Skip to main content

Functional Role of Ion Transporters and Neurotransmitter Receptors in Glia

  • Chapter
Neuron—Glia Interrelations During Phylogeny

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

Neurons and glial cells in the central nervous system (CNS) are embedded in a highly regulated microenvironment (Nicholson, 1995). The composition of this interstitial fluid is determined by secretion of the capillaries constituting the blood-brain barrier and of cerebrospinal fluid (which is in diffusion equilibrium with the interstitial milieu) by the choroid plexus. This equilibrium is perturbed by impulse and synaptic activity of neurons (Frankenhaeuser and Hodgkin, 1956). Such activity results in changes in the levels of extracellular ions, in particular of K+ (aKe), as well as of neurotransmitters or other neuroactive substances (Sykova, 1983; Dietzel et al., 1989; Walz, 1989). These disturbances are prominent during pathological processes like epilepsy or hypoxia (Hansen, 1985; Heinemann, 1995; Nicholson, 1995; Richter and Ballanyi, 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ammann D (1986) Ion-selective micro-electrodes. Springer Verlag, Berlin, Heidelberg, New York, Toronto.

    Google Scholar 

  • Astion ML, Orkand RK (1988) Electrogenic Na+/HCO3 cotransport in neuro-glia. Glia 1: 355–357.

    Article  PubMed  CAS  Google Scholar 

  • Ballanyi K (1995) Modulation of glial K+, Na+ and Cl-activities by the extra-cellular milieu, in Neuroglial cells (Kettenmann H Ransom BR, eds.), Oxford University Press, London, New York, in press.

    Google Scholar 

  • Ballanyi K, Grafe P (1985) An intracellular analysis of y-aminobutyric-acidassociated ion movements in rat sympathetic neurones. J Physiol 365: 41–58.

    PubMed  CAS  Google Scholar 

  • Ballanyi K, Grafe P (1988) Cell volume regulation in the nervous system. Renal Physiol Biochem 2: 142–157.

    Google Scholar 

  • Ballanyi K, Kettenmann H (1990) Intracellular Na+ activity in cultured mouse oligodendrocytes. J Neurosci Res 26: 455–460.

    Article  PubMed  CAS  Google Scholar 

  • Ballanyi K, Schlue W R (1988) Direct effects of carbachol on membrane potential and ion activities in leech glial cells. Glia 1: 165–167.

    Article  PubMed  CAS  Google Scholar 

  • Ballanyi K, Schlue W-R (1989) Electrophysiological haracterization of a nicotinic acetylcholine receptor on leech neuropile glial cells. Glia 2: 330–345.

    Article  PubMed  CAS  Google Scholar 

  • Ballanyi K, Schlue W-R (1990) Intracellular chloride activity in glial cell of the leech central nervous system. J Physiol 420: 325–336.

    PubMed  CAS  Google Scholar 

  • Ballanyi K, Dö;rner R, Schlue W-R (1989) Glutamate and kainate increase intracellular sodium activity in leech neuropile glial cells. Glia 2: 51–54.

    Article  PubMed  CAS  Google Scholar 

  • Ballanyi K, Grafe P, ten Bruggencate G (1987) Ion activities and potassium uptake of glial cells in guinea-pig olfactory cortex slices. J Physiol 382: 159–174.

    PubMed  CAS  Google Scholar 

  • Ballanyi K, Strupp M, Grafe P (1992) Electrophysiological measurements of volume changes in neurons, glial cells, and muscle fibers in situ, in Practical electrophysiological methods ( Kettenmann H Grantyn R, eds.), Wiley-Liss, New York, pp. 363–366.

    Google Scholar 

  • Ballanyi K, Grafe P, Serve G, Schlue W-R (1990) Electrophysiological measurements of volume changes in leech neuropile glial cells. Glia 3: 151–158.

    Article  PubMed  CAS  Google Scholar 

  • Ballanyi K, Reddy MM, Grafe P, ten Bruggencate G. (1984) Different types of potassium transport linked to carbachol and y-aminobutyric acid actions in rat sympathetic neurons. Neuroscience 12: 917–927.

    Article  PubMed  CAS  Google Scholar 

  • Ballanyi K, MĂĽckenhoff K, Bellingham M, Okada Y, Scheid P, Richter DW (1995) Activity related pH changes in respiratory neurons and glial cells of cats. J Neuroreport 6: 33–36.

    Article  Google Scholar 

  • Barres BA (1991) New roles for glia. J Neurosci 11: 3685–3694.

    PubMed  CAS  Google Scholar 

  • Barres BA, Koroshetz WJ, Chun LY, Corey DP (1990) Ion channel expression by white matter glia: the type-1 astrocyte. Neuron 5: 527–544.

    Article  PubMed  CAS  Google Scholar 

  • Bevan S, Chiu SY, Gray PTA, Ritchie JM (1985) The presence of voltage-activated sodium, potassium and chloride channels in cultured astrocytes. Proc Roy Acad Sci [B] 225: 299–313.

    CAS  Google Scholar 

  • Berger T Walz W Schnitzer J Kettenmann H (1992) GABA- and glutamate-activated currents in glial cells of the mouse corpus callosum. J Neurosci Res 31: 21–27.

    Article  PubMed  CAS  Google Scholar 

  • Boyle P Conway E (1941) Potassium accumulation in muscle and associated changes. J Physiol 100: 1–63.

    PubMed  CAS  Google Scholar 

  • Brew H Attwell D (1987) Electrogenic glutamate uptake is a major current carrier in the membrane of axolotl retinal glial cells. Nature 327: 707–709.

    Article  PubMed  CAS  Google Scholar 

  • Chesler M Kraig RP (1989) Intracellular pH transients of mammalian astrocytes. J Neurosci 9: 2011–2019.

    PubMed  CAS  Google Scholar 

  • Coles JA Orkand RK Yamate CL Tsacopoulos M (1986) Free concentrations of Na, K, and Cl in the retina of the honeybee drone: Stimulus-induced redistribution and homeostasis. Ann NY Acad Sci 481: 303–317.

    Google Scholar 

  • Deitmer JW (1995) Modulation and control of intracellular pH, in Neuroglial cells (Kettenmann H Ransom BR, eds.), Oxford University Press, London, New York, in press.

    Google Scholar 

  • Deitmer JW Schlue W-R (1989) An inwardly directed electrogenic sodium-bicarbonate co-transport. J Physiol 411: 179–194.

    PubMed  CAS  Google Scholar 

  • Dietzel I Heinemann U Lux HD (1989) Relations between slow extracellular potentials, glial potassium buffering, and electrolyte and cellular volume changes during neuronal hyperactivity in the cat. Glia 2: 25–44.

    Article  PubMed  CAS  Google Scholar 

  • Dö;rner R Ballanyi, Schlue W-R (1990) Glutaminergic responses of neuropile glial cells and Retzius neurones in the leech central nervous system. Brain Res 523: 111–116.

    Article  Google Scholar 

  • Frankenhaeuser B, Hodgkin AL (1956) The after-effects of impulses in the giant nerve fibres of Loligo. J Physiol 131: 341–376.

    PubMed  CAS  Google Scholar 

  • Grafe P Ballanyi K (1987) Cellular mechanisms of potassium homeostasis in the mammalian nervous system. Can J Physiol Pharmacol 65: 1038–1042.

    Article  PubMed  CAS  Google Scholar 

  • Grisar T Franck G Delgado-Escueta AV (1983) Glial contribution to seizure:K+ activation of (Na+, K+)-ATPase in bulk isolated glial cells and synaptosomes of epileptogenic cortex. Brain Res 261: 75–84.

    Google Scholar 

  • Hamprecht B Kemper W Amano T (1976) Electrical response of glioma cells to acetylcholine. Brain Res 101: 129–135.

    Article  PubMed  CAS  Google Scholar 

  • Hansen AJ (1985) Effect of anoxia on ion distribution in the brain. Physiol Rev 65: 101–148.

    PubMed  CAS  Google Scholar 

  • Heinemann U (1995) Epilepsy, in Neuroglial cells (Kettenmann H Ransom BR, eds.), Oxford University Press, London, New York, in press.

    Google Scholar 

  • Hösli L Hösli E Baggi M Bassetti C Uhr M (1987) Action of dopamine and serotonin on the membrane potential of cultured astrocytes. Exp Brain Res 65: 482–485.

    Google Scholar 

  • Hösli L Hösli E Briotta GD Quadri L Heuss L (1988) Action of acetylcholine, muscarine, nicotine and antagonists on the membrane potential of astrocytes in cultured rat brainstem and spinal cord. Neurosci Lett 92: 165–170.

    Article  PubMed  Google Scholar 

  • Hoppe D Kettenmann H (1989a) Carrier-mediated Cl-transport in cultured mouse oligodendrocytes. J Neurosci Res 23: 467–475.

    Article  PubMed  CAS  Google Scholar 

  • Hoppe D Kettenmann H (1989b) GABA triggers a Cl-efflux from cultured mouse oligodendrocytes. Neurosci Lett 97: 334–339.

    Article  PubMed  CAS  Google Scholar 

  • Kaila K, Voipio J (1987) Postsynaptic fall in intracellular pH induced by GABAactivated bicarbonate conductance. Nature 330: 163–165.

    Google Scholar 

  • Kettenmann H (1987) K+ and Cl-uptake by cultured oligodendrocytes. Can J Physiol Pharmacol 65: 1033–1037.

    Article  PubMed  CAS  Google Scholar 

  • Kettenmann H (1995) GABA and glutamate receptors, in Neuroglial cells (Kettenmann, H, Ransom, BR, eds.), Oxford University Press, London, New York, in press.

    Google Scholar 

  • Kettenmann H Schlue W-R (1988) Intracellular pH regulation in cultured mouse oligodendrocytes. J Physiol 406: 147–162.

    PubMed  CAS  Google Scholar 

  • Kettenmann H Sonnhof U Schachner M (1983) Exclusive potassium dependence of of the membrane potential in cultured mouse oligodendrocytes. J Neurosci 3: 500–505.

    PubMed  CAS  Google Scholar 

  • Kettenmann H Sykova E Orkand RK Schachner M (1987) Glial potassium uptake following depletion by intracellular ionophoresis. PflĂĽgers Arch 410: 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Martin D (1995) Transmitter removal, in Neuroglial cells (Kettenmann H Ransom BR, eds.), Oxford University Press, London, New York, in press.

    Google Scholar 

  • Massarelli R Mykita S Sorrentino G (1986) The supply of choline to glial cells, in Astrocytes ( Fedoroff S Vernadakis A, eds.), Academic Press, New York, pp. 155–178.

    Google Scholar 

  • Murphy S Pierce B (1987) Functional receptors for neurotransmitters on astroglial cells. Neuroscience 22: 381–394.

    Article  PubMed  CAS  Google Scholar 

  • Newman E (1995) Extracellular K+ homeostasis, in Neuroglial Cells (Kettenmann H Ransom BR, eds.), Oxford University Press, London, New York, in press.

    Google Scholar 

  • Nicholson C (1995) Extracellular space as the pathway for Neuron—Glial cell-interactions, in Neuroglial Cells (Kettenmann H Ransom BR, eds.), Oxford University Press, London, New York, in press.

    Google Scholar 

  • Ogura A Ozaki K Kudo Y Amano T (1986) Cytosolic calcium elevation and cGMP production induced by serotonin in a clonal cell of glial origin. J Neurosci 6: 2489–2494.

    PubMed  CAS  Google Scholar 

  • Orkand RK Coles JA Tsacopoulos M (1986). The role of glial cells in ion homeostasis in the retina of the honeybee drone. Exp Brain Res (Series 14 ) 404–413.

    Google Scholar 

  • Orkand RK Nicholls JG Kuffler SW (1966) Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of Amphibia. J Neurophysiol 29: 788–806.

    PubMed  CAS  Google Scholar 

  • Reichenbach A Dettmer D Reichelt W Eberhardt W (1985) Na+, K+-activated adenosine triphosphatase of isolated MĂĽller cells from the rabbit retina shows a K+ dependence similar to that of brain astrocytes. Neurosci Lett 59: 281–284.

    Google Scholar 

  • Richter DW Ballanyi K (1995) Response of the medullary respiratory network to hypoxia: A comparative analysis of neonatal and adult mammals, in Tissue Oxygen Deprivation. Developmental, Molecular and Integrated Function (Haddad GG Lister G, eds.), Marcel Dekker, New York, in press.

    Google Scholar 

  • Schlue W-R Walz W (1984) Neurophysiology of neuropile glial cells in the central nervous system of the medicinal leech: A model system for potassium homeostasis in the brain. Adv Cell Neurobiol 5: 143–175.

    Google Scholar 

  • Schlue W-R Wuttke W (1983) Potassium uptake in leech neuropile glial cells changes with extracellular potassium concentration. Brain Res 270: 368–372.

    Article  PubMed  CAS  Google Scholar 

  • Sontheimer H Kettenmann H Backus HH Schachner M (1988) Glutamate opens Na+/K+ channels in cultured astrocytes. Glia 1: 328–336.

    Article  PubMed  CAS  Google Scholar 

  • Sweadner K (1995) Na+/K+-ATPase, in Neuroglial Cells (Kettenmann H Ransom BR, eds.), Oxford University Press, London, New York, in press. Sykova E (1983) Extracellular K+ accumulation in the central nervous system. Progr Biophys Mol Biol 42:135–190.

    Google Scholar 

  • Walz W (1988) Physiological consequences of activating serotonin receptors, in Glial Cell Receptors ( Kimelberg HK, ed.), Raven Press, New York, pp. 121–130.

    Google Scholar 

  • Walz W (1989) Role of glial cells in the regulation of the brain microenvironment. Progr Neurobiol 33: 309–333.

    Article  CAS  Google Scholar 

  • Walz W (1992) Mechanism of rapid K+-induced swelling of mouse astrocytes. Neurosci Lett 135: 243–246.

    Article  PubMed  CAS  Google Scholar 

  • Walz W (1995) Anion channels and transport systems, in Neuroglial Cells (Kettenmann H Ransom BR, eds.), Oxford University Press, London, New York, in press.

    Google Scholar 

  • Wuttke W (1990) Mechanism of potassium uptake in neuropile glial cells in the central nervous system of the leech. J Neurophysiol 63: 1089–1097.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ballanyi, K. (1995). Functional Role of Ion Transporters and Neurotransmitter Receptors in Glia. In: Vernadakis, A., Roots, B.I. (eds) Neuron—Glia Interrelations During Phylogeny. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-468-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-468-9_8

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5964-8

  • Online ISBN: 978-1-59259-468-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics