Skip to main content

Molecular Approaches for Detecting DNA Damage

  • Chapter
  • 588 Accesses

Part of the book series: Contemporary Cancer Research ((CCR))

Abstract

In 1966, McGrath and Williams (51) introduced alkaline sucrose gradient sedimentation as a method to measure DNA single-strand breaks (SSBs) in irradiated cells. This technique was regarded as an important innovation, and was soon in widespread use for examining DNA damage caused by a variety of agents, as well as for measurement of the kinetics of strand break rejoining as an indicator of DNA “repair.” Alkaline sucrose gradient sedimentation remains somewhat unique in that the physical principle behind the measurement of DNA damage is well understood. Unfortunately, the original method proved insensitive to detection of strand breaks produced by “biologically relevant” doses in mammalian cells, largely because conditions required for “xideal” sedimentation required that DNA already contain a significant number of strand breaks. Ability to analyze only a few samples at a time and the long time required for the assay were also viewed as serious limitations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ager, D. D. and W. C Dewey. 1990. Calibration of pulsed field gel electrophoresis for measurement of DNA double-strand breaks. Int. J. Radiat. Biol. 58: 249–259.

    Article  PubMed  CAS  Google Scholar 

  2. Ahnstrom, G. 1988. Techniques to measure DNA single-strand breaks in cells: a review. Int. J. Radiat. Biol. 54: 695–707.

    Article  PubMed  CAS  Google Scholar 

  3. Ahnstrom, G. and K. Erixon. 1973. Radiation induced strand breakage in DNA from mammalian cells. Strand separation in alkaline solution. Int. J. Radiat. Biol. 23: 285–289.

    Article  CAS  Google Scholar 

  4. Basu, A. K., E. L. Loechler, S. A. Leadon, and J. M. Essigmann. 1989. Genetic effects of thymine glycol: site-directed mutagenesis and molecular modeling studies. Proc. Natl. Acad. Sci. USA 86: 7677–7681.

    Article  PubMed  CAS  Google Scholar 

  5. Beisker, W. and W. N. Hittelman. 1988. Measurement of the kinetics of DNA repair synthesis after UV irradiation using immunochemical staining of incorporated 5-bromo-2’deoxyuridine and flow cytometry. Exp. Cell Res. 174: 156–167.

    Article  PubMed  CAS  Google Scholar 

  6. Bianchini, F. and C. P. Wild. 1994. 7-Methyldeoxyguanosine as a marker of exposure to environmental methylating agents. Toxicol. Lett. 72: 175–184.

    Google Scholar 

  7. Birnboim, H. C. 1990. Fluorometric analysis of DNA unwinding to study strand breaks and repair in mammalian cells. Methods Enzymol. 186: 550–555.

    Article  PubMed  CAS  Google Scholar 

  8. Blocher, D. 1982. DNA double-strand breaks in Ehrlich ascites tumour cells at low doses of x-rays. I. Determination of induced breaks by centrifugation at reduced speed. Int. J. Radiat. Biol. 42: 317–328.

    Article  CAS  Google Scholar 

  9. Blocher, D. 1990. In CHEF electrophoresis a linear induction of dsb corresponds to a nonlinear fraction of extracted DNA with dose. Int. J. Radiat. Biol. 57: 7–12.

    Article  PubMed  CAS  Google Scholar 

  10. Blocher, D., M. Einspenner, and J. Zalackowski. 1989. CHEF electrophoresis, a sensitive technique for the determination of DNA double-strand breaks. Int. J. Radiat. Biol. 56: 437–448.

    Article  PubMed  CAS  Google Scholar 

  11. Blocher, D. and G. Iliakis. 1991. Size distribution of DNA molecules recovered from non-denaturing filter elution. Int. J. Radiat. Biol. 59: 919–926.

    Article  PubMed  CAS  Google Scholar 

  12. Bohr, V. A. 1991. Gene specific DNA repair. Carcinogenesis 12: 1983–1992.

    Article  PubMed  CAS  Google Scholar 

  13. Boultwood, J., M. Thompson, C. Fidler, S. A. Lorimore, M. S. Lewis, J. S. Wainscoat, and E. Wright. 1993. Pulsed field gel electrophoresis on single murine hemopoietic colonies. Leukemia 7: 1635–1636.

    PubMed  CAS  Google Scholar 

  14. Buatti, J. M., L. R. Rivero, and T. J. Jorgensen. 1992. Radiation-induced DNA single-strand breaks in freshly isolated human leukocytes. Radiat. Res. 132: 200–206.

    Article  PubMed  CAS  Google Scholar 

  15. Bunch, R. T., D. A. Gewirtz, and L. F. Povirk. 1992. A combined alkaline unwinding/ Southern blotting assay for measuring low levels of cellular DNA breakage within specific genomic regions. Oncol. Res. 4: 7–15.

    PubMed  CAS  Google Scholar 

  16. Cadet, J., O. Francette, J. Mouret, M. Polverelli, A. Audie, P. Giacomoni, A. Favier, and M. Richard. 1992. Chemical and biochemical post-labeling methods for singling out specific oxidative lesions. Mutat. Res. 275: 343–354.

    Article  PubMed  CAS  Google Scholar 

  17. Cedervall, B., P. Kaltman, and W. C. Dewey. 1995. Repair of double-strand breaks: errors encountered in the determination of half-life times in pulsed field gel electrophoresis and neutral filter elution. Radiat. Res. 142: 23–28.

    Article  PubMed  CAS  Google Scholar 

  18. Collins, A. R., S. J. Duthie, and V. L. Dobson. 1993. Direct enzymic detection of endogenous oxidative base damage in human lymphocyte DNA. Carcinogenesis 14: 17331735.

    Google Scholar 

  19. Cook P. R. and I. A. Brazell. 1975. Supercoils in human DNA. J. Cell Sci. 19: 261–279.

    Google Scholar 

  20. Dive, C. C. D. Gregory, D. J. Phipps, D. L. Evans, A. E. Milner, and A. H. Wyllie. 1992. Analysis and discrimination of necrosis and apoptosis (programmed cell death) by multi-parameter flow cytometry. Biochem. Biophys. Acta 1133: 275–285.

    Article  PubMed  CAS  Google Scholar 

  21. Ewig, R. A. G. and K. W. Kohn. 1978. DNA-protein cross-linking and DNA interstrand cross-linking by haloethylnitrosoureas in L1210 cells. Cancer Res. 38: 3197–3203.

    PubMed  CAS  Google Scholar 

  22. Fadlallah, S., M. Lachapelle, K. Krzystyniak, S. Cooper, F. Denizeau, F. Guertin, and M. Fournier. 1994. 06-methlguanine-DNA adducts in rat lymphocytes after in vivo exposure to N-nitrosodimethylamine (NDMA). Int. J. Immunopharmacol. 16: 583–591.

    Google Scholar 

  23. Fairbairn, D. W., P. L. Olive, and K. L. O’Neill. 1993. The comet assay: A comprehensive review. Mutat. Res. 339: 37–59.

    Google Scholar 

  24. Fairman, M. P., A. P. Johnson, and J. Thacker. 1992. Multiple components are involved in the efficient joining of double-stranded DNA breaks in human cell extracts. Nucleic Acids Res. 20: 4145–4152.

    Article  PubMed  CAS  Google Scholar 

  25. Fertil, B., S. Modak, N. Chavaudra, H. Debry, F. Meyer, and E. P. Malaise. 1984. Detection in situ of gamma-ray-induced DNA strand breaks in single cells: enzymatic labeling of free 3’OH ends. Int. J. Radiat. Bio. 46: 529–540.

    Article  CAS  Google Scholar 

  26. Flentje, M., B. Asadpour, D. Latz, and K. J. Weber. 1993. Sensitivity of neutral filter elution but not PFGE can be modified by non-dsb chromatin damage. Int. J. Radiat. Biol. 63 715-724.

    Google Scholar 

  27. Fohe, C. and E. Dikomey. 1994. Induction and repair of DNA base damage studies in X-irradiated CHO cells using the M. luteus extract. Int. J. Radiat. Bio. 66: 697–704.

    CAS  Google Scholar 

  28. Frankfurt O. S. 1994. Detection of apoptosis in leukemic and breast cancer cells with monoclonal antibody to single-stranded DNA. Anticancer Res. 14: 1861–1869.

    PubMed  CAS  Google Scholar 

  29. Ganesh, A., P. North, and J. Thacker. 1993. Repair and misrepair of site-specific DNA double-strand breaks by human cell extracts. Mutat. Res. 299: 251–259.

    Article  PubMed  CAS  Google Scholar 

  30. George, A. M. and W. A. Cramp. 1987. The effects of ionizing radiation on structure and function of DNA. Prog. Biophys. Mol. Biol. 50: 121–169.

    Article  PubMed  CAS  Google Scholar 

  31. Gunderson, K. and G. Chu. 1991. Pulsed-field electrophoresis of megabase-sized DNA. Mol. Cell. Biol. 11: 3348–3354.

    PubMed  CAS  Google Scholar 

  32. Hittelman, W. N. 1986. The technique of premature chromosome condensation to study the leukemic process: review and speculations. Crit. Rev. Oncol. Hematol. 6: 147–221.

    Article  PubMed  CAS  Google Scholar 

  33. Holley, W. R. and A. Chatterjee. 1996. Clusters of DNA damage induced by ionizing radiation: formation of short DNA fragments. I. Theoretical modeling. Radial. Res. 145: 188–199.

    Article  CAS  Google Scholar 

  34. Hotz, M. A., J. Gong, F. Traganos, and Z. Darzynkiewicz. 1994. Flow cytometric detection of apoptosis: Comparison of the assays of in situ DNA degradation and chromatin changes. Cytometry 15: 237–244.

    Article  PubMed  CAS  Google Scholar 

  35. Iliakis, G. 1991. The role of DNA double-strand breaks in ionizing radiation-induced killing of eukaryotic cells. Bioessays 13: 641–648.

    Article  PubMed  CAS  Google Scholar 

  36. Iliakis, G., O. Cicilioni, and L. Metzger. 1991. Measurement of DNA double-strand breaks in CHO cells at various stages of the cell cycle using pulsed field gel electrophoresis: calibration by means of 125I decay. Int. J. Radiat. Biol. 59: 343–358.

    Article  PubMed  CAS  Google Scholar 

  37. Jackson D. A., A. B. Hassan, R. J. Errington, and P. R. Cook. 1994. Sites in human nuclei where damage induced by ultraviolet light is repaired: localization relative to transcription sties and concentrations of proliferating cell nuclear antigen and the tumour suppressor protein, p53. J. Cell Sci. 107: 1753–1760.

    PubMed  CAS  Google Scholar 

  38. Johnston, P. J. and P. E. Bryant. 1994. A component of DNA double strand break repair is dependent on the spatial orientation of the lesions with the higher order structures of chromatin. Int. J. Radial. Biol. 66: 531–536.

    Article  CAS  Google Scholar 

  39. Kalle, W. H., A. M. Hazekamp-van Kokkum, P. H. Lohman, A. T. Natarajan, A. A. van Zeeland, and L. H. Mullenders. 1993. The use of streptavidin-coated magnetic beads and biotinylated antibodies to investigate induction and repair of DNA damage: analysis of repair patches in specific sequences of uv-irradiated human fibroblasts. Anal. Biochem. 208: 228–236.

    Article  PubMed  CAS  Google Scholar 

  40. Kantor, P. M. and H. S. Schwartz 1980. Post-repair DNA damage in X-irradiated cultured human tumour cells. Mt. J. Radial. Biol. 38: 483–493.

    Article  Google Scholar 

  41. Kohn, K. W. 1991. Principles and practice of DNA filter elution. Pharmacol. Ther. 49: 55–77.

    Article  PubMed  Google Scholar 

  42. Krish, R. E., E. Krasin, and C. J. Sauri. 1976. DNA breakage, repair and lethality after 125I decay in rec+ and recA strains of Escherichia coli. Mt. J. Radial. Biol. 29: 37–50.

    Article  Google Scholar 

  43. Lange, C. S., A. Cole, and J. Y. Ostashevsky. 1993. Radiation-induced damage in chromosomal DNA molecules: deduction of chromosomal DNA organization from the hydrodynamic data used to measure DNA double-strand breaks and from stereo electron microscopic observations. Adv. Radial. Biol. 17: 261–421.

    Google Scholar 

  44. Lawrence, T. S., D. P. Normolle, M. A. Davis, and J. Maybaum. 1993. The use of biphasic linear ramped pulsed field gel electrophoresis to quantify DNA damage based on fragment size distribution. Mt. J. Radial. Oncol. Biol. Phys. 27: 659–663.

    Article  Google Scholar 

  45. Leadon, S. A. and P. C. Hanawalt. 1983. Monoclonal antibody to DNA containing thymidine glycol. Mutat. Res. 112: 191–200.

    Article  PubMed  CAS  Google Scholar 

  46. Leadon, S. A. 1986. Differential repair of DNA damage in specific nucleotide sequences in monkey cells. Nucleic Acids Res. 14: 8979–8995.

    Article  PubMed  CAS  Google Scholar 

  47. Leadon, S. A. and D. A. Lawrence. 1992. Strand-selective repair of DNA damage in the yeast GAL7 gene requires RNA polymerase II. J. Biol. Chem. 267: 23,175-23, 182.

    Google Scholar 

  48. Lieberman, M. W., R. N. Baney, R. E. Lee, S. Sell, and E. Farber. 1971. Studies on DNA repair in human lymphocytes treated with proximate carcinogens and alkylating agents. Cancer Res. 31: 1297–1306.

    PubMed  CAS  Google Scholar 

  49. Lobrich, M., S. Ikpeme, and J. Kiefer. 1994. DNA double-strand break measurement in mammalian cells by pulsed field gel electrophoresis: an approach using restriction enzymes and gene probing. Mt. J. Radiat. Biol. 65: 623–630.

    Article  CAS  Google Scholar 

  50. Malins, D. C. and R. Haimanot. 1991. Major alterations in the nucleotide structure of DNA in cancer of the female breast. Cancer Res. 51: 5430–5432.

    PubMed  CAS  Google Scholar 

  51. McGrath, R. A. and R. W. Williams. 1966. Reconstruction in vivo of irradiated Escherichia coli deoxyribonucleoic acid: the rejoining of broken pieces. Nature 212: 534–535.

    Article  PubMed  CAS  Google Scholar 

  52. Milner, A. E., A. T. M. Vaughan, and I. P. Clark. 1987. Measurement of DNA damage in mammalian cells using flow cytometry. Radiat. Res. 110: 108–117.

    Article  PubMed  CAS  Google Scholar 

  53. Moran, M. F. and K. Ebisuzaki. 1987. Base excision repair of DNA in irradiated human cells. Carcinogenesis 8: 607–609.

    Article  PubMed  CAS  Google Scholar 

  54. Mori, T., Y. Hori, and M. Dizdaroglu. 1993. DNA base damage generated in vivo in hepatic chromatin of mice upon whole body gamma irradiation. Mt. J. Radial. Biol. 64: 645–650.

    Article  CAS  Google Scholar 

  55. Mullenders, L. H., H. Vrieling, J. Venema, and A. A. Van Zeeland. 1991. Hierarchies of DNA repair in mammalian cells: biological consequences. Mutat. Res. 250: 223–228.

    Google Scholar 

  56. Nackerdien, A., R. Olinski, and M. Dizdaroglu. 1992. DNA base damage in chromatin of gamma irradiated cultured human cells. Free Radical Res. Commun. 16: 259–273.

    Article  CAS  Google Scholar 

  57. Nose K. and H. Okamoto. 1983. Detection of carcinogen-induced DNA breaks by nick translation in permeable cells. Biochem. Biophys. Res. Commun. 111: 383–389.

    Article  PubMed  CAS  Google Scholar 

  58. Nygren, J., B. Cedervall, S. Eriksson, M. Dusinska, and A. Kolman. 1994. Induction of DNA strand breaks by ethylene oxide in human diploid fibroblasts. Environ. Mol. Mutagen. 24: 161–167.

    Article  PubMed  CAS  Google Scholar 

  59. Oleinick, N. L. 1995. Higher order DNA structure and radiation damage, in Radiation Damage in DNA. Structure/Function Relationships at Early Times ( Fuciarelli, A. F. and J. D. Zimbrick, eds.), Batelle, Richland, WA, pp. 395–408.

    Google Scholar 

  60. Oleinick, N. L., U. Balasubramaniam, L. Xue, and S. Chiu. 1994. Nuclear structure and the microdistribution of radiation damage in DNA. Int. J. Radiat. Biol. 66: 523–529.

    Article  PubMed  CAS  Google Scholar 

  61. Oleinick, N. L. and S. M. Chiu. 1994. Nuclear and chromatin structures and their influence on the radiosensitivity of DNA. Radiat. Protec. Dosimetry 52: 353–358.

    CAS  Google Scholar 

  62. Olive, P. L. 1988. The DNA precipitation assay: a rapid and simple method for detecting DNA damage in mammalian cells. Environ. Mol. Mutagen. 11: 487–495.

    Article  PubMed  CAS  Google Scholar 

  63. Olive, P. L. 1992. DNA organization affects cellular radiosensitivity and detection of initial DNA strand breaks. Int. J. Radiat. Biol. 62: 389–396.

    Article  PubMed  CAS  Google Scholar 

  64. Olive, P. L. and J. P. Banâth. 1992. Tumour growth fraction measured using the comet assay. Cell Proliferation 25: 447–457.

    Article  PubMed  CAS  Google Scholar 

  65. Olive, P. L. and J. P. Banâth 1993. Detection of DNA double-strand breaks through the cell cycle after exposure to X-rays, bleomycin, etoposide and 125IdUrd. Int. J. Radiat. Biol. 64: 349–358.

    Article  PubMed  CAS  Google Scholar 

  66. Olive, P. L. and J. P. Banâth. 1995. Sizing highly fragmented DNA in individual apoptotic cells using the comet assay and a DNA crosslinking agent. Exp. Cell Res. 221: 19–26.

    Article  PubMed  CAS  Google Scholar 

  67. Olive, P. L., J. P. Banâth, and R. E. Durand. 1990. Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the “comet” assay. Radiat. Res. 122: 69–72.

    Article  Google Scholar 

  68. Olive, P. L. and R. E. Durand. 1992. Detecting hypoxic cells in a murine tumor using the comet assay. J. Natl. Cancer Inst. 85: 707–711.

    Article  Google Scholar 

  69. Olive, P. L., R. E. Durand, J. LeRiche, I. Olivotto, and S. M. Jackson. 1993.. Gel electrophoresis of individual cells to quantify hypoxic fraction in human breast cancers. Cancer Res. 53: 733–736.

    Google Scholar 

  70. Olive, P. L., G. Frazer, and J. P. Banâth. 1993. Radiation-induced apoptosis measured in TK6 human B lymphoblast cells using the comet assay. Radiat. Res. 136: 130–136.

    Article  PubMed  CAS  Google Scholar 

  71. Olive, P. L, S. H. MacPhail, and J. P. Banâth. 1994. Lack of correlation between DNA double-strand break induction/rejoining and radiosensitivity in six human tumor cell lines. Cancer Res. 54: 3939–3946.

    PubMed  CAS  Google Scholar 

  72. Olive, P. L., D. Wlodek, and J. P. Banâth. 1991. DNA double-strand breaks measured in individual cells subjected to gel electrophoresis. Cancer Res. 51: 4671–4676.

    PubMed  CAS  Google Scholar 

  73. Ostling, O. and K. J. Johanson. 1984. Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem. Biophys. Res. Commun. 123: 291–298.

    Article  PubMed  CAS  Google Scholar 

  74. Paterson, M. C. 1978. Use of purified lesion-recognizing enzymes to monitor DNA repair in vivo, in Advances in Radiation Biol, vol. 7 ( Lett, J. T. and H. Adler, eds.), Academic, New York, NY, pp. 1–53.

    Google Scholar 

  75. Phillips, D. A., M. Castegnaro, and H. Bartsch. 1993. Postlabelling methods for detection of DNA adducts. IARC, Lyon.

    Google Scholar 

  76. Powell, S. and T. J. McMillan. 1991. DNA damage and repair following treatment with ionizing radiation. Radiother. Oncol. 19: 95–108.

    Article  Google Scholar 

  77. Powell, S. N. and T. J. McMillan. 1994. The repair fidelity of restriction enzyme-induced double strand breaks in plasmid DNA correlates with radioresistance in human tumor cell lines. Int. J. Radiat. Oncol. Biol. Phys. 29: 1035–1040.

    Article  PubMed  CAS  Google Scholar 

  78. Radford, I. R. 1985. The level of induced DNA double-strand breakage correlates with cell killing after X-irradiation. Int. J. Radiat. Biol. 48: 45–54.

    Article  CAS  Google Scholar 

  79. Radford, I. R. 1988. The dose-response for low-LET radiation-induced DNA double-strand breakage: methods of measurement and implications for radiation action models. Int. J. Radiat. Biol. 54: 1–11.

    Article  PubMed  CAS  Google Scholar 

  80. Regan, J. D., R. B. Setlow, and R. D. Ley. 1971. Normal and defective repair of damaged DNA in human cells: a sensitivity assay utilizing the photolysis of bromodeoxyuridine. Proc. Natl. Acad. Sci. USA 68: 708–712.

    Article  PubMed  CAS  Google Scholar 

  81. Ronne, M., A. O. Glydenholm, and C. O. Storm. 1995 Minibands and chromosome structure. A theory. Anticancer Res. 15: 249–254.

    PubMed  CAS  Google Scholar 

  82. Rosemann, M., B. Kanon, A. W. Konings, and H. H. Kampinga. 1993. An image analysis technique for detection of radiation-induced DNA fragmentation after CHEF electrophoresis. Int. J. Radiat. Biol. 64: 245–249.

    Article  PubMed  CAS  Google Scholar 

  83. Rosenstein, B. S., J. T. Murphy, and J. M. Ducore. 1985. Use of a highly sensitive assay to analyze the excision repair of dimer and nondimer DNA damages induced in human skin fibroblasts by 254 nm and solar ultraviolet radiation. Cancer Res. 45: 5536–5531.

    Google Scholar 

  84. Roth, D. B. and J. H. Wilson. 1986. Nonhomologous recombination in mammalian cells: role for short sequence homologies in the joining reaction. Mol. Cell. Biol. 6: 4295–4304.

    PubMed  CAS  Google Scholar 

  85. Roti Roti, J. L. and W. D. Wright. 1987. Visualization of DNA loops in nucleoids from HeLa cells: Assays for DNA damage and repair. Cytometry 8: 461–467.

    Article  Google Scholar 

  86. Roti Roti, J. L., W. D. Wright, and Y. C. Taylor. 1993. DNA loop structure and radiation response. Adv. Radiat. Biol. 17: 227–259.

    Google Scholar 

  87. Ruiz de Almodovar, J. M., G. G. Steel, S. J. Whitaker, and T. J. McMillan. 1994. A comparison of methods for calculating DNA double-strand break induction frequency in mammalian cells by pulsed field gel electrophoresis. Int. J. Radiat. Biol. 65: 641–649.

    Article  Google Scholar 

  88. Rydberg, B. 1980. Detection of induced DNA strand breaks with improved sensitivity in human cells. Radiat. Res. 81: 492–495.

    Article  PubMed  CAS  Google Scholar 

  89. Rydberg, B. 1996. Clusters of DNA damage induced by ionizing radiation: formation of short DNA fragments. II. Experimental detection. Radiat. Res. 145: 200–209.

    Article  PubMed  CAS  Google Scholar 

  90. Schwartz, D. C. and C. R. Cantor. 1984. Separation of yeast chromosome-sized DNA molecules by pulsed field gradient gel electrophoresis. Cell 37: 67–75.

    Article  PubMed  CAS  Google Scholar 

  91. Schwartz, J. L., J. Shadley, D. R. Jaffe, J. Whitlock, J. Rotmensch, J. M. Cowan, D. J. Gordon, and A. T. M. Vaughan. 1990. Association between radiation sensitivity, DNA repair and chromosome organization in the Chinese hamster ovary cell line xrs-5, in Mutation and the Environment. Part A: Basic Mechanisms (Mendelsohn, M. L. and R. J. Albertini, eds.),Wiley-Liss, New York, pp. 255–264.

    Google Scholar 

  92. Schwartz, J. L. and A. T. M. Vaughan. 1989. Association among DNA chromosome break rejoining rates, chromatin structure alterations and radiation sensitivity in human tumor cell lines. Cancer Res. 49: 5054–5057.

    PubMed  CAS  Google Scholar 

  93. Seiler, F., U. Kirstein, G. Eberle, K. Hochleitner, and M. R. Rajewsky. 1993. Quantification of specific DNA O-alkylation products in individual cells by monoclonal antibodies and digital imaging of intensified nuclear fluorescence. Carcinogenesis 14: 1907–1913.

    Article  PubMed  CAS  Google Scholar 

  94. Selden, J. R., F. Dolbeare, J. H. Clair, W. W. Nichols, J. E. Miller, R. M. Kleemeyer, R. J. Hyland, and J. G. DeLuca. 1993. Statistical confirmation that immunofluorescent detection of DNA repair in human fibroblasts by measurement of bromodeoxyuridine incorporation is stoichiometric and sensitive. Cytometry 14: 154–167.

    Article  PubMed  CAS  Google Scholar 

  95. Shibamoto, Y., C. Streffer, C. Fuhrmann, and V. Budach. 1991. Tumor radiosensitivity prediction by the cytokinesis-block micronucleus assay. Radiat. Res. 128: 293–300.

    Article  PubMed  CAS  Google Scholar 

  96. Snyder, R. D. and D. W. Matheson. 1985. Nick translation-a new assay for monitoring DNA damage and repair in cultured human fibroblasts. Environ. Mutagen. 7: 267–279.

    Article  PubMed  CAS  Google Scholar 

  97. Spengler, S. J. and B. Singer. 1988. Formation of interstrand cross-links in chloroacetaldehyde-treated DNA demonstrated by ethidium bromide fluorescence. Cancer Res. 48: 4804–4806.

    PubMed  CAS  Google Scholar 

  98. Stamato, T. and N. Denko. 1990. Asymmetric field inversion gel electrophoresis: A new method for detecting DNA double-strand breaks in mammalian cells. Radiat. Res. 121: 196–205.

    Article  PubMed  CAS  Google Scholar 

  99. Story, M. D., E. A. Mendoza, R. E. Meyn, and P. J. Tofilon. 1994. Pulsed field gel electrophoretic analysis of DNA double-strand breaks in mammalian cells using photostimulable storage phosphor imaging. Int. J. Radiat. Biol. 65: 523–528.

    Article  PubMed  CAS  Google Scholar 

  100. Strniste, G. F. and R. C. Rall. 1976. Induction of stable protein-deoxyribonucleic acid adducts in Chinese hamster cell chromatin by ultraviolet light. Biochemistry 15: 17121719.

    Google Scholar 

  101. Sutherland, R. M. 1988. Cell and environment interaction in tumor microregions: the multicell spheroid model. Science 240: 177–184.

    Article  PubMed  CAS  Google Scholar 

  102. Taylor, Y. C., P. G. Duncan, X. Zhang, and W. D. Wright. 1991. Differences in the DNA supercoiling response of irradiated cell lines from ataxia-telangiectasia versus unaffected individuals. Int. J. Radiat. Biol. 59: 359–371.

    Article  PubMed  CAS  Google Scholar 

  103. Telford, W. G., L. E. King, and P. J. Fraker. 1994. Rapid quantitation of apoptosis in pure and heterogeneous cell populations using flow cytometry. J. Immunol. Methods 172: 1–16.

    Article  PubMed  CAS  Google Scholar 

  104. Thacker, J. 1989. The use of integrating DNA vectors to analyze the molecular defects in ionizing radiation-sensitive mutants of mammalian cells including ataxia telangiectasia. Mutat. Res. 145: 177–183.

    Google Scholar 

  105. Ueno, A. M., E. M. Goldin, A. B. Cox, and J. T. Lett. 1979. Deficient repair and degradation of DNA in X-irradiated L5178Y S/S cells: cell-cycle and temperature dependence. Radiat. Res. 79: 377–389.

    Article  PubMed  CAS  Google Scholar 

  106. van Delft, J. H. M., M. J. M. van Winden, A. Luiten-Schuite, L. R. Ribeiro, and R. A. Baan. 1994. Comparison of various immunochemical assays for the detection of ethylene oxide-DNA adducts with monoclonal antibodies against imidazole ring-opened N7-(2hydroxylethyl) guanosine: application in a biological monitoring study. Carcinogenesis 15: 1867–1873.

    Article  PubMed  Google Scholar 

  107. van Loon, A. A. W. M., R. H. Groenendijk, G. P. Van der Schans, P. H. M. Lohman, and R. A. Baan. 1991. Detection of base damage in DNA in human blood exposed to ionizing radiation at biologically relevant doses. Int. J. Radiat. Biol. 59: 651–660.

    Article  PubMed  Google Scholar 

  108. van Loon, A. A., P. J. Den Boer, G. P. Van der Schans, P. Mackenbach, J. A. Grootegoed, R. A. Baan, and P. H. Lohman. 1991. Immunochemical detection of DNA damage induction and repair at different cellular stages of spermatogenesis of the hamster after in vitro or in vivo exposure to ionizing radiation. Exp. Cell Res. 193: 303–309.

    Article  PubMed  Google Scholar 

  109. Venema, J., L. H. F. Mullenders, A. T. Natarajan, A. A. van Zeeland, and L. F. Mayne. 1990. The genetic defect in Cockayne syndrome is associated with a defect in repair of UV-induced DNA damage in transcriptionally active DNA. Proc. Natl. Acad. Sci. USA 87: 4707–4711.

    Article  PubMed  CAS  Google Scholar 

  110. Villeponteau, B. and H. G. Martinson. 1987. Gamma rays and bleomycin nick DNA and reverse the DNase I sensitivity of ß-globin gene chromatin in vivo. Mol. Cell. Biol. 7: 1917–1924.

    PubMed  CAS  Google Scholar 

  111. Wlodek, D., J. P. Banath, and P. L. Olive. 1991. Comparison between pulsed-field and constant-field gel electrophoresis for measurement of DNA double-strand breaks in irradiated CHO cells. Mt. J. Radiat. Biol. 60: 779–790.

    Article  CAS  Google Scholar 

  112. Wlodek, D. and P. L. Olive. 1990. Basis for detecting DNA double-strand breaks using neutral filter elution. Radiat. Res. 124: 326–333.

    Article  PubMed  CAS  Google Scholar 

  113. Yang, C. S., C. Wang, M. D. Minden, and E. A. McCulloch. 1994. Fluorescence-labeling of nicks in DNA from leukemic blast cells as a measure of damage following cytosine arabinoside. Application to the study of regulated drug sensitivity. Leukemia 8: 2052–2059.

    PubMed  CAS  Google Scholar 

  114. Yasui, L. S., T. J. Fink, and A. M. Enrique. 1994. Nuclear scaffold organization in the X-ray sensitive Chinese hamster mutant cell line, xrs-5. Mt. J. Radial. Biol. 65: 185–192.

    Article  CAS  Google Scholar 

  115. Yasui, L. S., S. Ling-Indeck, B. Johnson-Wint, T. J. Fink, and D. Molsen. 1991. Changes in the nuclear structure in the radiation-sensitive CHO mutant cell, xrs-5. Radias. Res. 127: 269–277.

    Article  CAS  Google Scholar 

  116. Zittoun, J., J. Marquet, and J. C. David. 1991. Mechanism of inhibition of DNA ligase in Ara-C treated cells. Leukemia Res. 15: 157–164.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Olive, P.L. (1998). Molecular Approaches for Detecting DNA Damage. In: Nickoloff, J.A., Hoekstra, M.F. (eds) DNA Damage and Repair. Contemporary Cancer Research. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-455-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-455-9_24

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5015-7

  • Online ISBN: 978-1-59259-455-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics