Skip to main content

The High-Affinity Glutamate Transporter Family

Structure, Function, and Physiological Relevance

  • Chapter

Part of the Contemporary Neuroscience book series (CNEURO)

Abstract

Extensive studies of glutamate uptake in neurons, glial cells, and epithelial cells, using a variety of preparations, revealed the existence of several transporter subtypes with distinct tissue distributions and kinetic and pharmacologic properties. High-affinity (K0.5 = 1−50 µM) and low-affinity (K0.5 > 100 µM) Na+- and K+-dependent glutamate transporters were identified in brain, kidney, and intestine (17,19,25,26,50,58,77,82,98). Similar systems were also described in epithelial cells of kidney and intestine. Despite the far-reaching physiologic importance of these excitatory neurotransmitter transporters, progress in this field has been slow until recently, and there was limited information available about the molecular properties and physiological roles of these proteins. The focus of this chapter is on the recent insights into the structure, in vivo functional roles, and pathological implications of high-affinity Na+- and K+-dependent glutamate transporters in the central nervous system. We also discuss hypothetical kinetic models addressing the complex transport mechanisms of glutamate transporters that are coupled to the cotransport of Na+ and H+, and the countertransport of K+. We furthermore review recent advances in Boning and characterizing a new group of neutral amino acid transporters that are structurally related to glutamate transporters.

Keywords

  • Arachidonic Acid
  • Amyotrophic Lateral Sclerosis
  • Glutamate Transporter
  • Synaptic Cleft
  • Glutamate Uptake

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-59259-470-2_6
  • Chapter length: 43 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   74.99
Price excludes VAT (USA)
  • ISBN: 978-1-59259-470-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arriza, J. L., Fairman, W. A., Wadiche, J. I., Murdoch, G. H., Kavanaugh, M. P., and Amara, S. G. Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J. Neurosci. 14 (1994) 5559–5569.

    PubMed  CAS  Google Scholar 

  2. Arriza, J. L., Kavanaugh, M. P., Fairman, W. A., Wu, Y.-N., Murdoch, G. H., North, R. A., and Amara, S. G. Cloning and expression of a human neutral amino acid transporter with structural similarity to the glutamate transporter gene family. J. Biol. Chem. 268 (1993) 15,329–15,332.

    Google Scholar 

  3. Attwell, D., Barbour, B., and Szatkowski, M. Nonvesicular release of neurotransmitter. Neuron 11 (1993) 401–407.

    CrossRef  PubMed  CAS  Google Scholar 

  4. Barbour, B., Brew, H., and Attwell, D. Electrogenic glutamate uptake in glial cells is activated by intracellular potassium. Nature 335 (1988) 433–435.

    CrossRef  PubMed  CAS  Google Scholar 

  5. Barbour, B., Brew, H., and Attwell, D. Electrogenic uptake of glutamate and aspartate into glial cells isolated from the salamander (Ambystoma) retina. J. Physiol. 436 (1991) 169–193.

    PubMed  CAS  Google Scholar 

  6. Barbour, B., Keller, B. U., Llano, I., and Marty, A. Prolonged presence of glutamate during excitatory synaptic transmission to cerebellar Purkinje cells. Neuron 12 (1994) 1331–1343.

    CrossRef  PubMed  CAS  Google Scholar 

  7. Barbour, B., Szakowski, M., Ingledew, N., and Attwell, D. Arachidonic acid induces a prolonged inhibition of glutamate uptake into glial cells. Nature 342 (1989) 918–920.

    CrossRef  PubMed  CAS  Google Scholar 

  8. Bilups, B. and Attwell, D. Modulation of glutamate uptake by pH slows non-vesicular glutamate release in conditions mimicking stroke. Nature 379 (1996) 171–174.

    CrossRef  Google Scholar 

  9. Bouvier, M., Szatkowski, M., Amato, A., and Attwell, D. The glial cell glutamate uptake carrier countertransports pH-changing anions. Nature 360 (1992) 471–474.

    CrossRef  PubMed  CAS  Google Scholar 

  10. Brew, H. and Attwell, D. Electrogenic glutamate uptake is a major current carrier in the membrane of axolotl retinal glial cells (erratum: Nature 328 [1987] 742). Nature 327 (1987) 707–709.

    CrossRef  PubMed  CAS  Google Scholar 

  11. Brown, H. J. Amyotrophic lateral sclerosis: recent insights from genetics and transgenic mice. Cell 80 (1995) 687–692.

    CrossRef  PubMed  CAS  Google Scholar 

  12. Bruns, D., Engert, F., and Lux, H. D. A fast activating presynaptic uptake current during serotonergic transmission in identified neurons of Hirudo. Neuron 10 (1993) 559–572.

    CrossRef  PubMed  CAS  Google Scholar 

  13. Casado, M., Bendahan, A., Zafra, F., Danbolt, N. C., Aragon, C., Gimenez, C., and Kanner, B. I. Phosphorylation and modulation of brain glutamate transporters by protein kinase C. J. Biol. Chem. 268 (1993) 27313–27317.

    PubMed  CAS  Google Scholar 

  14. Chaudhry, F., Lehre, K., van Lookeren-Campagne, M., Ottersen, O., Danbolt, N., and Storm-Mathisen, J. Glutamate transporters in glial plasma membranes: highly differentiated localizations revealed by quantitative ultrastructural immunocytochemistry. Neuron 15 (1995) 711–720.

    CrossRef  PubMed  CAS  Google Scholar 

  15. Choi, D. Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. TINS 11 (1988) 465–469.

    PubMed  CAS  Google Scholar 

  16. Choi, D. Glutamate neurotoxicity and diseases of nervous system. Neuron 1 (1988) 623–634.

    CrossRef  PubMed  CAS  Google Scholar 

  17. Christensen, H. N. Role of amino acid transport and countertransport in nutrition and metabolism. Physiol. Rev. 70 (1990) 43–77.

    PubMed  CAS  Google Scholar 

  18. Clements, J. D., Lester, R. A. J., Tong, G., Jahr, C. E., and Westbrook, G. L. The time course of glutamate in the synaptic cleft. Science 258 (1992) 1498–1501.

    CrossRef  PubMed  CAS  Google Scholar 

  19. Cox, D. W., Headley, M. H., and Watkins, J. C. Actions of L- and D-homocysteate in rat CNS: a correlation between low-affinity uptake and the time courses of excitation by microelectrophoretically applied L-glutamate analogues. J. Neurochem. 29 (1977) 579–588.

    CrossRef  PubMed  CAS  Google Scholar 

  20. Danbolt, N. C., Storm-Mathisen, J., and Kanner, B. I. An [Na+ + K+]coupled L-glutamate transporter purified from rat brain is localized in glial cell processes. Neuroscience 51 (1992) 259–310.

    CrossRef  Google Scholar 

  21. Dumuis, A., Sebben, M., Haynes, L., Pin, J., and Bockaert, J. NMDA receptors activate the arachidonic acid cascade system in striatal neurons. Nature 336 (1988) 68–70.

    CrossRef  PubMed  CAS  Google Scholar 

  22. Fairman, W. A., Vandenberg, R. J., Arriza, J. L., Kavanaugh, M. P., and Amara, S. G. An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature 375 (1995) 599–603.

    CrossRef  PubMed  CAS  Google Scholar 

  23. Fairman, W. A., Vandenberg, R. J., Arriza, J. L., Shannon, E. M., Murdoch, G. H., Kavanaugh, M. P., and Amara, S. G. Functional characterization and localization of a human excitatory amino acid transporter with properties of a ligand-gated chloride channel. Soc. Neurosci. Abstr. 21 (1995) 1861.

    Google Scholar 

  24. Farooqui, A. and Horrocks, L. Excitatory amino acid receptors, neural membrane phospholipid metabolism and neurological disorders. Brain Res. Rev. 16 (1991) 171–191.

    CrossRef  PubMed  CAS  Google Scholar 

  25. Fonnum, F. Glutamate: a neurotransmitter in mammalian bran. J. Neurochem. 42 (1984) 1–11.

    CrossRef  PubMed  CAS  Google Scholar 

  26. Fukuhara, Y. and Turner, R. J. Cation dependence of renal outer cortical brush border membrane L-glutamate transport. Am. J. Physiol. 248 (1985) F869 - F875.

    PubMed  CAS  Google Scholar 

  27. Gemba, T., Oshima, T., and Ninomiya, M. Glutamate efflux via the reversal of the sodium-dependent glutamate transporter caused by glycolytic inhibition in rat cultured astrocytes. Neuroscience 63 (1994) 789–795.

    CrossRef  PubMed  CAS  Google Scholar 

  28. Gerchman, Y., Olami, Y., Rimon, A., Taglicht, D., Schuldiner, S., and Padan, E. Histidine-226 is part of the pH sensor of NhaA, a Na+/H+ antiporter in Escherichia coli. Proc. Natl. Acad. Sci. USA 90 (1993) 1212–1216.

    CrossRef  CAS  Google Scholar 

  29. Gundersen, V., Shupliakov, O., Brodin, L., Ottersen, O., and Storm-Mathisen, J. Quantification of excitatory amino acid uptake at intact glutamatergic synapses by immunocytochemistry of exogenous D-aspartete. J. Neurosci. 15 (1995) 4417–4428.

    PubMed  CAS  Google Scholar 

  30. Hall, E. and Braughler, J. Central nervous system trauma and stroke. Physiological and pharmacological evidence for involvement of oxygen radicals and lipid peroxidation. Free Rad. Biol. Med 6 (1989) 303–313.

    CrossRef  PubMed  CAS  Google Scholar 

  31. Halliwell, B. and Gutteridge, J. C. M. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 186 (1990) 1–88.

    CrossRef  PubMed  CAS  Google Scholar 

  32. Hediger, M. A. and Rhoads, D. B. Molecular physiology of Na+/glucose cotransporters. Physiol. Rev. 74 (1994) 993–1026.

    PubMed  CAS  Google Scholar 

  33. Heinz, E., Sommerfeld, D. L., and Kinne, R. K. H. Electrogenicity of sodium/Lglutamate cotransport in rabbit renal brush-border membranes. Biochem. Biophys. Acta 937 (1988) 300–308.

    CrossRef  PubMed  CAS  Google Scholar 

  34. Isaacson, J. S. and Nicoll, R. A. The uptake inihibitor L-trans-PDC enhances responses to glutamate but fails to alter the kinetics of excitatory synaptic currents in the hippocampus. J. Neurophysiol. 70 (1993) 2187–2191.

    PubMed  CAS  Google Scholar 

  35. Jin, L., Dykes, M. Hoberg, M., Kuncl, M., and Rothstein, J. D. Selective loss of glutamate transporter subtypes in amyotrophic lateral sclerosis. Soc. Neurosci. Abstr. 20 (1994) 927.

    Google Scholar 

  36. Kanai, Y., Bhide, P. G., DiFiglia, M., and Hediger, M. A. Neuronal high-affinity glutamate transport in the rat central nervous system. Neuroreport 6 (1995) 2357–2362.

    CrossRef  PubMed  CAS  Google Scholar 

  37. Kanai, Y. and Hediger, M. A. High-affinity glutamate transporters: physiological and pathophysiological relevance in the central nervous system. In: Brann, D. W. and Mahesh, V. B. (eds.), Excitatory Amino Acids: Their Role in Neuroendocrine Function, CRC, Boca Raton, FL, 1995, pp. 103–131.

    Google Scholar 

  38. Kanai, Y. and Hediger, M. A. Primary structure and functional characterization of a high-affinity glutamate transporter. Nature 360 (1992) 467–471.

    CrossRef  PubMed  CAS  Google Scholar 

  39. Kanai, Y., Nussberger, S., Romero, M. F., Boron, W. F., Hebert, S. H., and Hediger, M. A. Electrogenic properties of the epithelial and neuronal high affinity glutamate transporter. J. Biol. Chem. 270 (1995) 16561–16568.

    CrossRef  PubMed  CAS  Google Scholar 

  40. Kanai, Y., Smith, C. P., and Hediger, M. A. A new family of neurotransmitter transporters: the high affinity glutamate transporter. FASEB. J. 7 (1993) 1450–1459.

    PubMed  CAS  Google Scholar 

  41. Kanai, Y. K., Stelzner, M., Nussberger, S., Khawaja, S., Hebert, S. C., Smith, C. P., and Hediger, M. A. The neuronal and epithelial human high affinity glutamate transporter: insights in structure and mechanism of transport. J. Biol. Chem. 269 (1994) 20,599–20,606.

    Google Scholar 

  42. Kanner, B. I. and Schuldiner, S. Mechanism of transport and storage of neurotransmitters. CRC Crit. Rev. Biochem. 22 (1987) 1–38.

    CrossRef  PubMed  CAS  Google Scholar 

  43. Kimelberg, H. K., Pang, S., and Treble, D. H. Excitatory amino acid-stimulated uptake of 22 Na+ in primary astrocyte cultures. J. Neurosci. 9 (1989) 1141–1149.

    PubMed  CAS  Google Scholar 

  44. Kirschner, M., Arriza, J. L., Copeland, N. G., Gilbert D. J., Jenkins, N. A., Magenis, E., and Amara, S. G. The mouse and human excitatory amino acid transporter gene (EAAT1) maps to mouse chromosome 15 and a region of syntenic homology on human chromosome 5. Genomics 22 (1994) 631–633.

    CrossRef  PubMed  CAS  Google Scholar 

  45. Klöckner, U., Storck, T., Conradt, M., and Stoffel, W. Electrogenic L-glutamate uptake in Xenopus laevis oocytes expressing a cloned rat brain L-glutamate/ L-aspartate transporter (GLAST-1). J. Biol. Chem. 268 (1993) 14594–14596.

    PubMed  Google Scholar 

  46. Koepsell, H., Korn, K., Ferguson, D., Menuhr, H., Ollig, D., and Haase, W. Reconstitution and partial purification of several Na+ contransport systems from renal brush-border membranes. Properties of the L-glutamate transporter in proteoliposomes. J. Biol. Chem. 259 (1984) 6548–6558.

    PubMed  CAS  Google Scholar 

  47. Koppenol, W. H., Moreno, J. J., Pryor, W. A., Ischiropoulos, H., and Beckman, J. S. Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem. Res. Toxicol. 5 (1992) 834–842.

    CrossRef  PubMed  CAS  Google Scholar 

  48. Krishnan, S. N., Desai, T., Wyman, R. J., and Haddad, G. G. Cloning of a glutamate transporter from human brain. Soc. Neurosci. Abstr. 19 (1993) 219.

    Google Scholar 

  49. Lehre, K., Levy, L., Ottersen, O., Strom-Mathisen, J., and Danbolt, N. Differential expression of the two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observation. J. Neurosci. 15 (1995) 1835–1853.

    PubMed  CAS  Google Scholar 

  50. Lerner, J. Acidic amino acid transport in animal cells and tissues. Comp. Biochem. Physiol. 87B (1987) 443–457.

    CAS  Google Scholar 

  51. Levy, L., Lehre, K., Rolstad, B., and Danbolt, N. A monoclonal antibody raised against an [Na+/K+]coupled L-glutamate transporter purified from rat brain confirms glial cell localization. FEBS Lett. 317 (1993) 79–84.

    CrossRef  PubMed  CAS  Google Scholar 

  52. Loo, D. D. F., Hazama, A., Supplisson, S., Turk, E., and Wright, E. M. Relaxation kinetics of the Na+/glucose cotransporter. Proc. Natl. Acad. Sci. USA 90 (1993) 5767–5771.

    CrossRef  PubMed  CAS  Google Scholar 

  53. Mager, S., Naeve, J., Quick, M., Labarca, C., Davidson, N., and Lester, H. A. Steady states, charge movements and rates for a cloned GABA transporter expressed in Xenopus oocytes. Neuron 10 (1993) 177–188.

    CrossRef  PubMed  CAS  Google Scholar 

  54. Matteoli, M. and Volterra, A. Extrasynaptic localization of the glutamate transporter EAACI in cultured hippocampal neurons. Submitted (1996).

    Google Scholar 

  55. McNamara, J. O. and Fridovich, I. Did radicals strike Lou Gehrig? Nature 362 (1993) 59–62.

    CrossRef  Google Scholar 

  56. Mennerick, S. and Zorumski, C. F. Glial contributions to excitatory neurotransmission in cultured hippocampal cells. Nature 368 (1994) 59–62.

    CrossRef  PubMed  CAS  Google Scholar 

  57. Nelson, P. J., Dean, G. E., Aronson, P. S., and Rudnick, G. Hydrogen ion cotransport by the renal brush border glutamate transporter. Biochemistry 22 (1983) 5459–5463.

    CrossRef  PubMed  CAS  Google Scholar 

  58. Nicholls, D. and Attwell, D. The release and uptake of excitatory amino acids. Trends Pharmacol Sci. 11 (1990) 462–468.

    CrossRef  PubMed  Google Scholar 

  59. Nussberger, S., Foret, F., Hebert, S. C., Karger, B. L., and Hediger, M. A. Nonradioactive monitoring of organic solute transport into single Xenopus oocytes by capillary zone electrophoresis. Biophys. J. 70 (1996) 998–1005.

    CrossRef  PubMed  CAS  Google Scholar 

  60. O’Hara, P. J., Sheppard, P. O., Thogersen, H., Venezia, D., Haldeman, B. A., McGrane, V., Houamed, K. M., Thomsen, C., Gilbert, T. L., and Mulvihill, E. R. The ligand-binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins. Neuron 11 (1993) 41–52.

    CrossRef  PubMed  Google Scholar 

  61. Otori, Y., Shimada, S., Tanaka, K., Ishimoto, I., Tano, Y., and Tohyama, M. Marked increase in glutamate-aspartate transporter (GLAST/GluT-1) mRNA following transient retinal ischemia. Mol. Brain Res. 27 (1994) 310–314.

    CrossRef  PubMed  CAS  Google Scholar 

  62. Pines, G., Danbolt, N. C., Bjoras, M., Zhang, Y., Bendahan, A., Eide, L., Koepsell, H., Storm-Mathisen, J., Seeberg, E., and Kanner, B. I. Cloning and expression of a rat brain L-glutamate transporter. Nature 360 (1992) 464–467.

    CrossRef  PubMed  CAS  Google Scholar 

  63. Pines, G., Zhang, Y., and Kanner, B. I. Glutamate 404 is involved in the substrate discrimination of GLT-1, a (Na*+K*)-coupled glutamate transporter from rat brain. J. Biol. Chem. 270 (1995) 17093–17097.

    CrossRef  PubMed  CAS  Google Scholar 

  64. Plaitakis, A. P., Constantantakakis, E., and Smith, J. The neuroexcitotoxic amino acids glutamate and aspartate are altered in the spinal cord and brain in amyotrophic lateral sclerosis. Ann. Neurol. 24 (1988) 446–449.

    CrossRef  PubMed  CAS  Google Scholar 

  65. Pourcher, T., Zani, M.-L., and Leblanc, G. Mutagenesis of acidic residues in putative membrane-spanning segments of the melibiose permease in Escherichia coli. Effect on Nat-dependent transport and binding properties. J. Biol. Chem. 268 (1993) 3209–3215.

    PubMed  CAS  Google Scholar 

  66. Puttner, I. B., Sarkar, H. K., Padan, E., Lolkema, J. S., and Kaback, H. R. Characterization of site-directed mutants in the lac permease of Escherichia coli. Replacement of histidine residues. Biochemistry 28 (1989) 2525–2533.

    CrossRef  PubMed  CAS  Google Scholar 

  67. Puttner, I. B., Sarkar, H. K., Poonian, M. S., and Kaback, H. R. His-205 and His-322 play different roles in lactose/H* symport. Biochemistry 25 (1986) 4483–4485.

    CrossRef  PubMed  CAS  Google Scholar 

  68. Romano, P. M., Ahearn, G. A., and Storelli, C. Na-dependent L-glutamate transport by eel intestinal BBMV: Role of K* and Cl−. Am. J. Physiol. 257 (1989) R180 - R188.

    PubMed  CAS  Google Scholar 

  69. Rosen, D. R., Siddique, T., Patterson, D., Figlewicz, D. A., Sapp, P., Hentati, A., Donaldson, D., Goto, J., O’Regan, J. P., Deng, H. X., et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362 (1993) 59–62.

    CrossRef  PubMed  CAS  Google Scholar 

  70. Rothstein, J., Jin, L., Dykes-Hoberg, M., and Kund, R. W. Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity. Proc. Natl. Acad. Sci. LISA 90 (1993) 6591–6595.

    CrossRef  CAS  Google Scholar 

  71. Rothstein, J., Martin, L., Levey, A., Dykes-Hoberg, M., Jin, L., Wu, D., Nash, N., and Kunkl, R. Localization of neuronal and glial glutamate transporters. Neuron 13 (1994) 713–725.

    CrossRef  PubMed  CAS  Google Scholar 

  72. Rothstein, J. D., Dykes-Hoberg, M., Pardo C. A., Bristol, L. A., Jin, L., Kunkl, R. W., Kanai, Y., Hediger, M. A., Wang, Y., Schielke, J., and Welty, D. F. Glial but not neuronal glutamate transporters are responsible for slow glutamate toxicity. Neuron 16 (1996) 675–686.

    CrossRef  PubMed  CAS  Google Scholar 

  73. Rothstein, J. D., Martin, L. J., and Kund, R. W. Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N. Engl. J. Med. 326 (1992) 1464–1468.

    CrossRef  PubMed  CAS  Google Scholar 

  74. Rothstein, J. D., Van Kammen, M., Levey, A. I., Martin, L., and Kund, R. W. Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann. Neurol. 38 (1995) 73–84.

    CrossRef  PubMed  CAS  Google Scholar 

  75. Sarantis, M. and Attwell, D. Glutamate uptake in mammalian retinal glia is voltage-and potassium-dependent. Brain Res. 516 (1990) 322–325.

    CrossRef  PubMed  CAS  Google Scholar 

  76. Sarantis, M., Ballerini, L., Miller, B., Silver, R. A., Edwards, M., and Attwell, D. Glutamate uptake from the synaptic cleft does not shape the decay of the non-NMDA component of the synaptic current. Neuron 11 (1993) 541–549.

    CrossRef  PubMed  CAS  Google Scholar 

  77. Schousboe, A. Transport and metabolism of glutamate and GABA in neurons are glial cells. Int. Rev. Neurobiol. 22 (1981) 1–45.

    CrossRef  PubMed  CAS  Google Scholar 

  78. Shafqat, S., Tamarappoo, B. K., Kilberg, M. S., Puranam, R. S., McNamara, J. O., Guadano-Ferraz, A., and Fremeau, J., R. T. Cloning and expression of a novel Na+-dependent neutral amino acid transporter structurally related to mammalian Ne/ glutamate cotransporters. J. Biol. Chem. 268 (1993) 15351–15355.

    PubMed  CAS  Google Scholar 

  79. Shibata, T., Watanabe, M., Tanaka, K., Wada, K., and Inoue, Y. Dynamic changes in expression of glutamate transporter mRNAs in developing brain. NeuroReport 7 (1996) 705–709.

    CrossRef  PubMed  CAS  Google Scholar 

  80. Siesjo, B., Argardh, C., and Bengtsson, F. Free radicals and brain damage. Cerebrosvasc. Brain Metab. Rev. 1 (1989) 165–211.

    CAS  Google Scholar 

  81. Smith, C. P., Weremowicz, S., Kanai, Y., Stelzner, M., Morton, C., and Hediger, M. A. Assignment of the gene coding for the human high affinity glutamate transporter EAAC1 to 9p24: implications for neurodegenerative disorders and dicarboxylic aminoaciduria. Genomics 20 (1994) 335, 336.

    Google Scholar 

  82. Somohano, F. and Lopez-Colome, A. M. Characteristics of excitatory amino acid uptake in cultures from neurons and glia from the retina. J. Neurosci. Res. 28 (1995) 556–562.

    CrossRef  Google Scholar 

  83. Stallcup, W. B., Bulloch, K., and Baetge, E. E. Coupled transport of glutamate and sodium in a cerebellar nerve cell line. J. Neurochem. 32 (1979) 57–65.

    CrossRef  PubMed  CAS  Google Scholar 

  84. Storck, T., Schulte, S., Hofmann, K., and Stoffel, W. Structure, expression and functional analysis of a Na+-dependent glutamate/aspartate transporter from rat brain. Proc. Natl. Acad. Sci. USA 89 (1992) 10955–10959.

    CrossRef  PubMed  CAS  Google Scholar 

  85. Szatkowski, M. and Attwell, D. Triggering and execution of neuronal death in brain ischaemia: Two phases of glutamate release by different mechanisms. Trends Neurosci. 17 (1994) 359–365.

    CrossRef  PubMed  CAS  Google Scholar 

  86. Thompson, S. M., and Gahwiler, B. H. Effects of the GABA uptake inhibitor tiagabine on inhibitory synaptic potentials in rat hippocampal slice cultures. J. Neurophysiol. 67 (1992) 1698–1701.

    PubMed  CAS  Google Scholar 

  87. Tong, G. and Jahr, C. E. Block of glutamate transporters potentiates postsynaptic excitation. Neuron 13 (1994) 1195–1203.

    CrossRef  PubMed  CAS  Google Scholar 

  88. Torp, R., Danbolt, N., Babaie, E., Bjoras, M., Seeberg, E., Storm-Mathisen, J., and Otterson, O. P. Differential expression of two glial glutamate transporters in the rat brain: an in situ hybridization study. Eur. J. Neurosci. 6 (1994) 936–942.

    CrossRef  PubMed  CAS  Google Scholar 

  89. Torp, R. Lekieffre, D., Levy, L. M., Haug, F. M., Danbolt, N. C., Meldrum, B. S., and Ottersen, O. P. Reduced postischemic expression of a glial glutamate transporter, GLT1, in the rat hippocampus. Exp. Brain Res. 103 (1995) 51–58.

    CAS  Google Scholar 

  90. Trotti, D., Volterra, A., Lehre, K. P., Rossi, D., Gjesdal, O., Racagni, G., and Danbolt, N. Arachidonic acid inhibits a purified and reconstituted glutamate transporter directly from the water phase and not via the phospholipid membrane. J. Biol. Chem. 270 (1995) 9890–9895.

    CrossRef  PubMed  CAS  Google Scholar 

  91. Troy, C. M., Derossi, D., Prochiantz, A., Greene, L. A., and Shelanski, M. Downregulation of Cu/Zn superoxide dismutase leads to cell death via the nitric oxide-peroxynitrite pathway. J. Neurosci. 16 (1996) 253–261.

    PubMed  CAS  Google Scholar 

  92. Utsunomiya-Tate, N., Endou, H., and Kanai, Y. Cloning and functional characterization of a system ASC-like Nat-dependent neutral amino acid transporter. J. Biol. Chem. 271 (1996) 14,883–14,890.

    Google Scholar 

  93. Volterra, A., Trotti, D., Cassutti, P., Salvaggio, A., Melcangi, R., and Racagni, G. High sensitivity of glutamate uptake to extracellular free arachidonic acid levels in rat cortical synaptosomes and astrocytes. J. Neurochem. 59 (1992) 600–606.

    CrossRef  PubMed  CAS  Google Scholar 

  94. Volterra, A., Trotti, D., and Racagni, G. Glutamate uptake is inhibited by arachidonic acid and oxygen free radicals via two distinct and additive mechanisms. Mol. Pharmacol. 46 (1994) 986–992.

    PubMed  CAS  Google Scholar 

  95. Volterra, A., Trotti, D., Tromba, C., Floridi, S., and Racagni, G. Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes. J. Neurosci. 14 (1994) 2924–2932.

    PubMed  CAS  Google Scholar 

  96. Wadiche, J. I., Amara, S. G., and Kavanaugh, M. P. Ion fluxes associated with excitatory amino acid transport. Neuron 75 (1995) 721–728.

    CrossRef  Google Scholar 

  97. Wadiche, J. I., Arriza, J. L., Amara, S. G., and Kavanaugh, M. P. Kinetics of a human glutamate transporter. Neuron 14 (1995) 1019–1027.

    CrossRef  PubMed  CAS  Google Scholar 

  98. Wingrove, T. G. and Kimmich, G. A. Low-affinity intestinal L-aspartate transport with 2:1 coupling stoichiometry for Na+/Asp. Am. J. Physiol. 255 (1988) C737 - C744.

    PubMed  CAS  Google Scholar 

  99. Zanchin, G., De Boni, A., Lauria, G., Maggioni, F., Rossi, P., and Villacara, A. Synaptosomal glutamate uptake in a model of experimental cerebral ischemia. Neurochem. Res. 20 (1995) 195–199.

    CrossRef  PubMed  CAS  Google Scholar 

  100. Zerague, N., Arriza, J., Amara, S., and Kavanaugh, M. Differential modulation of human glutamate transporter subtypes by arachidonic acid. J. Biol. Chem. 270 (1995) 6433–6435.

    CrossRef  Google Scholar 

  101. Zhang, Y., Pines, G., and Kanner, B. I. Histidine 326 is critical for the function of GLT-1, a (Na+ + K+)-coupled glutamate transporter from rat brain J. Biol. Chem. 269 (1994) 19,573–19,577.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kanai, Y., Trotti, D., Nussberger, S., Hediger, M.A. (1997). The High-Affinity Glutamate Transporter Family. In: Reith, M.E.A. (eds) Neurotransmitter Transporters. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-470-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-470-2_6

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5980-8

  • Online ISBN: 978-1-59259-470-2

  • eBook Packages: Springer Book Archive