the mongolian gerbils. J. Cereb. Blood Flow Metab., 1 (Suppl. 1) (1981) S194–195.

    Google Scholar 

  161. Molinari, G. F. and Laurent, J. P., A classification of experimental methods of brain ischemia, Stroke, 7 (1976) 14–17.

    Google Scholar 

  162. Little, J. R., Implanted device for middle cerebral artery occlusion in conscious, Stroke, 8 (1977) 258–260.

    PubMed  CAS  Google Scholar 

  163. Tamura, A., Asano, T., Sano, K., Tsumagari, T., and Nakajima, A, Protection from cerebral ischemia by a new imidazole derivative (Y-9179) and pentobarbital. A comparative study in chronic middle cerebral occlusion in cats, Stroke, 10 (1979) 126–134.

    PubMed  CAS  Google Scholar 

  164. Steinberg, G. K., George, C. P., DeLaPaz, R., Shibata, D. K., and Gross, T., Dextrometrophan protects against cerebral injury following transient focal ischemia in rabbits, Stroke, 19 (1988) 1112–1118.

    PubMed  CAS  Google Scholar 

  165. Okada, Y., Shima, T., Yokoyama, N., and Uozumi, T., Comparison of middle cerebral artery trunk occlusion by silicone embolization and by trapping, J. Neurosurg., 58 (1983) 492–499.

    PubMed  CAS  Google Scholar 

  166. Robinson, R. G., Shoemaker, W. J., Schlumpf, M., Valk, T., and Bloom, F. E., Effect of experimental cerebral infarction in rat on catecholamines and behaviour, Nature, 255 (1975) 332–334.

    PubMed  CAS  Google Scholar 

  167. Robinson, R. G., Differential behavioral and biochemical effects of right and left hemispheric cerebral infarction in the rat, Science, 205 (1979) 707–710.

    PubMed  CAS  Google Scholar 

  168. Yamamoto, M., Tamura, A., Kirono, T., Shimsh, M., and Sano, K., Behavioral changes after focal cerebral ischemia by left middle cerebral artery occlusion in rats, Brain Res., 452 (1988) 323–328.

    PubMed  CAS  Google Scholar 

  169. Coyle, P., Middle cerebral artery occlusion in the young rat, Stroke, 13 (1982) 855–859.

    PubMed  CAS  Google Scholar 

  170. Kano, M., Moskowitz, M. A., and Yokota, M., Parasympathetic denervation of rat pial vessels significantly increases infarction volume following middle cerebral artery occlusion, J. Cereb. Blood Flow Metab., 11 (1991) 628–637.

    PubMed  CAS  Google Scholar 

  171. Hirakawa, M., Tamura, A., Nagashima, H., Nakayama, H., and Sano, K., Disturbance of retention of memory after focal cerebral ischemia in rats, Stroke, 25 (1994) 2471–2475.

    PubMed  CAS  Google Scholar 

  172. Bederson, J. B., Pitts, L. H., Tsuji, M., Nishimura, M. C., Davis, R. L., and Bartowski, H., Rat middle cerebral artery occlusion: Evaluation of the model and development of a neurologic examination, Stroke, 17 (1986) 472–476.

    PubMed  CAS  Google Scholar 

  173. El-Sabban, F., Reid, K. H., Zhang Y. P., and Edmonds, H. L., Stability of thrombosis induced by electrocoagulation of rat middle cerebral artery, Stroke, 25 (1994) 2241–2245.

    PubMed  CAS  Google Scholar 

  174. Nagasawa, H. and Kogure, K., Correlation between cerebral blood flow and histologic examination in new rat model of middle cerebral artery occlusion, Stroke, 20 (1989) 1037–1043.

    PubMed  CAS  Google Scholar 

  175. Zea Longa, E., Weinstein, P. R., Carlson, S., and Cummins, R., Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke, 20 (1989) 84–91.

    PubMed  CAS  Google Scholar 

  176. Memezawa, H., Minamisawa, H., Smith, M. L., and Siesjö, B. K., Ischemic penumbra in a model of reversible middle cerebral artery occlusion in the rat, Exp. Brain Res., 89 (1992) 67–78.

    PubMed  CAS  Google Scholar 

  177. Laing, R. J., Jakubowski, J., and Laing, R. W., Middle cerbral artery occlusion without craniectomy in rats: Whch method works best?, Stroke, 24 (1993) 294–298.

    PubMed  CAS  Google Scholar 

  178. Kuge, Y., Minematsu, K., Yamaguchi, T., and Miyake, Y., Nylon monofilament for intraluminal middle cerebral artery occlusion in rats, Stroke, 26 (1995) 1655–1657.

    PubMed  CAS  Google Scholar 

  179. Chen, H., Chopp, M., Vandelinde, A. M. Q., Dereski, M. O., Garcia, J. H., and Welch, K. M. A., The effects of post-ischemic hypothermia on the neuronal injury and brain metabolism after forebrain ischemia in the rat, J. Neurol. Sci., 107 (1992) 191–198.

    PubMed  CAS  Google Scholar 

  180. Watson, B. D., Dietrich, W. D., Busto, R., and Ginsberg, M. D., Phothochemically induced thrombotic stroke in rat brain, Ann. Neurol., 14 (1983) 126.

    Google Scholar 

  181. Watson, B. D., Dietrich, W., Busto, R., Wachtel, M. S., and Ginsberg, M. D., Induction of reproducible brain infarction by photochemically initiated thorombosis, Ann. Neurol., 17 (1985) 497–504.

    PubMed  CAS  Google Scholar 

  182. Markgraf, C. G., Kraydieh, S., Prado, R., Watson, B. D., Dietrich, W. D., and Ginsberg, M. D., Comparative histopathologic consequences of photothrombotic occlusion of the distal middle cerebral artery in Sprague-Dawley and Wister rats, Stroke, 24 (1993) 286–293.

    PubMed  CAS  Google Scholar 

  183. Yao, H., Markgraf, C. G., Dietrich, W. D., Prado, R., Watson, B. D., and Ginsberg, M. D., Glutamate antagonist MK-801 attenuates incomplete but not complete infarction in thrombotic distal middle cerebral artery occlusion in Wistar rats, Brain Res., 642 (1994) 117–122.

    PubMed  CAS  Google Scholar 

  184. Wester, P., Watson, B. D., Prado, R., and Dietrich, W. D., A photothrombotic `ring’ model of rat stroke-in-evolution displaying putative penumbral inversion, Stroke, 26 (1995) 444–450.

    PubMed  CAS  Google Scholar 

  185. Huang, A. J.-W., Watson, B. D., Hernandez, E., and Tseng, S. C.-G., Induction of conjuctival transdifferentiation on vascularized corneas by photothrombotic occluion of corneal neovascularization, Ophthalmology, 95 (1988) 228–235.

    PubMed  CAS  Google Scholar 

  186. Kudo, M., Aoyama, A., Ichimori, S., and Fukunaga, N., An animal model of cerebral infarction. Homologous blood clot emboli in rats, Stroke, 13 (1982) 505–508.

    PubMed  CAS  Google Scholar 

  187. Meden, P., Overgaard, K., Pedersen, H., and Boysen, G., The influence of body temperature on infarct volume and thrombolytic therapy in a rat embolic stroke model, Brain Res., 647 (1994) 131–138.

    PubMed  CAS  Google Scholar 

  188. Busto, R. and Ginsberg, M. D., Graded focal cerebral ischemia in the rat by unilateral carotid artery occlusion and elevated intracranial pressure: Hemodynamic and biochemical characterization, Stroke, 16 (1985) 466–476.

    PubMed  CAS  Google Scholar 

  189. Bederson, J. B., Pitts, L. H., Germano, S. M., Nishimura, M. C., Davis, R. L., and Bartkowski, H. M., Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats, Stroke, 17 (1986) 1304–1308.

    PubMed  CAS  Google Scholar 

  190. Liszczak, T. M., Hedley-Whyte, E. T., Adams, J. F., Han, D. H., Kolluri, U. S., Vacanti, F. X., Heros, R. C., and Zorvas, N. T., Limitation of tetrazolium salts in delineating infarcted brain, Acta Neuropathol. (Berl.), 65 (1984) 150–157.

    CAS  Google Scholar 

  191. Stowell, R. E., Effect on tissue volume of various methods of fixation, dehydration, and embedding, Stain Technol.,16 (1941) 67–83.

    Google Scholar 

  192. Swanson, R. A., Morton, M. T., Tsao-Wu, G., Savalos, R. A., Davidson, C., and Sharp, F. R., A semiautomated method for measuring brain infarct volume, J. Cereb. Blood Flow Metab., 10 (1990) 290–293.

    PubMed  CAS  Google Scholar 

  193. Fujie, W., Kirino, T., Tomukai, N., Iwasawa, T., and Tamura, A., Progressive shrinkage of the thalamus following middle cerebral artery occlusion in rats, Stroke, 21 (1990) 1485–1488.

    PubMed  CAS  Google Scholar 

  194. Tamura, A., Kirino, T., Sano, K., Takagi, K., and Oka, H., Atrophy of the ipsilateral substantia nigra folloing middle cerebral artery occlusion in the rat, Brain Res., 510 (1990) 154–157.

    PubMed  CAS  Google Scholar 

  195. Dietrich, W. D., Busto, R., Alonso, O., Globus, M. Y.-T., and Ginsberg, M. D., Intraischemic but not postischemic brain hypothermia protects chronically following global forebrain ischemia in rats, J. Cereb. Blood Flow Metab., 13 (1993) 541–549.

    PubMed  CAS  Google Scholar 

  196. Grabowski, M., Nordbirg, C., Brundin, P., and Johansson, B. B., Middle cerebral artery occlusion in the hypertensive and normotensive rat: a study of histopathology and behaviour, J. Hypertens. 6 (1988) 405–411.

    PubMed  CAS  Google Scholar 

  197. Schallert, T., Hernandez T. D., and Barth T. M., Recovery of function after brain damage: severe and chronic disruption by diazepam, Brain Res., 379 (1986) 140–146.

    Google Scholar 

  198. De Ryck, M., Van Reempts, J., Borgers, M., Wauquier, A., and Janssen, P. A., Photochemical stroke model: flunarizine prevents sensorimotor after neocortical infarcts in rats, Stroke, 20 (1989) 1383–1390.

    PubMed  Google Scholar 

  199. Ohlsson, A.-L. and Johansson, B. B., Environment influences functional outcome of cerebral infarction in rats, Stroke, 26 (1995) 644–649.

    PubMed  CAS  Google Scholar 

  200. Raisman, G., Neuronal plasticity in the septal nuclei of the adult rat, Brain Res., 14 (1969) 25–48.

    PubMed  CAS  Google Scholar 

  201. Tamura, A., Tomukai, N., Iwasawa T., Takagi, K., Olada, M., Fiujiwara, N., and Sano, K., Hemispheric differences in spatial memory after focal cerebral ischemia in rats, J. Cereb. Blood Flow Metab., 15 (Suppl. 1) (1995) S312.

    Google Scholar 

  202. Ungerstedt, U. and Arbuthnott, G. W., Quantitative recording of rotational behaviour in rats after 6-hydroxy-dopamine lesions of the nigro-striatal dopamine system, Brain Res., 24 (1970) 485–493.

    PubMed  CAS  Google Scholar 

  203. Markgraf, C. G., Green, E. J., Hurwitz, B. E., Morikawa, E., Dietrich, W. D., McCabe, P. M., Ginsberg, M. D., and Schneiderman, N., Sensorimotor and cognitive consequences of middle cerebral artery occlusion in rats, Brain Res., 575 (1992) 238–246.

    PubMed  CAS  Google Scholar 

  204. Morris, R. G. M., Garrud, P., Rawlins, J. N. P., and O’Keefe, J., Place navigation impaired in rats with hippocampal lesions, Nature, 297 (1982) 681–683.

    PubMed  CAS  Google Scholar 

  205. del Zoppo, G. J., Schmid-Schönbein, G. W., Mori, E., Copeland, B. R., and Chang, C.-M., Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons, Stroke, 22 (1991) 1276–1283.

    PubMed  Google Scholar 

  206. Stroemer, R. P., Kent, T. A., and Hulsebosch, C. E., Neocortical neural sprouting, synaptogenesis, and behavioral recovery after neocortical infaction in rats, Stroke, 26 (1995) 2135–2144.

    PubMed  CAS  Google Scholar 

  207. Jander, S., Kraemer, M., Schroeter, M., Witte, O. W., Stoll, G., Lymphocytic infiltration and expression of intercellular adhesion molecule-1 in photochemically induced ischemia of the rat cortex, J. Cereb. Blood Flow Metab., 15 (1995) 42–51.

    PubMed  CAS  Google Scholar 

  208. K. SB., Pathophysiology and treatment of focal cerebral ischemia. Part I: Pathophysiology, J. Neurosurg., 77 (1992) 169–184.

    Google Scholar 

  209. K. SB., Pathophysiology and treatment of focal cerebral ischemia. Part II: mechanisms of damage and treatment, J. Neurosurg., 77 (1992) 337–354.

    Google Scholar 

  210. Ginsberg, M. D., Emerging strategies for the treatment of ischemic brain injury. In Waxman SG. (ed.) Molecular and Cellular Approaches to the Treatment of Neurological Disease, Raven, New York, 1993, pp. 207–237.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tamura, A., Kawai, K., Takagi, K. (1997). Animal Models Used in Cerebral Ischemia and Stroke Research. In: Ter Horst, G.J., Korf, J. (eds) Clinical Pharmacology of Cerebral Ischemia. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-472-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-472-6_11

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-4783-6

  • Online ISBN: 978-1-59259-472-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics