Skip to main content

Energy/Glucose Metabolism in Neurodegenerative Diseases

  • Chapter
Molecular Mechanisms of Dementia

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

That disorders in energy/glucose metabolism can cause neurological and psychiatric disorders has been known for over a century. After the work of Claude Bernard on the importance of glucose metabolism, the German-speaking neurologists, psychiatrists, and pathologists (“alienists”) recognized on neuropathological grounds that impairing the supply of glucose and oxygen to the brain could cause a variety of neurological syndromes (1,2). That impairments of energy/glucose metabolism were important causes of diseases of the brain remained conventional wisdom through the 1950s. Among the evidence in support of this view were:

  1. 1.

    Extensive studies in aviation medicine, documenting the sensitivity of higher brain functions to reductions in oxygen tension (3);

  2. 2.

    The widespread use of hypoglycemic (insulin) shock therapy in the treatment of psychoses; and

  3. 3.

    The recognition from even early neurochemical studies that (a) mammalian brain has a second-to-second dependence on glucose/energy metabolism to maintain function, and (b) impairments of cerebral glucose/energy metabolism typically impair brain function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blass, J. P., Hoyer, S., and Nitsch, R. (1992) Binswanger disease: in reply, Arch. Neurol. 49, 799, 800.

    Google Scholar 

  2. Blass, J. P., Hoyer, S., and Nitsch, R. (1991) A translation of Otto Binswanger’s article, The Delineation of the Generalized Progressive Paralyses, Arch. Neurol. 48, 961–972.

    Article  PubMed  CAS  Google Scholar 

  3. Gibson, G. E., Pulsinelli, W. A., and Blass, J. P. (1981) Brain dysfunction in mild to moderate hypoxia, Am. J. Med. 70, 1247–1254.

    Article  PubMed  CAS  Google Scholar 

  4. Quastel, J. (1932) Anoxaemia and neurological disease, Lancet 2, 14–16.

    Google Scholar 

  5. Gibson, G. E., Blass, J. P., Huang, H.-M., and Freeman, G. B. (1991) The cellular basis of delirium and its relevance to age related disorders including Alzheimer’s disease, International Psychoger 3, 373–396.

    Article  CAS  Google Scholar 

  6. Falk, R. E., Cederbaum, S. D., Blass, J. P., Pruss, R. J., and Carrel, R. E. (1976) Effects of a ketogenic diet in two brothers with pyruvate dehydrogenase deficiency, Pediatrics 58, 713–721.

    PubMed  CAS  Google Scholar 

  7. Blass, J. P., Gibson, G. E., Shimada, M., Kihara, T., Watanabe, M., and Kurinioto, K. (1980) Brain carbohydrate metabolism and dementia, in Biochemistry of Dementia ( Burman, D. and Pennock, C. A., eds.), Wiley, London, pp. 121–134.

    Google Scholar 

  8. Blass, J. P., Sheu, K.-F. R., and Cederbaum, J. M. (1988) Energy metabolism in disorders of the nervous system, Rev. Neurol. (Paris) 144, 543–563.

    Google Scholar 

  9. Beal, M. F. (1992) Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative diseases? Ann. Neurol. 31, 119–123.

    Article  PubMed  CAS  Google Scholar 

  10. Blass, J. P., Sheu, K.-F. R., and Tanzi, R. (1996?) a-Ketoglutarate dehydrogenase in Alzheimer’s disease, in Energy Metabolism in Neurodegenerative Diseases (Fiskum, G., ed.), Plenum, New York, pp. 185–192.

    Google Scholar 

  11. Chun, K., MacKay, N., Petrova-Benedict, R., Federico, A., Fois, A., Cole, D. E., Robertson, E., and Robinson, B. H. (1995) Mutations in the X-linked E la subunit of pyruvate dehydrogenase: exon skipping, insertion of duplicate sequence, and missense mutations leading to the deficiency of the pyruvate dehydrogenase complex, Am. J. Hum. Genet. 56, 558–569.

    PubMed  CAS  Google Scholar 

  12. Wallace, D. C. (1994) Mitochondrial DNA sequence variation in human evolution and disease, Proc. Natl. Acad. Sci. USA 91, 8739–8746.

    Article  PubMed  CAS  Google Scholar 

  13. Burke, J. R., Enghild, J. J., Martin, M. E., Jou, Y.-S., Myers, R. M., Roses, A. D., Vance, J. M., and Strittmater, W. J. (1996) Huntingtin and DRPLA proteins selectively interact with the enzyme GAPDH, Nature Med. 2, 347–350.

    Article  PubMed  CAS  Google Scholar 

  14. Blass, J. P. (1993) Pathophysiology of the Alzheimer syndrome, Neurology 43 (Suppl. 4), S25 - S38.

    Google Scholar 

  15. Reiman, E. M., Caselli, R. J., Yun, L. S., Chen, K., Bandy, D., Minoshima, S., Thibodeau, S. N., and Osborne, D. (1996) Preclinical evidence of Alzheimer’s Disease in persons homozygous for the E4 allele for apolipoprotein E, N. Engl. J. Med. 334, 752–758.

    Article  PubMed  CAS  Google Scholar 

  16. Small, G. W., Mazziotta, J. C., and Collins, M. T. (1995) Apolipoprotein E type 4 allele and cerebral glucose metabolism in relatives at risk for familial Alzheimer’s disease, J. Am. Med. Assoc. 273, 942–947.

    Article  CAS  Google Scholar 

  17. Kennedy, A. M., Frackowiak, R. S. J., and Newman, S. K. (1995) Deficits in cerebral glucose metabolism demonstrated by positron emission tomography in individuals at risk of familial Alzheimer’s disease, Neurosci. Leu. 186, 1270.

    Article  Google Scholar 

  18. Sims, N. R. and Pulsinelli, W. A. (1987) Altered mitochondrial respiration in selectively vulnerable brain subregions following transient forebrain ischemia in the rat, J. Neurochem. 49, 1367–1374.

    Article  PubMed  CAS  Google Scholar 

  19. Grafton, S. T., Maziotta, J. C., and Pahl, J. J. (1992) Serial changes of cerebral glucose metabolism and caudate size in persons at risk for Huntington’s disease, Arch. Neurol. 49, 1161–1167.

    Article  PubMed  CAS  Google Scholar 

  20. Gilman, S., Junck, L., Markel, D. S., Koeppe, R. A., and Kluin, K. J. (1990) Cerebral glucose hypermetabolism in Friedreich’s ataxia detected with positron emission tomography, Ann. Neurol. 28, 750–757.

    Article  PubMed  CAS  Google Scholar 

  21. Reed, L., Petit, F., and Yeaman, S. (1978) Pyruvate dehydrogenase complex: structure, function, and regulation, in Microenvironments and Metabolic Compartmentation ( Srere, P. A. and Estabrook, R. W., eds.), Academic, New York, pp. 305–321.

    Google Scholar 

  22. Mutisya, E. M., Bowling, A. C., and Beal, M. F. (1994) Cortical cytochrome oxidase activity is reduced in Alzheimer’s disease, J. Neurochem. 63, 2179–2184.

    Article  PubMed  CAS  Google Scholar 

  23. Chandrasakaran, K., Giordano, T., Brady, D. R., Stoll, J., Martin, J., and Rapport, S. I. (1994) Impairment in mitochondrial cytochrome oxidase gene expression in Alzheimer’s disease, Brain Res. (Mol. Brain Res.) 24, 336–340.

    Article  Google Scholar 

  24. Krystal, B. S., Chen, J., and Yu, B. P. (1994) Sensitivity of mitochondrial transcription to different free radical species, Free Radicals in Biology and Medicine 16, 323–329.

    Article  Google Scholar 

  25. Sorbi, S., Bird, E. D., and Blass, J. P. (1983) Decreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brain, Ann. Neurol. 13, 72–78.

    Article  PubMed  CAS  Google Scholar 

  26. Parker, W. D., Boyson, S. J., and Luder, A. S. (1990) Evidence for a defect in NADH: ubiquinone oxidoreductase (complex I) in Huntington’s disease, Neurology 40, 1231–1234.

    Article  PubMed  Google Scholar 

  27. Mastrogiacomo, F. and Kish, S. J. (1994) Cerebellar a-ketoglutarate dehydrogenase activity is reduced in spinocerebellar ataxia type 1, Ann. Neurol. 5, 624–626.

    Article  Google Scholar 

  28. Sims, N. R., Finegan, J. M., and Blass, J. P. (1987) Altered metabolic properties of cultured skin fibroblasts in Alzheimer’s Disease, Ann. Neurol. 21, 451–457.

    Article  PubMed  CAS  Google Scholar 

  29. Peterson, C. and Goldman, J. E. (1986) Alterations in calcium content and biochemical processes in cultured skin fibroblasts from aged and Alzheimer donors, Proc. Natl. Acad. Sci. USA 83, 2758–2762.

    Article  PubMed  CAS  Google Scholar 

  30. Sheu, K.-F. R., Cooper, A. J. L., Lindsay, J. G., and Blass, J. P. (1994) Abnormality in the a-ketoglutarate dehydrogenase complex in fibroblasts from familial Alzheimer’s disease, Ann. Neurol. 35, 312–318.

    Article  PubMed  CAS  Google Scholar 

  31. Sorbi, S., personal communication.

    Google Scholar 

  32. Parker, W. D., Filley, C. M., and Parks, J. K. (1990) Cytochrome oxidase deficiency in Alzheimer’s disease, Neurology 40, 1302–1304.

    Article  PubMed  Google Scholar 

  33. Van Zuylen, A. J., Bosman, G. J. C. G. M., and Ruitenbeck, W. (1992) No evidence for reduced thrombocyte cytochrome oxidase activity in Alzheimer’s disease, Neurology 42, 1246–1250.

    Article  PubMed  Google Scholar 

  34. Bondy, S. C. (1995) The relation of oxidative stress and hyperexcitation to neurological disease, Proc. Soc. Exp. Biol. Med. 208, 337–345.

    PubMed  CAS  Google Scholar 

  35. Gusella, J. F. and MacDonald, M. E. (1995) Huntington’s disease, Semin. Cell Biol. 6, 21–28.

    Article  PubMed  CAS  Google Scholar 

  36. Plaitakis, A., Berl, S., andYahr, M. (1982) Abnormal glutamate metabolism in an adult-onset degenerative disorder, Science 216, 193–196.

    Article  PubMed  CAS  Google Scholar 

  37. Blass, J. P., Kark, R. A. P., Menon, N., and Harris, S. H. (1976) Decreased activities of the pyruvate and ketoglutarate dehydrogenase complexes in fibroblasts from five patients with Friedreich’s ataxia, N. Engl. J. Med. 295, 62–66.

    Article  PubMed  CAS  Google Scholar 

  38. Rodriguez-Budelli, M. and Kark, R. A. P. (1978) The potential of lipoamide dehydrogenase kinetics for genetic counseling and preclinical diagnosis in certain inherited ataxias, Neurology 27, 359–361.

    Google Scholar 

  39. Stumpf, D. A. and Parks, J. A. (1979) Friedreich ataxia II: Normal kinetics of lipoamide dehydrogenase, Neurology 29, 820–826.

    Article  PubMed  CAS  Google Scholar 

  40. Cederbaum, J. M. and Blass, J. P. (1986) Mitochondrial dysfunction and spinocerebellar degeneration, Neurochem. Pathol. 4, 43–46.

    Article  Google Scholar 

  41. Sorbi, S., Piacentini, S., Fani, C., Tonini, S., Marini, P., and Amaducci, L. (1989) Abnormalities of mitohondrial enzymes in hereditary ataxias, Acta Neurol. Scand. 80, 103–110.

    Article  PubMed  CAS  Google Scholar 

  42. Chun, K., MacKay, N., Petrova-Benedict, R., Federico, A., Fois, A., Cole, D. E., Robertson, E., and Robinson, B. H. (1995) Mutations in the X-linked E 1 a subunit of pyruvate dehydrogenase: exon skipping, insertion of double sequence, and missense mutations leading to the deficiency of the pyruvate dehydrogenase complex, Am. J. Hum. Genet. 56, 558–569.

    PubMed  CAS  Google Scholar 

  43. Sheu, K.-F. R., Sarkar, P., Wasco, W., Tanzi, R., and Blass, J. P. (1995) A gene locus of dihydrolipoyl succinyltransferase (DLST) is associated with Alzheimer’s Disease, J. Neurochem. 66, S l OB.

    Google Scholar 

  44. Ali, G., Wasco, W., Cai, X., Szabo, P., Sheu, K.-F., Cooper, A. J., et al. (1994) Isolation, cloning, and localization of the gene for the E2k component of the human a-ketoglutarate dehydrogenase complex, Somatic Cell Mol. Genet. 20, 99–104.

    Article  CAS  Google Scholar 

  45. Nakano, K., Takase, C., and Sakomoto, T. (1994) Isolation, characterization, and structural organization of the gene and pseudogene for the dihydrolipoylamide succinyltransferase component ofthe 2-oxoglutarate dehydrogenase complex, Eur. J. Biochem. 224, 179–186.

    Article  PubMed  CAS  Google Scholar 

  46. Cai, X., Szabo, P., Ali, G., and Blass, J. P. (1994) A pseudogene of dihydrolipoyl succinyltransferase (E2k) found by PCR amplification and direct sequencing in rodent-human cell hybrid DNAs, Somatic Cell Mol. Genet. 20, 339–343.

    Article  CAS  Google Scholar 

  47. Gabuzda, D., Busciglio, J., and Chen, L. B. (1994) Inhibition of energy metabolism alters the processing of amyloid precursor protein and induces a potentially amyloidogenic derivative, J. Biol. Chem. 269, 13628–13635.

    Google Scholar 

  48. Ankarcrona, M., Dypbukt, J. M., Bonfoco, E., Zhivotovsky, B., Orrenius, S., Lipton, S. A., and Nicotera, R. (1995) Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function, Neuron 15, 961–973.

    Article  PubMed  CAS  Google Scholar 

  49. Henneberry, R. A. (1989) The role of energy in the toxicity of excitatory amino acids, Neurobiol. Aging 10, 611–616.

    Article  PubMed  CAS  Google Scholar 

  50. Beal, M. F. (1995) Aging, energy, and oxidative stress in neurodegenative diseases, Ann. Neurol. 38, 357–366.

    Article  PubMed  CAS  Google Scholar 

  51. Mattson, M. P. (1994) Mechanism of neuronal degeneration and preventive approaches: Quickening the pace of AD research, Neurobiol. Aging 15 (Suppl. 2), S121 - S125.

    Article  PubMed  Google Scholar 

  52. Gibson, G. E., Shimada, M., and Blass, J. P. (1978) Alterations in acetylcholine synthesis and in cyclic nucleotides in mild cerebral hypoxia, J. Neurochem. 31, 757–760.

    Article  PubMed  CAS  Google Scholar 

  53. Huang, H.-M., Toral-Barza, L., and Gibson, G. E. (1991) Cytosolic free calcium and ATP in synaptosomes after ischemia, Life Sci. 48, 1439–1445.

    Article  PubMed  CAS  Google Scholar 

  54. Blass, J. P. and Gibson, G. E. (1979) Consequences of mild, graded hypoxia, in Advances in Neurology ( Fahn, S., ed.), Raven, New York, pp. 229–250.

    Google Scholar 

  55. Brouillet, E., Hantraye, R, Ferrante, R. J., Dolan, R., Leroy-Willig, A., Kowall, N. W., and Beal, M. F. (1995) Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates, Proc. Natl. Acad. Sci. USA 92, 7105–7109.

    Google Scholar 

  56. Harmon, D. (1995) Role of antioxidant nutrients in aging: Overview, Age 18, 51–62.

    Article  Google Scholar 

  57. Hensley, K., Hall, N., Subramaniam, R., Cole, P., Harris, M., Askenova, M., Gabbita, S. P., Wu, J. F., and Carney, J. M. (1995) Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation, J. Neurochem. 65, 2146–2156.

    Article  PubMed  CAS  Google Scholar 

  58. Schellenberg, G. D. (1995) Genetic dissection of Alzheimer disease, a heterogenous disorder, Proc. Natl. Acad. Sci. USA 92, 8552–8559.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Blass, J.P. (1997). Energy/Glucose Metabolism in Neurodegenerative Diseases. In: Wasco, W., Tanzi, R.E. (eds) Molecular Mechanisms of Dementia. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-471-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-471-9_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5889-4

  • Online ISBN: 978-1-59259-471-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics