Skip to main content

Affective Disorders

  • Chapter
Neurotherapeutics

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 52 Accesses

Abstract

The discovery of new, effective psychopharmacological agents has never been a simple matter. Indeed, most of the major psychiatric drugs were introduced about three decades ago. Although the search for more effective and more rapidly acting antidepressants and mood-stabilizing agents has continued unabated, progress in drug develop­ment has been very slow, with the exception of serotonin-selective re-uptake inhibitors (SSRIs). Although this class of drugs has signifi­cantly fewer serious side effects and is thus a useful addition to our therapeutic aresenal, they are somewhat cleaner “me too” drugs, and may even be less effective than the older tricyclics in severe depres­sion. In psychopharmacology, we have traditionally used behavioral and physiological animal models that reflect the actions of drugs already known to be antidepressants, mood stabilizers, and so on (Potter et al., 1992). This has proved to be an excellent method of finding compounds with a similar therapeutic profile to the original, serendipitously discovered, psychotherapeutic compounds. This approach, however, has not yet developed a widely accepted drug whose therapeutic biochemical principle is not inherent in drugs discovered three decades ago.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agren H, Mefford IN, Rudorfer MV, Linnoila M, Potter WZ (1986) Interacting neurotransmitter systems. A non-experimental approach to the 5HIAA-HVA correlation in human CSF. J Psychiatry Res 20: 175–193.

    Article  CAS  Google Scholar 

  • Allison JH, Stewart MA (1971) Reduced brain inositol in lithium-treated rats. Nature New Biol 233: 267, 268.

    Google Scholar 

  • American Psychiatric Association (1987) Diagnostic and statistical manual of mental disorders, revised. Washington, DC: Author.

    Google Scholar 

  • American Psychiatric Association (1994) Diagonostic and statistical manual of mental disorders, 4th edition. Washington DC: Author.

    Google Scholar 

  • Anderson SMP, Godfrey PP, Grahame-Smith DG (1988) The effects of phorbol esters and lithium on 5-HT release in rat hippocampal slices. Br J Pharmacol 93: 96, 97.

    Google Scholar 

  • Antelman SM, Chiodo LA (1981) Dopamine autoreceptor subsensitivity: a mechanism common to the treatment of depression and the induction of amphetamine psychosis? Biol Psychiatry 16: 717–727.

    PubMed  CAS  Google Scholar 

  • Asberg M, Bertilsson L, Martensson B, Scalia-Tomba GP, Thoren P, TraskmanBendz L (1984) CSF: monoamine metabolites in melancholia. Acta Psychiatr Scand 69: 201–219.

    Article  PubMed  CAS  Google Scholar 

  • Avissar S, Schreiber G, Danon A, Belmaker RH (1988) Lithium inhibits adrenergic and cholinergic increases in GTP binding in rat cortex. Nature 331: 440–442.

    Article  PubMed  CAS  Google Scholar 

  • Balldin J, Granerus AK, Lindstedt G, Modigh K, Walinder J (1982) Neuroendocrine evidence for increased responsiveness of dopamine receptors in humans following electroconvulsive therapy. Psychopharmacol 76: 371–376.

    Article  CAS  Google Scholar 

  • Baraban JM, Aghajanian GK (1981) Noradrenergic innervation of serotonergic neurons in the dorsal raphe: demonstration by electron microscopic autoradiography. Brain Res 204: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Baraban JM, Worley PF, Snyder SH (1989) Second messenger and psychoactive drug action: focus on the phosphoinositide system and lithium. Am J Psychiatry 146: 1251–1260.

    PubMed  CAS  Google Scholar 

  • Barnes RF, Veith RC, Borson S, Verhey J, Raskind MA, Halter JB (1983) High levels of plasma catecholamines in dexamethasone-resistant depressed patients. Am J Psychiatry 140: 1623–1625.

    PubMed  CAS  Google Scholar 

  • Benkirane S, Arbilla S, Langer SZ (1985) Supersensitivity of alpha 2-adrenoceptors modulating [3H]5-HT relese after noradrenergic denervation with DSP4. Eur J Pharmacol 119: 131–133.

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, Downes CP, Hanley MR (1989) Neural and developmental actions of lithium: a unifying hypothesis. Cell 59: 411–419.

    Article  PubMed  CAS  Google Scholar 

  • Blier P, de Montigny C, Chaput Y (1990) A role for the serotonin system in the mechanism of action of antidepressant treatments: preclincial evidence. J Clin Psychiatry 51 (Suppl): 14–20.

    PubMed  Google Scholar 

  • Bourne HR, Nicoll R (1993) Molecular machines integrate coincident synaptic signals. Cell 72s: 65–67.

    Article  PubMed  Google Scholar 

  • Bouvier M (1990) Cross-talk between second messengers. Ann NY Acad Sci 594: 120–129.

    Article  PubMed  CAS  Google Scholar 

  • Bowden CL, Huang LG, Javors MA, Johnson JM, Seleshi E, McIntyre K, Contreras S, Maas JW (1988) Caclium function in affective disorders and healthy controls. Biol Psychiatry 23: 367–376.

    Article  PubMed  CAS  Google Scholar 

  • Bruns RF, Fergus JH (1990) Allosteric enhancement of adenosine A 1 receptor binding and function by 2-amino-3-benzoylthiophenes. Mol Pharmacol 38: 939–949.

    PubMed  CAS  Google Scholar 

  • Bunney WE Jr, Davis JM (1965) Norepinephrine in depressive reactions. Arch Gen Psychiatry 13: 483–494.

    Article  PubMed  CAS  Google Scholar 

  • Bunney WE Jr, Garland-Bunney B (1987) Mechanisms of action of lithium in affective illness: basic and clinical implications. In: Psychopharmacology: the third generation of progress ( Meltzer HY, ed), pp 553–565. New York: Raven.

    Google Scholar 

  • Carter CJ, Pycock CJ (1979) The effects of 5,7-dihydroxytryptamine lesions of extrapyramidal and mesolimbic sites on spontaneous motor behavior and amphetamine-induced stereotype. Naunyn-Schmeideberg’s Arch Pharmacol 208: 51–54.

    Article  Google Scholar 

  • Casebolt T, Jope, RS (1987) Chronic lithium reduces norepinephrine-stimulated inositol phospholipid hydrolysis in rat cortex. Eur J Pharmacol 140: 245, 246.

    Google Scholar 

  • Casebolt T, Jope RS (1989) Long-term lithium treatment selectively reduces receptor coupled inositol phospholipid hydrolysis in rat brain. Biol Psychiatry 25: 329–340.

    Article  PubMed  CAS  Google Scholar 

  • Chaput Y, de Montigny C, Blier P (1991) Presynaptic and postsynaptic modifications of the serotonin system by long-term administration of antidepressant treatments: an in vivo electrophysiologic study in the rat. Neuropsychopharmacology 5: 219–224.

    PubMed  CAS  Google Scholar 

  • Chen G, Manji HK, Hawver DB, Wright CB, Potter WZ (1994) Chronic sodium valproate selectively decreases protein kinase C alpha and epsilon in vitro. J Neurochem 63: 2361–2364.

    Article  PubMed  CAS  Google Scholar 

  • Colin SF, Chang HC, Mollner S, Pfeuffer T, Reed RR, Duman RS, Nestler EJ (1991) Chronic lithium regulates the expression of adenylate cyclase and Gi-protein alpha subunit in rat cerebral cortex. Proc Natl Acad Sci USA 88:10, 634–10, 637.

    Google Scholar 

  • Costall B, Naylor RJ (1978) Neuroleptic interactions with the serotonergic-dopaminergic mechanisms in the nucleus accumbens. J Pharm Pharmacol 30: 257–259.

    Article  PubMed  CAS  Google Scholar 

  • Cowen PJ, Grahame-Smith DG, Green AR, Heal DJ (1982) f3-adrenoreceptor agonists enhance 5-hydroxytryptamine-mediated behavioral responses. Br J Pharmacol 76: 265–270.

    Google Scholar 

  • Daniel IS, Spiegel AM, Strulovici B (1989) Lipopolysaccharide response is linked to the GTP binding protein, Gil, in the promonocytic cell line U937. J Biol Chem 264:20, 240–20, 247.

    Google Scholar 

  • Dray A, Gonye TJ, Oakley NR, Tanner T (1976) Evidence for the existence for raphe projections to substantia nigra in rat. Brain Res 113: 45–57.

    Article  PubMed  CAS  Google Scholar 

  • Dubovsky SL, Franks RD, Allen S, Murphy J (1986) Caclium antagonists in mania: a double-blind study of verapamil. Psychiatry Res 18: 309–320.

    Article  PubMed  CAS  Google Scholar 

  • Dubovsky SL, Murphy J, Christiano J, Lee C (1992a) The calcium second messenger system in bipolar disorders: data supporting new research directions. J Neuro-psychiatry Clin Neurosci 4: 3–14.

    CAS  Google Scholar 

  • Dubovsky SL, Murphy J, Thomas M, Rademacher J (1992b) Abnormal intracellular calcium ion concentration in platelets and lymphocytes of bipolar patients. Am J Psychiatry 149: 118–120.

    PubMed  CAS  Google Scholar 

  • Duman RS, Terwilliger RZ, Nestler EJ (1989) Chronic antidepressant regulation of Gsa and cyclic AMP-dependant protein kinase. Pharmacologist 31: 182–184.

    Google Scholar 

  • Ebstein RP, Hermoni M, Belmaker RH (1980) The effect of lithium on noradrenalineinduced cyclic AMP accumulation in rat brain: inhibition after chronic treatment and absence of supersensitivity. J Pharmacol Exp Ther 213: 161–167.

    PubMed  CAS  Google Scholar 

  • Esler M, Turbott JT, Schwartz R, Leonard P, Bobik A, Skews H (1982) The peripheral kinetics of norepinephrine in depressive illnes. Arch Gen Psychiatry 39: 295–300.

    Article  PubMed  CAS  Google Scholar 

  • Fibiger HC, Miller JJ (1977) An anatomical and electrophysiological investigation of the serotonergic projection for the dorsal raphe nucleus to the substantia nigra in the rat. Neuroscience 2: 975–987.

    Article  Google Scholar 

  • Fibiger HC, Phillips AG, Blaha CD (1990) Dopamine and the neural substrates of reward: implications for the mechanisms of action of antidepressant drugs. Adv Biosci 7: 51–63.

    Google Scholar 

  • Fishman PH, Finberg JP (1987) Effect of the tricyclic antidepressant desipramine on beta-adrenergic receptors in cultured rat glioma C6 cells. J Neurochem 49: 282–289.

    Article  PubMed  CAS  Google Scholar 

  • Friedman E, Hoau YW, Levinson D, Connell TA, Singh H (1993) Altered platelet protein kinase C activity in bipolar affective disorder, manic episode. Biol Psychiatry 33: 520–525.

    Article  PubMed  CAS  Google Scholar 

  • Fukunishi I, Hosokawa K, Ozaki S (1991) Depression antedating the onset of Parkinson’s disease. Jpn J Psychiatr Neurol 45: 7–11.

    CAS  Google Scholar 

  • Gallagher DW, Aghajanian GK (1976) Effect of antipsychotic drugs on the firing of dorsal raphe cells. I. Role of adrenergic system. Eur J Pharmacol 39: 341–355.

    Google Scholar 

  • Gibbons RD, Davis JM (1986) Consistent evidence for a biological subtype of depression characterized by low CSF monoamine levels. Acta Psychiatr Scand 74: 8–12.

    Article  PubMed  CAS  Google Scholar 

  • Gilman, AG (1987) G proteins: transducers of receptor-generated signals. Ann Rev Biochem 56: 615–649.

    Article  PubMed  CAS  Google Scholar 

  • Godfrey PP, McClue SJ, White AM, Wood AJ, Grahame SD (1989) Subacute and chronic in vivo lithium treatment inhibits agonist-and sodium fluoride-stimulated inositol phosphate production in rat cortex. J Neurochem 52: 498–506.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg H, Clayman P, Skorecki K (1988) Mechanism of Li inhibition of vasopressin-sensitive adenylate cyclase in cultured renal epithelial cells. Am J Physiol 255: F995–1002.

    PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS, Lidow MS, Gallager DW (1990) Overlap of dopaminergic, adrenergie, and serotoninergic receptors and complementarity of their subtypes in primate prefrontal cortex. J Neurosci 10: 2125–2138.

    PubMed  CAS  Google Scholar 

  • Goodwin, FK, Jamison, KR (1990) Manic-depressive illness. New York: Oxford University Press.

    Google Scholar 

  • Green AR, Grahame-Smith DG (1974) The role of brain dopamine in the hyperactivity syndrome produced by increased 5-hydroxytryptamine synthesis in rats. Neuropharmacology 13: 949–959.

    Article  PubMed  CAS  Google Scholar 

  • Guze BH, Barrio, JC (1991) The etiology of depression in Parkinson’s disease patients. Psychomatics 32: 390–395.

    Article  CAS  Google Scholar 

  • Haga K, Haga T (1992) Activation by G protein beta gamma subunits of agonist-or light-dependent phosphorylation of muscarinic acetylcholine receptors and rhodopsin. J Biol Chem 267: 2222–2227.

    PubMed  CAS  Google Scholar 

  • Halenda SP, Volpi M, Zavoico GB, Shaafi RI, Feinstein MB (1986) Effects of thrombin, phorbol myristate acetate, and prostaglandin D2 on 40–41 kDa protein that is ADP ribosylated by pertussis toxin in platelets. FEBS Lett 204: 341–346.

    Article  PubMed  CAS  Google Scholar 

  • Hallberg H, Almgren O, Svensson TH (1982) Reduced brain serotonergic activity after repeated treatment with ß-adrenoceptor antagonists. Psychopharmacology 76: 114–117.

    Article  PubMed  CAS  Google Scholar 

  • Hallcher LM, Sherman WR (1980) The effects of lithium ion and other agents on the activity of myo-inositol- 1 -phosphatase from bovine brain. J Biol Chem 255: 10,896–10, 901.

    Google Scholar 

  • Hausdorff WP, Hnatowich M, O’Dowd BF, Caron MG, Lefkowitz RJ (1990) A mutation of the beta 2-adrenergic receptor impairs agonist activation of adenylate cyclase without affecting high affinity agonist binding. Distinct molecular determinants of the receptor are involved in physical coupling to and functional activation of Gs. J Biol Chem 265: 1388–1393.

    Google Scholar 

  • Higashijima T, Burnier J, Ross EM (1990) Regulation of Gi and Go by mastoparan, related amphiphilic peptides, and hydrophobic amines. Mechanism and structural determinants of activity. J Biol Chem 265:14, 176–14, 186.

    Google Scholar 

  • Higashijima T, Uzu S, Nakajima T, Ross EM (1988) Mastoparan, a peptide toxin from wasp venom, mimics receptors by activating GTP-binding regulatory proteins ( G proteins ). J Biol Chem 263: 6491–6494.

    Google Scholar 

  • Honegger UE, Disler B, Wiesmann UN (1986) Chronic exposure of human cells in culture to the tricyclic antidepressant desipramine reduces the number of betaadrenoceptors. Biochem Pharmacol 35: 1899–1902.

    Article  PubMed  CAS  Google Scholar 

  • Hoschl C, Kozeny J (1989) Verapamil in affective disorders: a controlled, double-blind study. Biol Psychiatry 25: 128–140.

    Article  PubMed  CAS  Google Scholar 

  • Houslay, MD (1991) “Crosstalk”: a pivotal role for protein kinase C in modulating relationships between signal transduction pathways. Eur J Biochem 195: 9–27.

    Google Scholar 

  • Hsiao JK, Agren H, Bartko JJ, Rudorfer MV, Linnoila M, Potter WZ (1987) Monoamine neurotransmitter interactions and the prediction of antidepressant response. Arch Gen Psychiatry 44: 1078–1083.

    Article  PubMed  CAS  Google Scholar 

  • Hsiao JK, Manji HK, Chen GA, Bitran JA, Risby ED, Potter WZ (1992) Lithium administration modulates platelet Gi in humans. Life Sci 50: 227–233.

    Article  PubMed  CAS  Google Scholar 

  • Huang RR, Dehaven RN, Cheung AH, Diehl RE, Dixon RA, Strader CD (1990) Identification of allosteric antagonists of receptor-guanine nucleotide-binding protein interactions. Mol Pharmacol 37: 304–310.

    PubMed  CAS  Google Scholar 

  • Hudson CJ,Young LT, Li PP,Warsh JJ (1993) CNS signal transduction in the pathophysiology and pharmacotherapy of affective disorders and schizophrenia. Synapse 13: 278–293.

    Article  Google Scholar 

  • Iyengar R, Birnbaumer L (1990) G proteins. New York: Academic.

    Google Scholar 

  • Janowsky DS, El-Yousef MK, Davis JM, Sekerke HJ (1972) A cholinergic-adrenergic hypothesis of mania and depression. Lancet 2: 632–635.

    Article  PubMed  CAS  Google Scholar 

  • Jimerson, DC (1987) Role of dopamine mechanisms in affective disorders. In: Psychopharmacology: third generation of progress ( Meltzer HY, ed), pp 505–513. New York: Raven.

    Google Scholar 

  • Jimerson DC, Post RM (1984) Psychomotor stimulants and dopamine agonists in depression. In: The neurobiology of mood disorders ( Post RM, Ballenger JC, eds), pp 619–628. Baltimore, MD: Williams and Wilkins.

    Google Scholar 

  • Jimerson DC, Post RM, Carman JS, van Kammen DP, Goodwin FK, Bunney WE Jr (1979) CSF calcium: clinical correlates in affective illness and schizophrenia. Biol Psychiatry 14: 37–51.

    PubMed  CAS  Google Scholar 

  • Jope RS, Williams MB (1994) Lithium and brain signal transduction systems. Biochem Pharmacol 47: 429–441.

    Article  PubMed  CAS  Google Scholar 

  • Katada T, Gilman AG, Watanabe, Y, Bauer S, Jakobs KH (1985) Protein kinase C phosphorylates the inhibitory guanine-nucleotide-binding regulatory component and apparently suppresses its function in hormonal inhibition of adenylate cyclase. Eur J Biochem 151: 431–437.

    Article  PubMed  CAS  Google Scholar 

  • Kendall DA, Nahorski SR (1987) Acute and chronic lithium treatments influence agonist and depolarization-stimulated inositol phospholipid hydrolysis in rat cerebral cortex. J Pharmacol Exp Ther 241: 1023–1027.

    PubMed  CAS  Google Scholar 

  • Koob GF (1989) Anhedonia as an animal model of depression. In: Animal models of depression ( Koob GF, Ehlers CL, Kupfer DJ, eds), pp 162–183. Cambridge, MA: Birkhauser Boston.

    Chapter  Google Scholar 

  • Lachman HM, Papolos DF (1991) Abnormal signal transduction: a hypothetical model for bipolar affective disorder. Life Sci 45: 1413–1426.

    Article  Google Scholar 

  • Lenox RH, Watson DG, Ellis J (1992) Chronic lithium administration alters a prominent PKC substrate in rat hippocampus. Brain Res 570: 333–340.

    Article  PubMed  CAS  Google Scholar 

  • Lesch KP (1991) 5-HT 1 A receptor responsivity in anxiety disorders and depression. Prog Neuropsychopharmacol Biol Psychiatry 15:723–733.

    Google Scholar 

  • Lesch KP and Manji HK (1992) Signal-transducing G proteins and antidepressant drugs: evidence for modulation of a subunit gene expression in rat brain. Biol Psychiatry 32: 549–579.

    Article  PubMed  CAS  Google Scholar 

  • Li PP, Tam YK, Young LT, Warsh JJ (1991) Lithium decreases Gs, Gi-1 and Gi-2 alpha-subunit mRNA levels in rat cortex. Eur J Pharmacol 206: 165, 166.

    Google Scholar 

  • Litman RE, Hong WW, Weisman EM, Su TP, Potter WZ, Pickar D (1993) Idazoxan, an alpha 2 antagonist, augments fluphenazine in schizophrenic patients: a pilot study. J Clin Psychopharmacol 13: 264–267.

    Article  PubMed  CAS  Google Scholar 

  • Lyness WH, Moore KE (1981) Destruction of 5-hydroxtryptamine neurons and the dynamics of dopamine in nucleus accumbens septi and other forebrain regions of the rat. Neuropharmacology 20: 327–334.

    Article  PubMed  CAS  Google Scholar 

  • Lyness WH, Friedele NM, Moore KE (1979) Destruction of dopaminergic nerve terminals in nucleus aecumbens: effect on d-amphetamine self-administration. Pharmacol Biochem Behav 11: 553–556.

    Article  PubMed  CAS  Google Scholar 

  • Maas JW, Katz MM, Frazer A, Bowden CL, Koslow SH, Stokes PE, Swann AC, Davis JM, Casper R, Berman N (1991) Current evidence regarding biological hypotheses of depression and accompanying pathophysiological processes: a critque and synthesis of results using clinical and basic reasearch results. Integr Psychiatry 7: 155–161.

    Google Scholar 

  • Maj J (1990) Behavioral effects of antidepressant drugs given repeatedly on the dopaminergic systems. In: Dopamine and mental depression (advances in the bio-sciences) ( Gessa GL, Serra G, eds), pp 139–146. New York: Raven.

    Google Scholar 

  • Maj J, Wedzony K (1985) Repeated treatment with imipramine or amitriptyline increases the locomotor response ofrats to (+)-amphetamine given into the nucleus accumbens. J Pharm Pharmacol 37: 362–364.

    Article  PubMed  CAS  Google Scholar 

  • Manji HK (1992) G proteins: implications for psychiatry. Am J Psychiatry 149: 746–760.

    PubMed  CAS  Google Scholar 

  • Manji HK (1993) Mechanisms of action of lithium: G proteins as targets. Rev Pharmacotherapy 4: 307–310.

    Google Scholar 

  • Manj i HK, Bitran JA, Chen G, Gusovsky F, Potter WZ (1992) Idazoxan downregulates beta adrenergic receptors on C6 glioma cells in vitro. Eur J Pharmacol Mol Pharmacol Sect 227: 275–283.

    Article  CAS  Google Scholar 

  • Manji HK, Bitran JA, Masana MI, Chen G, Hsiao JK, Risby ED, Rudorfer MV, Potter WZ (1991a) Signal transduction modulation by lithium: cell culture, cerebral microdialysis, and human studies. Psychopharmacol Bull 27: 199–208.

    PubMed  CAS  Google Scholar 

  • Manji HK, Chen G, Bitran JA, Gusovsky F, Potter WZ (1991b) Chronic exposure of C6 glioma cells to desipramine desensitizes beta adrenergic receptors but increases KL/KH ratio. Eur J Pharmacol Mol Pharmacol Sect 206: 159–162.

    Article  CAS  Google Scholar 

  • Manji HK, Chen G, Shimon H, Hsiao JK, Potter WZ, Belmaker RH (1995) Guanine nucleotide-binding proteins in bipolar affective disorder. Effects of long-term lithium treatment. Arch Gen Psychiatry 52: 135–144.

    Google Scholar 

  • Manji HK, Etcheberrigaray R, Chen G, Olds JL (1993) Lithium decreases membrane-associated protein kinase C in hippocampus: selectivity for the a isozyme. J Neurochem 61: 2303–2310.

    Article  PubMed  CAS  Google Scholar 

  • Manji HK, Hsiao JK, Risby ED, Rudorfer MV, Oliver J, Potter WZ (1991c) The mechanisms of action of lithium. I Effects on serotonergic and noradrenergic systems in normal subjects. Arch Gen Psychiatry 48: 505–512.

    Google Scholar 

  • Manji HK, Lenox R (1994) Long-term action of lithium: a role for transcriptional and posttranscriptional factors regulated by protein kinase C. Synapse 16: 11–28.

    Article  PubMed  CAS  Google Scholar 

  • Manji HK, Rudorfer MV, Potter WZ (1994) Affective disorders and adrenergic function. In: Adrenergic dysfunction and psychobiology (Cameron OG, ed), pp 157180. Washington, DC: American Psychiatric Association.

    Google Scholar 

  • Masana MI, Bitran JA, Hsiao JK, Potter WZ (1992) In vivo evidence that lithium inactivates Gi modulation of adenylate cyclase activity in brain. J Neurochem 59:200–205.

    Google Scholar 

  • McCormick DA, Williamson A (1989) Convergence and divergence of neurotransmitter action in human cerebral cortex. Proc Natl Acad Sci USA 86: 8098–8102.

    Article  PubMed  CAS  Google Scholar 

  • Meltzer HY, Lowy MT (1987) The serotonin hypothesis of depression. In: Psycho-pharmacology: the third generation of progress ( Meltzer HY, ed), pp 513–526. New York: Raven.

    Google Scholar 

  • Menkes DB, Rasenick MM, Wheeler MA, Bitensky MW (1983) Guanosine triphosphate activation of brain adenylate cyclase: enhancement by long-term antidepressant treatment. Science 219: 65–67.

    Article  PubMed  CAS  Google Scholar 

  • Modigh K, Balldin J, Eriksson E, Granerus AK, Walinder J (1984) Increased responsiveness of dopamine receptors after ECT—a review of experimental and clinical evidence. In: ECT: basic mechanisms ( Lerer B, Weiner RD, Belmaker RH, eds), pp 18–27. New York: Elsevier.

    Google Scholar 

  • Mork A, Geisler A (1989) The effects of lithium in vitro and ex vivo on adenylate cyclase in brain are exerted by distinct mechanisms. Neuropharmacology 28: 307–311.

    Article  PubMed  CAS  Google Scholar 

  • Mork A, Geisler A, Hollund P (1992) Effects of lithium on second messenger systems in the brain. Pharmacol Toxicol 71: 4–17.

    Article  PubMed  Google Scholar 

  • Moss J, Vaughan M (1990) ADP-ribosylating toxins and G proteins: insights into signal transduction. Washington, DC: American Society for Microbiology.

    Google Scholar 

  • Mousli M, Bronner C, Landry Y, Bockaert J, Rouot B (1990a) Direct activation of GTP-binding regulatory proteins (G-proteins) by substance P and compound 48/ 80. FEBS Lett 259: 260–262.

    Article  PubMed  CAS  Google Scholar 

  • Mousli M, Bueb JL, Bronner C, Rouot B, Landry Y (1990b) G protein activation: a receptor-independent mode of action for cationic amphiphilic neuropeptides and venom peptides. Trends Pharmacol Sci 11: 358–362.

    Article  PubMed  CAS  Google Scholar 

  • Newman ME, Belmaker RH (1987) Effects of lithium in vitro and ex vivo on components of the adenylate cyclase system in membranes from the cerebral cortex of the rat. Neuropharmacology 26: 211–217.

    Article  PubMed  CAS  Google Scholar 

  • Newman ME, Shapira B, Lerer B (1991) Effects of lithium and desimipramine on second messenger response in rat hippocampus: relation to G protein effects. Neuropharmacology 30: 1297–1301.

    Article  PubMed  CAS  Google Scholar 

  • Nicoll RA, Malenka RC, Kauer JA (1989) Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system. Nature 87: 741–746.

    Google Scholar 

  • Nishizuka T (1988) The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 85: 661–665.

    Article  Google Scholar 

  • Oades RD (1985) The role of noradrenaline in tuning and dopamine in switching between signals in the CNS. Neurosci Biobehav Rev 9: 261–282.

    Article  PubMed  CAS  Google Scholar 

  • O’Donohue TL, Crowley WR, Jacobwitz DM (1979) Biochemical mapping of the noradrenergic ventral bundle projects sites: evidence for a noradrenergic—dopaminergic interaction. Brain Res 172: 87–100.

    Article  PubMed  Google Scholar 

  • Okada F, Tokumitsu Y, Ui M (1986) Desensitization of beta-adrenergic receptor-coupled adenylate cyclase in cerebral cortex after in vivo treatment of rats with desipramine. J Neurochem 47: 454–459.

    Article  PubMed  CAS  Google Scholar 

  • Okada F, Tokumitsu Y, Ui M (1988) Possible involvement of pertussis toxin substrates (G., Go) in desipramine-induced refractoriness of adenylate cyclase in cerebral cortices of rats. J Neurochem 51: 194–199.

    Article  PubMed  CAS  Google Scholar 

  • Okamoto T, Murayama Y, Hayashi Y, Inagaki M, Ogata E, Nishimoto I (1991) Identification of a Gs activator region of the beta 2-adrenergic receptor that is autoregulated via protein kinase A-dependent phosphorylation. Cell 67: 723–730.

    Article  PubMed  CAS  Google Scholar 

  • Olianas MC, Onali P (1986) Phorbol esters increase GTP-dependent adenylate cyclase activity in rat brain striatal membranes. J Neurochem 47: 890–897.

    Article  PubMed  CAS  Google Scholar 

  • Onginin E, Longo VG (1989) Dopamine receptors subtypes and arousal. Int Rev Neurobiology 31: 239–255.

    Article  Google Scholar 

  • Ortmann R, Martin S, Radeke E, Delini-Stula A (1981) Interaction of 3-adrenoceptor agonists with the serotonergic system in rat brain. Naunyn Schmiedeberg’s Arch Pharmacol 216: 225–230.

    Article  Google Scholar 

  • Ozawa H, Rasenick MM (1989) Coupling of the stimulatory GTP-binding protein Gs to rat synaptic membrane adenylate cyclase is enhanced subsequent to chronic antidepressant treatment. Mol Pharmacol 36: 803–808.

    PubMed  CAS  Google Scholar 

  • Park MR, Gonzales-Vegas JA, Kitai JT (1982) Serotonergic excitation from dorsal raphe stimulation recorded intracellularly from rat caudate-putamen. Brain Res 243: 49–58.

    Article  PubMed  CAS  Google Scholar 

  • Pazzaglia PJ, Post RM, Ketter TA, George MS, Marangell LB (1993) Preliminary controlled trial of nimodipine in ultra-rapid cycling affective dysregulation. Psychiatry Res 49: 257–272.

    Article  PubMed  CAS  Google Scholar 

  • Pitcher JA, Inglese J, Higgins JB, Arriza JL, Casey PJ, Kim C, Benovic JL, Kwatra MM, Caron MG, Lefkowitz RJ (1992) Role of beta gamma subunits of G proteins in targeting the beta-adrenergic receptor kinase to membrane-bound receptors. Science 257: 1264–1267.

    Article  PubMed  CAS  Google Scholar 

  • Post RM, Ballenger JC (1984) Neurobiology of mood disorders. Baltimore, MD: Williams and Wilkins.

    Google Scholar 

  • Potter WZ, Manji HK (1994) Affective disorders and adrenergic function: an update. Clin Biochem 40: 279–287.

    CAS  Google Scholar 

  • Potter WZ, Rudorfer MV, Goodwin FK (1987) Biological findings in bipolar disorders. In: American Psychiatric Association annual review, vol. 6 ( Hales RE, Frances AJ, eds), pp 32–60. Washington, DC: American Psychiatric Association.

    Google Scholar 

  • Potter WZ, Manji HK, Osman OT, Rudorfer MV (1992) New antidepressants and their possible modes of action. In: New prospects in psychiatry: the bio-clinical interface I ( Macher JP, Crocq MA, eds), pp 113–129. New York: Elsevier.

    Google Scholar 

  • Potter WZ, Grossman F, Dawkins K, Manji HK (1994) Initial clinical psychopharmacological studies of a2-adrenoceptor antagonists in volunteers and depressed patients. In: Psychopharmacology of depression, British Association for Psychopharmacology Monograph No. 13 ( Montgomery SA, Corn TH, eds), pp 102–108. New York: Oxford University Press.

    Google Scholar 

  • Prange AJ, Wilson IC, Lynn CL, Alltop LB, Stikeleather RA (1964) L-tryptophan in mania, contributions to a permissive hypothesis of affective disorders. Arch Gen Psychiatry 30: 56–62.

    Article  Google Scholar 

  • Price LH (1989) Lithium augmentation in tricyclic-resistant depression. In: Treatment of tricyclic-resistant depression ( Extein IL, ed), pp 49–80. Washington, DC: American Psychiatric Association.

    Google Scholar 

  • Risby ED, Hsiao JK, Manji HK, Bitran J, Moses F, Zhou DF, Potter WZ (1991) The mechanisms of action of lithium. II. Effects on adenylate cyclase activity and beta-adrenergic receptor binding in normal subjects. Arch Gen Psychiatry 48: 513–524.

    Google Scholar 

  • Risby ED, Hsiao JK, Sunderland T, Agren H, Rudorfer MV, Potter WZ (1987) The effects of antidepressants on the cerebrospinal fluid homovanillic acid/5hydroxyindoleacetic acid ratio. Clin Pharmacol Ther 42: 547–554.

    Article  PubMed  CAS  Google Scholar 

  • Ross EM (1989) Signal sorting and amplification through G protein-coupled receptors. Neuron 3: 141–152.

    Article  PubMed  CAS  Google Scholar 

  • Roy A, Pickar D, Linnoila M, Potter WZ (1985) Plasma norepinephrine level in affective disorders. Relationship to melancholia. Arch Gen Psychiatry 42: 1181–1185.

    Google Scholar 

  • Rudorfer MV, Risby ED, Hsiao JK, Linnoila M, Potter WZ (1988) Disparate biochemical actions of electroconvulsive therapy and antidepressant drugs. Convulsive Ther 4: 133–140.

    Google Scholar 

  • Rudorfer MV, Ross RJ, Linnoila M, Sherer MA, Potter WZ (1985) Exaggerated orthostatic responsivity of plasma norepinephrine in depression. Arch Gen Psychiatry 42: 1186–1192.

    Article  PubMed  CAS  Google Scholar 

  • Sagi-Eisenberg R (1989) GTP-binding proteins as possible targets for protein kinase C action. Trends Biochem Sci 14: 355–357.

    Article  PubMed  CAS  Google Scholar 

  • Schildkraut JJ (1965) The catecholamine hypothesis of affective disorders: a review of the supporting evidence. Am J Psychiatry 122: 56–62.

    Google Scholar 

  • Scott JA, Crews FT (1985) Increase in serotonin2 receptor density in rat cerebral cortex slices by stimulation of beta-adrenergic receptors. Biochem Pharmacol 34: 1585–1588.

    Article  PubMed  CAS  Google Scholar 

  • Simon MI, Strathmann MP, Gautam N (1991) Diversity of G proteins in signal transduction. Science 252: 802–808.

    Article  PubMed  CAS  Google Scholar 

  • Simonds WF, Manji HK, Lupas A, Garritsen AG (1993) Proteins and PARK: a new twist for the coiled-coil. Trends Biochem Sci 18: 315–317.

    Article  PubMed  CAS  Google Scholar 

  • Spiegel AM, Shenker A, Weinstein LS (1992) Receptor—effector coupling by G proteins: implications for normal and abnormal signal transduction. Endocr Rev 13: 536–565.

    PubMed  CAS  Google Scholar 

  • Srebro B, Lorens SA (1975) Behavioral effects of selective midbrain raphe lesion in the rat. Brain Res 89: 303–325.

    Article  PubMed  CAS  Google Scholar 

  • Strittmatter SM, Valenzuela D, Kennedy TE, Neer EJ, Fishman MC (1990) Go is a major growth cone protein subject to regulation by GAP-43. Nature 344: 836–841.

    Article  PubMed  CAS  Google Scholar 

  • Sugrue MF (1983) Chronic antidepressant therapy and asssociated changes in central monoaminergic receptor functioning. Pharmacol Ther 21: 1–33.

    Article  PubMed  CAS  Google Scholar 

  • Sulser F (1984) Antidepressant treatments and regulation of norepinephrine-receptor-coupled adenylate cyclase systems in brain. Adv Biochem Psychopharmacol 39: 249–261.

    PubMed  CAS  Google Scholar 

  • Taylor CW (1990) The role of G proteins in transmembrane signalling. Biochem J 272: 1–13.

    PubMed  CAS  Google Scholar 

  • Tiong HK, Richardson JS (1990) ß-Adrenoceptor and post-receptor components show different rates of desensitization to desipramine. Eur J Pharmacol Mol Pharmacol Sect 188: 411–415.

    Article  CAS  Google Scholar 

  • Turkka J, Bitran JA, Manji HK, Linnoila M, Potter WZ (1992) Effects of chronic lithium on agonist and antagonist binding to ß adrenergic receptors of rat brain. Lithium 3: 43–47.

    CAS  Google Scholar 

  • Turkka J, Gurguis G, Potter WZ, Linnoila M (1989) Ten day administration of desipramine produces an increase in KL/KF1 for 13-receptors in rat hippocampus. Eur J Pharmacol 167: 87–93.

    Article  PubMed  CAS  Google Scholar 

  • Tsuchiya F, Ikeda H, Hatta Y, Saito T (1988) Effects of desipramine administration on receptor adenylate cyclase coupling in rat cerebral cortex. Jpn J Psychiatr Neurol 42: 858–860.

    Google Scholar 

  • Ui M (1990) Pertussis toxin as a valuable probe for G protein involvement in signal transduction. In: ADP-ribosylation toxins and G proteins ( Moss J, Vaughn M, eds), pp 45–79. Washington DC: American Society for Microbiology.

    Google Scholar 

  • Veith RC, Barnes RF, Villacres E, Murburg MM, Raskind MA, Borson S (1988) Plasma catecholamines and norepinephrine kinetics in depression and panic disorder. In: Catecholamines: clinical aspects ( Belmaker R, ed), pp 197–202. New York: Liss.

    Google Scholar 

  • Wang HY, Friedman E (1989) Lithium inhibition of protein kinase C activation-induced serotonin release. Psychopharmacology 99: 213–218.

    Article  PubMed  CAS  Google Scholar 

  • Willner P (1983) Dopamine and depression: a review of recent evidence: I. Empirical studies. Brain Res Rev 6: 211–224.

    Article  CAS  Google Scholar 

  • Willner P, Muscat R, Papp M, Sampson D (1990) Dopamine, depression and antidepressant drugs. In: The mesolimbic dopamine system: from motivation to action ( Willner P, Scheel-Kruger J, eds), pp 387–410. Chichester, UK: Wiley.

    Google Scholar 

  • Wise RA (1989) Brain dopamine and reward. Ann Rev Psychol 40: 191–225.

    Article  CAS  Google Scholar 

  • Yamaoka K, Nanba T, Nomura S (1988) Direct influence of antidepressants on GTP binding protein of adenylate cyclase in cell membranes of the cerebral cortex of rats. J Neural Transm 71: 165–175.

    Article  PubMed  CAS  Google Scholar 

  • Young LT, Li PP, Kamble A, Siu KP, Warsh JJ (1994) Mononuclear leukocyte levels of G proteins in depressed patients with bipolar disorder or major depressive disorder. Am J Psychiatry 151: 594–596.

    PubMed  CAS  Google Scholar 

  • Young S, Parker PJ, Ullrich A, Stabel S (1987) Down-regulation of protein kinase C is due to an increased rate of degradation. Biochem J 24: 775–779.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Manji, H.K., Potter, W.Z. (1996). Affective Disorders. In: Pullan, L.M., Patel, J. (eds) Neurotherapeutics. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-466-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-466-5_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5978-5

  • Online ISBN: 978-1-59259-466-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics