Retinoids and Interferons as Antiangiogenic Cancer Drugs

  • John L. Clifford
  • Joseph M. Miano
  • Scott M. Lippman
Part of the Cancer Drug Discovery and Development book series (CDD&D)


Retinoids are a class of chemical compounds that include active metabolites of vitamin A (retinol) as well as a diverse array of synthetic derivatives. Vitamin A is required for normal embryonic development, epithelial homeostasis, maintainance of reproductive capacity, and functioning of the visual cycle (1). Additionally, retinoids have been shown to modulate a wide variety of cellular processes, including proliferation, differentiation, homeostasis, and malignant transformation (for reviews see refs. 2–5). Retinoids also act pharmacologically to restore regulation of differentiation and growth in certain premalignant and malignant cells in vitro and in vivo (6, 7). Consequently, retinoids are under study as therapeutic and chemopreventive agents for a variety of cancers (see refs. 8–10 for reviews). Retinoids are also potent drugs for the treatment of severe cystic acne, psoriasis, and several other dermatologic disorders (11).


Renal Cell Carcinoma Retinoic Acid Acute Promyelocytic Leukemia Retinoic Acid Receptor Acute Promyelocytic Leukemia Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blomhoff, R., Green, M. H., Berg, T., and Norum, K. R. (1990) Transport and storage of vitamin A. Science 250, 399–404.Google Scholar
  2. 2.
    Chon, P. (1994) The retinoid signaling pathway: molecular and genetic analyses. Semin. Cell Biol. 5, 115–125.Google Scholar
  3. 3.
    Chon, P. (1996) A decade of molecular biology of retinoic acid receptors.FASEB J.10, 940–954.Google Scholar
  4. 4.
    Gudas, L. J., Sporn, M. B., and Roberts, A. B. (1994) Cellular biology and biochemistry of the retinoids, in the Retinoids: Biology, Chemistry, and Medicine (Sporn, M. B. and Roberts, A. B.), Raven, New York, pp. 443–520.Google Scholar
  5. 5.
    Kastner, P., Mark, M., and Chon, P. (1995) Nonsteroid nuclear receptors: What are genetic studies telling us about their role in real life? Cell 83, 859–869.Google Scholar
  6. 6.
    Lotan, R. and Clifford, J. L. (1991) Nuclear receptors for retinoids: mediators of retinoid effects on normal and malignant cells. Biomed. Pharmacother. 45, 145–156.CrossRefGoogle Scholar
  7. 7.
    Hong, W. K. and Itri, L. M. (1994) Retinoids and human cancer, in The Retinoids: Biology, Chemistry, and Medicine (Sporn, M. B. and Roberts, A. B., eds.), Raven, New York, pp. 597–630.Google Scholar
  8. 8.
    Lotan, R. (1996) Retinoids in cancer chemoprevention.FASEB J.10, 1031–1039.Google Scholar
  9. 9.
    Lippman, S. M., Heyman, R. A., Kurie, J. M., Benner, S. E., and Hong, W. K. (1995) Retinoids and chemoprevention: clinical and basic studies. J. Cell. Biochem. 22(Suppl.), 1–10.Google Scholar
  10. 10.
    Smith, M. A., Parkinson, D. R., Cheson, B. D., and Friedman, M. A. (1992) Retinoids in cancer therapy. J. Clin. Oncol. 10, 839–864.Google Scholar
  11. 11.
    Orfanos, C. E., Xouboulis, C. C., Almond-Roesler, B., and Geilen, C. C. (1997) Current use and future potential role of retinoids in dermatology. Drugs 53, 358–388.Google Scholar
  12. 12.
    Newcomer, M. E. (1995) Retinoid-binding proteins: structural determinants important for function.FASEB J.9, 229–239.Google Scholar
  13. 13.
    Ross, C. A. (1993) Cellular metabolism and activation of retinoids: roles of cellular retinoid-binding proteins.FASEB J.7, 317–327.Google Scholar
  14. 14.
    Dolle, P., Ruberte, E., Kastner, P., Petkovitch, M., Stoner, C. M., Gudas, L. J., and Chon, P. (1989) Differential expression of genes encoding a, ββ and y retinoic acid receptors and CRABP in the developing limbs of the mouse. Nature342, 702–705.Google Scholar
  15. 15.
    Dolle, P., Ruberte, E., Leroy, P., Morris-Kay, G., and Chon, P. (1990) Retinoic acid receptors and cellular retinoid binding proteins I. A systematic study of their differential pattern of transcription during mouse organogenesis. Development 110, 1133–1151.PubMedGoogle Scholar
  16. 16.
    Ruberte, E., Dolle, P., Chon, P., and Morriss-Kay, G. (1991) Retinoic acid receptors and cellular retinoid binding proteins II. Their differential pattern of transcription during early morphogenesis in mouse embryos. Development 111 45–60.Google Scholar
  17. 17.
    Ruberte, E., Friederich, V., Chon, P., and Morriss-Kay, G. (1993) Retinoic acid receptors and cellular retinoid binding proteins III. Their differential transcript distribution during mouse nervous system development. Development118, 267–282.Google Scholar
  18. 18.
    Lampron, C., Rochette-Egly, C., Gorry, P., Dolle, P., Mark, M., Lufkin, T., LeMeur, M., and Chon, P. (1995) Mice deficient in cellular retinoic acid binding protein II (CRABPII) or in both CRABPI and CRABPII are essentially normal. Development 121, 539–548.Google Scholar
  19. 19.
    Fiorella, P. D. and Napoli, J. L. (1991) Expression of cellular retinoic binding protein (CRABP) in Escherichia coli. J. Biol. Chem. 266, 16,572–16,579.Google Scholar
  20. 20.
    Boylan, J. F. and Gudas, L. J., (1993) The level of CRABP-I expression influences the amounts and types of all-trans-retinoic acid metabolites in F9 teratocarcinoma stem cells. J. Biol. Chem. 267, 21,486–21,491.Google Scholar
  21. 21.
    Petkovich, M., Brand, N. J., Krust, A., and Chon, P. (1987) A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature 330, 444–450.Google Scholar
  22. 22.
    Giguere, V., Ong, E. S., Segui, P., and Evans, R. M. (1987) Identification of a receptor for the morphogen retinoic acid. Nature 330, 624–629Google Scholar
  23. 23.
    Leid, M., Kastner, P., and Chon, P. (1992) Multiplicity generates diversity in the retinoic acid signalling pathways. Trends Biochem. Sci. 17, 427–433.Google Scholar
  24. 24.
    Mangelsdorf, D. J. and Evans, R. M. (1995) The RXR heterodimers and orphan receptors. Cell 83, 841–850.PubMedCrossRefGoogle Scholar
  25. 25.
    Gronemeyer, H. and Laudet, V. (1996) Transcription Factors 3, Nuclear Receptors. Protein Profile vol. 2, Academic Press, New York.Google Scholar
  26. 26.
    Roy, B., Taneja, R., and Chon, P. (1995) Synergistic activation ofexpression ofretinoic acid (RA)responsive genes and induction of embryonal carcinoma cell differentiation by an RA receptor a (RARα)-, RARβ-, or RARγ-selective ligand in combination with a retinoid X receptor-specific ligand. Mol. Cell. Biol. 15, 6481–6487.Google Scholar
  27. 27.
    Lotan, R., Dawson, M. I., Zou, C.-C., Jong, L., Lotan, D., and Zou, C.-P. (1995) Enhanced efficacy of combinations of retinoic acid- and retinoid X receptor-selective retinoids and a-interferon inhibition of cervical carcinoma cell proliferation.Cancer Res.55, 232–236.Google Scholar
  28. 28.
    Clifford, J. L. and Lippman, S. M. (1997) Mechanism of action of the nuclear retinoid receptors. J. Oncol. Index Rev. 1, 3–5.Google Scholar
  29. 29.
    Kastner, P., Mark, M., Ghyselinck, N., Krezel, W., Dupe, V., Grondona, J. M., and Chon, P. (1997) Genetic evidence that the retinoid signal is transduced by heterodimeric RXR/RAR functional units during mouse development. Development 124, 313–326.Google Scholar
  30. 30.
    Nagpal, S., Saunders, M., Kastner, P., Durand, B., Nakshatri, H., and Chon, P. (1992) Promotor context- and response element-dependent specificity of the transcriptional activation and modulating functions of retinoic acid receptors. Cell 70, 1007–1019.Google Scholar
  31. 31.
    Nagpal, S., Friant, S., and Chon, P. (1993) RARs and RXRs: evidence for two autonomous transactivation functions (AF-1 and AF-2) and heterodimerization In vivo. EMBO J. 12, 2349— 2360.Google Scholar
  32. 32.
    Rochette-Egly, C., Adam, S., Rossignol, M., Egly, J.-M., and Chon, P. (1997) Stimulation of RARα activation function AF-1 through binding to the general transcription factor TFIIH and phosphorylation by CDK7. Cell 90, 97–107.Google Scholar
  33. 33.
    Durand, B., Saunders, M., Gaudon, C., Roy, B., Losson, R., and Chon, P. (1994) Activation function 2 (AF-2) of retinoic acid receptor and 9-cis retinoic acid receptor: presence of a conserved autonomous constitutive activation domain and influence of the nature of the response element on AF-2 activity.EMBO J. 13, 5370–5382.Google Scholar
  34. 34.
    Bourget, W., Ruff, M., Chon, P., Gronemeyer, H., and Moras, D. (1995) Crystal structure of the ligand-binding domain of the human nuclear receptor RXRa. Nature 375, 377–382.Google Scholar
  35. 35.
    Renaud, J.-P., Rochel, N., Ruff, M., Vivat, V., Chon, P., Gronemeyer, H., and Moras, D. (1995) Crystal structure of the RAR-y ligand-binding domain bound to all-trans retinoic acid. Nature 378, 681–689.Google Scholar
  36. 36.
    Cavailles, V., Dauvois, S., L’Horset, F., Lopez, G., Hoare, S., Kushner, P. J., and Parker, M. (1995) Nuclear factor RIP140 modulates transcriptional activation by the estrogen receptor. EMBO J 14, 3741–3751.Google Scholar
  37. 37.
    Le Douarin, B., Zechel, C., Garnier, J-M., Lutz, Y., Tora, L., Pierrat, B., Heery, D., Gronemeyer, H., Chon, P., and Losson, R. (1995) The N-terminal part of TIF1, a putative mediator of the liganddependant activation function (AF-2) of nuclear receptors, is fused to B-raf in the oncogenic protein T18. EMBOJ.14, 2020–2033.Google Scholar
  38. 38.
    Le Douarin, B., Nielson, A. L., Garnier, J.-M., Ichinose, H., Jeanmougin, F., Losson, R., and Chon, P. (1996) A possible involvement of TIF la and TIF lb in the epigenetic control of transcription by nuclear receptors.EMBO J. 15, 6701–6715.Google Scholar
  39. 39.
    Onate, S., Tsai, S., Tsai, M.-J., and O’Malley, B. (1995) Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270, 1354–1357.Google Scholar
  40. 40.
    Voegel, J. J., Heine, M. J.S., Zechel, C., Chon, P., and Gronemeyer, H. (1996) TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J.15, 3667–3675.Google Scholar
  41. 41.
    vom Baur, E., Zechel, C., Heery, D., Heine, M. J.S., Garnier, J. M., Vivat, V., Le Douarin, B., Gronemeyer, H., Chon, P., and Losson, R. (1996) Differential ligand-dependent interactions between the AF-2 activation domain of nuclear receptors and the putative transcriptional intermediary factors mSUG 1 and TIF I.EMBO J.15, 110–124.Google Scholar
  42. 42.
    Kurokawa, R., Soderstrom, M., Horlein, A., Halachmi, S., Brown, M., Rosenfeld, M. G., and Glass, C. K. (1995) Polarity-specific activities ofretinoic acid receptors determined by a co-repressor. Nature 377, 451–454.Google Scholar
  43. 43.
    Horlein, A. J., Naar, A. M., Heinzel, T., Torchia, J., Gloss, B., Kurokawa, R., Ryan, A., Kamei, Y., Soderstrom, M., Glass, C. K., and Rosenfeld, M. G. (1995) Ligand-independent repression by the thryoid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377, 397–403.Google Scholar
  44. 44.
    Chen, J. D. and Evans, R. M. (1995) A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377, 454–457.Google Scholar
  45. 45.
    Giguère, V. (1994) Retinoic acid receptors and cellular retinoid binding proteins: complex interplay in retinoid signaling.Endocr. Rev.15, 61–79.PubMedGoogle Scholar
  46. 46.
    Glass, C. K. (1994) Differential recognition of target genes by nuclear receptor monomers, dimers, and heterodimers. Endocr. Rev. 15, 391–407.Google Scholar
  47. 47.
    Leblanc, B. P. and Stunnenberg, H. G. (1995) 9-cis retinoic acid signaling: changing partners causes some excitement.Genes Dev.9, 1811–1816.Google Scholar
  48. 48.
    Schulman, I. G., Juguilon, H., and Evans, R. M. (1996) Activation and repression by nuclear hormone receptors: hormone modulates an equilibrium between active and repressive states. Mol. Cell Biol. 16, 3807–3813.Google Scholar
  49. 49.
    Mukherjee, R., Davies, P. J.A., Crombie, D. L., Bischoff, E. D., Cesario, R. M., Jow, L., Hamann, L. G., Boehm, M. F., Mondon, C. E., Nadzan, A. M., Paterniti, J. R., and Heyman, R. A. (1997) Sensitization of diabetic and obese mice to insulin by retinoid X receptor agonists. Nature 386, 407–410.Google Scholar
  50. 50.
    Kalvakolanu, D. V. and Borden, E. C. (1996) An overview of the interferon system: signal transduction and mechanisms of action. Cancer Inv.14, 25–53.Google Scholar
  51. 51.
    Diaz, M. O., Bohlander, S., and Allen, G. (1993) Nomenclature of human interferon genes. J. Interferon Res. 13, 234–243.Google Scholar
  52. 52.
    Ihle, J. N., Witthuhn, B. A., Quelle, F. W., Yamamoto, K., and Silvennoinen, O. (1995) Signaling through the hematopoietic cytokine receptors. Ann. Rev. Immunol. 13, 369–398.CrossRefGoogle Scholar
  53. 53.
    Heldin, C. H. (1995) Dimerization of cell surface receptors in signal transduction. Cell 80, 213–233.Google Scholar
  54. 54.
    Darnell, J. E., Jr. (1997) STATs and gene regulation. Science 277, 1630–1635.Google Scholar
  55. 55.
    Muller, M., Briscoe, J., Laxton, C., Guschin, D., Ziemiecki, A., Silvennoinen, O., Harpur, A. G., Barbieri, G., Witthuhn, B. A., Schindler, C., Pellegrini, S., Wilks, A. F., Ihle, J. N., Stark, G. R., and Kerr, I. M. (1993) The protein tyrosine kinase JAK1 complements defects in interferon-a/β and signal transduction. Nature 366, 129–135.Google Scholar
  56. 56.
    Silvennoinen, O., Ihle, J. N., Schlessinger, J., and Levy, D. E. (1993) Interferon-induced nuclear signalling by Jak protein tyrosine kinases. Nature 366, 583–585.Google Scholar
  57. 57.
    Velasquez, L., Fellous, M., Stark, G. R., and Pellegrini, S. (1992) A protein tyrosine kinase in the interferon alpha/beta signaling pathway. Cell 70, 313–322.Google Scholar
  58. 58.
    Leung, S., Qureshi, S. A., Kerr, I. M., Darnell, J. E., and Stark, G. R. (1995) Role of STAT2 in the alpha interferon signaling pathway. Mol. Cell. Biol. 15, 1312–1317.Google Scholar
  59. 59.
    Schindler, C., Fu, X.-Y., Improta, T., Aebersold, R., and Darnell, J. E., Jr. (1992) Proteins of transcription factor ISGF-3: One gene encodes the 91— and 84—kDa ISGF-3 proteins that are activated by interferon a. Proc. Natl. Acad. Sci. USA 89, 7836–7839.CrossRefGoogle Scholar
  60. 60.
    Qureshi, S. A., Salditt-Georgieff, M., and Darnell, J. E., Jr. (1995) Tyrosine-phosphorylated Statl and Stat2 plus a 48-kDa protein all contact DNA in forming interferon-stimulated-gene factor 3. Proc.Natl.Acad.Sci. USA 92, 3829–3833.PubMedCrossRefGoogle Scholar
  61. 61.
    Haque, J. S. and William, R. G. (1998) Signal transduction in the interferon system. Sem. Oncology 25(Suppl. 1), 14–22.Google Scholar
  62. 62.
    Lotan, R., Dawson, M. I., Zou, C.-C., Jong, L., Lotan, D., and Zou, C.-P. (1995) Enhanced efficacy of combinations ofretinoic acid- and retinoid X receptor-selective retinoids and a-interferon in inhibition of cervical carcinoma cell proliferation Cancer Res.55, 232–236.Google Scholar
  63. 63.
    Kolla, V., Lindner, D. J., Weihua, X., Borden, E. C., and Kalvakolanu, D. V. (1996) Modulation of interferon (IFN)-inducible gene expression by retinoic acid. J. Biol. Chem. 271, 10,508–10,514.Google Scholar
  64. 64.
    Lindner, D. J., Borden, E. C., and Kalvakolanu, D. V. (1997) Synergistic antitumor effects of a combination of interferons and retinoic acid on human tumor cells in vitro and in vivo. Clin. Cancer Res.3, 931–937.PubMedGoogle Scholar
  65. 65.
    Lippman, S., Glisson, B. S., Kavanagh, J. J., Lotan, R., Hong, W. K., Paredes-Espinoza, M., Hittelman, W. N., Holdener, E. E., and Krakoff, I. H. (1993) Retinoic acid and interferon combination studies in human cancer. Eur. J. Cancer. 29A(Suppl. 5), s9—s13.Google Scholar
  66. 66.
    Lippman, S. M., Lotan, R., and Schleunicer, U. (1997) Retinoid-interferon therapy of solid tumors. Int. J. Cancer. 70, 481–483.Google Scholar
  67. 67.
    Gianni, M., Terao, M., Fortino, I., LiCalzi, M., Viggiano, V., Barbui, T., Raldi, A., and Garattini, E. (1997) Stat 1 is induced and activated by all-trans retinoic acid in acute promyelocytic leukemia cells. Blood 89, 1001–1012.Google Scholar
  68. 68.
    Cippitelli, M., Ye, J., Viggiano, V., Sica, A., Ghosh, P., Gulino, A., Santoni, A. ,and Young, H. A. (1996) Retinoic acid-induced transcriptional modulation of the human interferon-y promoter. J. Biol. Chem. 271, 26,783–26,793.Google Scholar
  69. 69.
    Harada, H., Willison, K., Sakakibara, J., Miyamoto, M., Fujita, T., and Taniguchi, T. (1990) Absence of the type I IFN system in EC cells: transcriptional activator (IRF-1) and repressor (IRF-2) genes are developmentally regulated. Cell 63, 303–312.Google Scholar
  70. 70.
    Matikainen, S., Ronni, T., Lehtonen, A., Sareneva, T., Melen., K., Nordling, S., Levy, D. E., and Julkunen, I. (1997) Retinoic acid induces signal transducer and activator of transcription (STAT) 1,STAT2, and p48 expression in myeloid leukemia cells and enhances their responsiveness to interferons.Cell Growth Differ.8, 687–698.Google Scholar
  71. 71.
    Weihua, X., Kolla, V., and Kalvakolanu, D. V. (1997) Modulation of interferon action by retinoids. J. Biol. Chem. 272, 9742–9748.CrossRefGoogle Scholar
  72. 72.
    Pelicano, L., Li, F., Schindler, C., and Chelbi-Alix, M. K. (1997) Retinoic acid enhances the expression of interferon-induced proteins: evidence for multiple mechanisms of action. Oncogene 6, 2349–2359.Google Scholar
  73. 73.
    Giandomenico, V., Lancillotti, F., Fiorucci, G., Percario, Z. A., Ribavene, R., Malorni, W., Affabris, E., and Romeo, G. (1997) Retinoic acid and IFN inhibition of cell proliferation is associated with apoptosis in squamous carcinoma cell lines: role of IRF-1 and TGase II-dependent pathways.Cell Growth Diff.8, 91–100.Google Scholar
  74. 74.
    Yu, M. Tong, J. H., Mao, M., Kan, L. X. Liu, M. M., Sun, Y. W., Fu, G., Jing, Y. K., Yu, L., Lepaslier, D., Lanotte, M., Wang, Z. Y., Chen, Z., Waxman, S., Tan, J. Z., and Chen, S. J. (1997) Cloning of a gene (RIG-G) associated with retinoic acid-induced differentiation of acute promyelocytic leukemia cells and representing a new member of a family of interferon-stimulated genes. Proc. Natl. Acad. Sci. USA 94, 7406–7411.CrossRefGoogle Scholar
  75. 75.
    Widschwendter, M., Daxenbichler, G., Dapunt, O., and Marth, C. (1995) Effects of retinoic acid and y-interferon on expression of retinoic acid receptor and cellular retinoic acid-binding protein in breast cancer cells. Cancer Res.55, 2135–2139.Google Scholar
  76. 76.
    Gianni, M., Zanotta, S., Terao, M., Raldi, A., and Garattini, E. (1996) Interferons induce normal and aberrant retinoic-acid receptors type a in acute promyelocytic leukemia cells: potentiation of the induction of retinoid-dependent differentiation markers. Int. J. Cancer 68, 75–83.Google Scholar
  77. 77.
    Liu, M., Lee, M.-H., Cohen, M., Bommakanti, M., and Freedman, L. P. (1996) Transcriptional activation ofthe Cdk inhibitor p21 by vitamin D3 leads to the induced differentiation of the myelomonocytic cell line U937.Genes Dev.10,142–153.Google Scholar
  78. 78.
    Chin, Y. E., Kitagawa, M., Su, W.-C. S., You, Z.-H., Iwamoto, Y., and Fu, X.-Y. (1996) Cell growth arrest and induction of cyclin-dependent kinase inhibitor p21 WAFI/CIPI mediated by STAT1. Science 272, 719–722.Google Scholar
  79. 79.
    Liu, M., Iavarone, A., and Freedman, L. P. (1996) Transcriptional activation of the human p21 WAF I/CIP I gene by retinoic acid receptor. J. Biol. Chem. 271, 31,723–31,728.Google Scholar
  80. 80.
    Sherr, C. J. and Roberts, J. M. (1995) Inhibitors of mammalian G 1 cyclin-dependent kinases.Genes Dev.9, 1149–1163.Google Scholar
  81. 81.
    Missero, C., Calautti, E., Eckner, R., Chin, J., Tsai, L. H., Livingston, D. M., and Dotto, G. P. (1995) Involvement of the cell-cycle inhibitor Cipl/WAFI and the E1A-associated p300 protein in terminal differentiation. Proc. Natl. Acad. Sci. USA 92, 5451–5455.CrossRefGoogle Scholar
  82. 82.
    Lippman, S. M., Benner, S. E., Hong, W. K., et al. (1994) Cancer chemoprevention. J. Clin. Oncol. 12, 851–873.PubMedGoogle Scholar
  83. 83.
    Lippman, S. M., Batsakis, J. G., Toth, B. B., et al. (1993) Comparison of low-dose isotretinoin with beta-carotene to prevent oral carcinogenesis. N. Engl. J. Med. 328, 15–20.CrossRefGoogle Scholar
  84. 84.
    Hong, W. K., Lippman, S. M., Itri, L. M., et al. (1990) Prevention of second primary tumor with isotretinoin in squamous cell carcinoma of the head and neck. N. Engl. J. Med. 323, 795–801.CrossRefGoogle Scholar
  85. 85.
    Kraemer, K. H., DiGiovanni, J. J., Moshell, A. N., et al. (1988) Prevention of skin cancer in xeroderma pigmentosum with the use of oral isotretinoin. N. Engl. J. Med. 318, 1633–1637.CrossRefGoogle Scholar
  86. 86.
    Lotan, R., Xu, C., Lippman, S. M., et al. (1995) Suppression of retinoic acid receptor ββ in oral premalignant lesions and its upregulation by isotretinoin. N. Engl. J. Med. 332, 1405–1410.CrossRefGoogle Scholar
  87. 87.
    Mayne, S. T., Lippman, S. M. (1997) Retinoids and carotenoids, in Cancer: Principles and Practice ofOncology, 5th ed. (DeVita, V. T., Hellman, S., Rosenberg, S. A., eds.), Lippincott-Raven, New York, pp. 585–599.Google Scholar
  88. 88.
    Bavinck, J. N., Tieben, L. M., van der Woude, F. J., et al. (1995) Prevention of skin cancer and reduction of keratotic skin lesions during acitretin therapy in renal transplant patients: a double-bind, placebocontrolled study. J. Clin. Oncol. 13, 1933–1938.Google Scholar
  89. 89.
    Muto, Y., Moriwaki, H., Ninomiya, M., et al. (1996) Prevention of second primary tumors by an acyclic retinoid, polypretnoic acid, in patients with hepatocellular carcinoma. N. Engl. J. Med. 334,1561–1567.CrossRefGoogle Scholar
  90. 90.
    Meyskens, F. L. Jr., Surwit, E., Moon, T. E., et al. (1994) Enhancement of regression of cervical intraepithelial neoplasis II (moderate dysplasia) with topically applied all-trans-retinoic acid: a randomized trial. J. Natl. Cancer Inst. 86, 539–543.CrossRefGoogle Scholar
  91. 91.
    Warrell, R. P., Jr, Frankel, S. R., Miller, W. H., Jr., et al. (1991) Differentiation therapy of acute promyelocytic leukemia with tretinoin (all-trans-retinoic acid). N. Engl. J. Med. 324, 1385–1393.PubMedCrossRefGoogle Scholar
  92. 92.
    Warrell, R. P., de The, H., Wang, Z. Y., et al. (1993) Acute promyelocytic leukemia. N. Engl. J. Med. 329, 177–189.CrossRefGoogle Scholar
  93. 93.
    Tallman, M. S., Anderson, J. W., Schiffer, C. A., et al. (1997) All-trans-retinoic acid in acute promyelocytic leukemia. N. Engl. J. Med. 337, 1021–1028.CrossRefGoogle Scholar
  94. 94.
    Castleberry, R. P., Emanuel, P. D., Zuckaman, K. S., et al. (1994) A pilot study of isotretinoin in the treatment of juvenile chronic myelogenous leukemia. N. Engl. J. Med. 331, 1680–1684.CrossRefGoogle Scholar
  95. 95.
    Cheng, A., Su, I., Chen, C., et al. (1994) Use of retinoic acids in the treatment of peripheral T-cell lymphoma: a pilot study. J. Clin. Oncol. 12, 1185–1192.Google Scholar
  96. 96.
    Shalinksy, D. R., Bischoff, E. D., Gregory, M. L., et al. (1996) Enhanced antitumor efficacy ofcisplatin in combination with ALRT 1057 (retinoic acid) in human oral squamous carcinoma xenografts in nude mice. Clin. Cancer Res., 2, 511–520.Google Scholar
  97. 97.
    Aebi, S., Kroning, R., Cenni, B., et al. (1997) All-trans retinoic acid enhances cisplatin-induced apoptosis in human ovarian adenocarcinoma and in squamous head and neck cancercells. Clin. Cancer Res. 3,2033–2038.Google Scholar
  98. 98.
    Rutz, H. P., and Little, J. B. (1989) Modification of radiosensitivity and recovery from x-ray damage in vitro by retinoic acid. J. Radiat. Oncol. Biol. Phys. 16, 1285–1288.CrossRefGoogle Scholar
  99. 99.
    Schiller, U., Hoffmann, W., Mayer, C., et al. (1994) All-trans-retinoic acid modulates the radiosensitivity and differentiation of normal and tumor cells in vitro. Ann. Oncol. 5, 1–3.Google Scholar
  100. 100.
    Angioli, R., Sevin, B., Perras, J. P., et al. (1993) In vitro potentiation of radiation cytotoxicity by recombinant interferons in cervical cancer cell lines. Cancer 71, 3717–3725.Google Scholar
  101. 101.
    Benbrook, D. M., Shen-Gunther, J., Nunez, E. R., et al. (1997) Differential retinoic acid radiosensitization of cervical carcinoma cell lines. Clin. Cancer Res. 3, 939–945.Google Scholar
  102. 102.
    Hoffmann, W., Berg, M., and Rodemann, H. P. (1994) Antiproliferative effects of ionizing radiation, all-trans-retinoic acid and interferon-a on cultured human squamous cell carcinomas. Radiat. Oncol. Invest. 2, 12–19.CrossRefGoogle Scholar
  103. 103.
    Hoffmann, W., Schiebe, M., Hirnle, P., et al. (1997) 13-cis retinoic acid and interferon-a ± irradiation in the treatment of squamous-cell carcinomas. Int. J. Cancer 70, 475–477.Google Scholar
  104. 104.
    Hansgen, G., Hansgen, K., and Dunst, J. (1996) Oxygen status of cervical cancers prior and during definitive radiotherapy: possible impact of pretreatment with IFN-α-2a/retinoic acid on oxygenation. Int. J. Rad. Oncol. Biol. Phys. 36, 324 (Abstr 2095).Google Scholar
  105. 105.
    DeLaney, T. F., Afridi. N., Taghian, A. G., et al. (1996) 13-cis-retinoic acid with alpha-2a-interferon enhances radiation cytotoxicity in head and neck squamous cell carcinoma in vitro.Cancer Res.56, 2277–2280.Google Scholar
  106. 106.
    Widschwendter, M., Daxenbichler, G., Bachmair, F., et al. (1996) Interaction of retinoic acid and interferon-alpha in breast cancer cell lines.Anticancer Res.16, 369–374.Google Scholar
  107. 107.
    Fanjul, A. N., Bouterfa, H., Dawson, M., et al. (1996) Potential role for retinoic acid receptorgamma in the inhibition of breast cancer cells by selective retinoids and interferons.Cancer Res.56, 1571–1577.Google Scholar
  108. 108.
    Agarwal, C., Hembree, J. R., Rorke, P. A., et al. (1994) Interferon and retinoic acid suppress the growth of human papillomavirus type-16 immortalized cervical epithelial cells, but only interferon suppresses the level of the human papillomavirus transforming oncogenes.Cancer Res.54, 2108–2112.Google Scholar
  109. 109.
    Lancillotti, F., Giandomenico, V., Affabris, E., et al. (1995) Interferon alpha-2b and retinoic acid combined treatment affects proliferation and gene expression of human cervical carcinoma cells.Cancer Res.55, 3158–3164.Google Scholar
  110. 110.
    Sidky, Y. A. and Borden, E. J. C. (1987) Inhibition of angiogenesis by interferons: effects on tumorand lymphocyte-induced vascular responses. Cancer Res. 47, 5155–5161.Google Scholar
  111. 111.
    Majewski, S., Szmurlo, A., Marczak, M., et al. (1994) Synergistic effect of retinoids and interferon alpha on tumor-induced angiogenesis: anti-angiogenic effect on HPV-harboring tumor-cell lines. Int. J. Cancer 57, 81–85.Google Scholar
  112. 112.
    Lippman, S. M., Kavanagh, J. J., Paredes-Espinoza, M. M., et al. (1993) 13-cis retinoic acid plus interferon alpha 2a, in locally advanced squamous cell carcinoma of the cervix. J. Natl. Cancer Inst. 85, 499,500.Google Scholar
  113. 113.
    Lippman, S. M., Kavanagh, J. J., Paredez-Espinoza, M., et al. (1992) 13-cis retinoic acid plus interferon-alpha2a: highly active systemic therapy for squamous cell carcinoma of the cervix. J. Natl. Cancer Inst. 84, 214–245.Google Scholar
  114. 114.
    Kavanagh, J. J., Lippman, S. M., and Paredes-Espinoza, M. (1996) The combination of 13-cis-retinoic acid and interferon α2a with radiation therapy in squamous cell carcinoma ofthe cervix. Int. J. Gynecol. Cancer 6, 439–444.CrossRefGoogle Scholar
  115. 115.
    Lippman, S. M., Parkinson, D. R., Itri, L. M., et al. (1992) 13-cis-retinoic acid and interferon-2a. Effective combination therapy for advanced squamous cell carcinoma of the skin. J. Natl. Cancer Inst. 84, 235–240.Google Scholar
  116. 116.
    Toma, S., Palumbo, R., and Vincenti, M. (1994) Efficacy of recombinant interferon-alpha and 13-cisretinoic acid in the treatment of squamous cell carcinomas. Ann. Oncol. 5, 463–465.Google Scholar
  117. 117.
    Motzer, R. J., Schwartz, L., Law, T. M., et al. (1995) Interferon alpha-2a and 13-cis retinoic acid in renal cell carcinoma: antitumor activity in a phase II trial and interactions in vitro. J. Clin. Oncol. 13, 1950–1957.Google Scholar
  118. 118.
    Antonadou, D., Cardamakis, E., Iliopoulos, P., et al. (1996) Comparative study between exclusive irradiation or combined with IFN-a-2a and isotretinoin in stage IIb and III cervical carcinoma. ASTRO 36, 121 (Abstr. 122).Google Scholar
  119. 119.
    Hallum, A. V., III, Alberts, D. S., Lippman, S. M., et al. (1995) Phase II study of 13-cis-retinoic acid plus interferon-a2a in heavily pretreated squamous carcinoma of the cervix.Gynecol. Oncol.56, 382–386.PubMedCrossRefGoogle Scholar
  120. 120.
    Wadler, S., Schwartz, E. L., Haynes, H., et al. (1997) All-trans retinoic acid and interferon-a-2a in patients with metastatic or recurrent carcinoma of the uterine cervix. Cancer 79, 1574–580.Google Scholar
  121. 121.
    Weiss, G. R., Liu, P. Y., Alberts, D. S., et al. (1997) A randomized phase II trial of 13-cis-retinoic acid (CRA) or all trans-retinoic acid (ATRA) plus interferon alpha 2a (IFN) for metastatic or recurrent squamous/adenosquamous carcinoma of the uterine cervix: a Southwest Oncology Group study. Proc. Ann. Meet. Am. Soc. Clin. Oncol. 16, 355a (Abstr. 1268).Google Scholar
  122. 122.
    Atzpodion, J., Buer, J., Probat, M., et al. (1996) Clinical and preclinical role of 13-cis retinoic acid in renal cell carcinoma: Hannover experience. Proc. Ann. Meet. Am. Soc. Clin. Oncol. 15, 247.Google Scholar
  123. 122a.
    Papadimitrakopoulou, V. A., Shin, D. M., Clayman, G., et al. (1997) Efficacy of biochemoprevention in reversal of advanced premalignant lesions (PLs) in the upper aerodigestive tract (UADT). Proc. Ann. Meet. Am. Soc. C/in. Oncol. 16, 383a (abstract 1366).Google Scholar
  124. 123.
    Arensman, R. M. and Stolar, C. J.H. (1979) Vitamin A effect on tumor angiogenesis. J. Ped. Surg. 14, 809–812.CrossRefGoogle Scholar
  125. 124.
    Oikawa, T., Hirotani, K., Nakamura, O., Shudo, K., Hiragun, A., and Iwaguchi, T. (1989) A highly potent antiangiogenic activity of retinoids. Cancer Lett.48, 157–162.Google Scholar
  126. 125.
    Majewski, S., Szmurlo, A., Marczak, M., Jablonska, S., and Bollag, W. (1993) Inhibition of tumor cellinduced angiogenesis by retinoids, 1,25-dihydroxyvitamin D3 and their combination.Cancer Lett.75, 35–39.Google Scholar
  127. 126.
    Liaudet-Coopman, E. D.E., Berchem, G. J., and Wellstein, A. (1997)In Vivo inhibition ofangiogenesis and induction of apoptosis by retinoic acid in squamous cell carcinoma. Clin. Cancer Res.3,179–184.Google Scholar
  128. 127.
    Pepper, M. S., Vassalli, J. D., Wilks, J. W. Schweigerer, L., Orci, L., and Montesano, R. (1994) Modulation of bovine microvascular endothelial cell proteolytic properties by inhibitors of angiogenesis. J. Cell. Biochem. 55, 419–334.Google Scholar
  129. 128.
    Lingen, M. W., Polverini, P. J., and Bouck, N. P. (1996) Inhibition of squamous cell carcinoma angiogenesis by direct interaction of retinoic acid with endothelial cells.Lab. Invest.74, 476–483.PubMedGoogle Scholar
  130. 129.
    Ezekowitz, R. A., Mulliken, J. B., and Folkman, J. (1992) Interferon alfa-2a therapy for life-threatening hemangiomas of infancy. N. Engl. J. Med. 326, 1456–1463.CrossRefGoogle Scholar
  131. 130.
    Barlow, C. F., Priebe, C. J., Mulliken, J. B., Barnes, P. D., Mac Donald, D., Folkman, J., and Ezekowitz, R. A. (1998) Spastic diplegia as a complication of interferon alfa-2a treatment of hemangiomas of infancy. J. Pediatr. 132, 527–530.CrossRefGoogle Scholar
  132. 131.
    Chang, E., Boyd, E., Nelson, C. C., Crowley, D., Law, T., Keough, K. M., Folkman, J., Ezekowitz, R. A., and Castle, V. P. (1997) Successful treatment of infantile hemangiomas with interferon-alpha-2b. J. Pediatr. Hematol. Oncol. 19, 237–244.CrossRefGoogle Scholar
  133. 132.
    Bollag, W., Majewski, S., and Jablonska, S. (1994) Cancer combination chemotherapy with retinoids: experimental rationale. Leukemia 8(Suppl. 3), S 11-S 15.Google Scholar
  134. 133.
    Haddad, S. F., Moore, S. A., Schelper, R. L., and Goeken, J. A. (1992) Vascular smooth muscle hyperplasia underlies the formation of glomeruloid vascular structures of glioblastoma multiforme. J. Neuropath. Exp. Neurol. 51, 488–492.PubMedCrossRefGoogle Scholar
  135. 134.
    Heyns, A. du P., Eldor, A., Vlodavsky, I., Kaiser, N., Fridman, R., and Panet, A. (1985) The antiproliferative effect of interferon and the mitogenic activity of growth factors are independent cell cycle events. Exp. Cell Res. 161, 297–306.CrossRefGoogle Scholar
  136. 135.
    Palmer, H. and Libby, P. (1992) Interferon β: A potential autocrine regulator ofhuman vascular smooth muscle cell growth.Lab. Invest.66, 715.PubMedGoogle Scholar
  137. 136.
    Warner, S. J. C., Friedman, G. B., and Libby, P. (1989) Immune interferon inhibits proliferation and induces 2’-5’-oligoadenylate synthetase gene expression in human vascular smooth muscle cells. J. Clin. Invest. 83, 1174–1182.CrossRefGoogle Scholar
  138. 137.
    Hansson, G. K. and Holm, J. (1991) Interferon-y inhibits arterial stenosis after injury. Circulation 84, 1266–1272.Google Scholar
  139. 138.
    James, T. W., Wagner, R., White, L., Zwolak, R. M., and Brinckerhoff, C. E. (1993) Induction of collagenase and stromelysin gene expression by mechanical injury in a vascular smooth musclederived cell line. J. Cell. Physiol. 157, 426–437.CrossRefGoogle Scholar
  140. 139.
    Miano, J. M., Topouzis, S., Majesky, M. W., and Olson, E. N. (1995) Retinoid receptor expression and all-trans retinoic acid-mediated growth inhibition in vascular smooth muscle cells. Circulation 93, 1886–1895.Google Scholar
  141. 140.
    Miano, J. M., Kelly, L. A., Artacho, C. A., Nuckolls, T. A., Piantedosi, R., and Blaner, W. S. (1998) All-trans retinoic acid reduces neointimal formation and promotes favorable geometric remodeling of the rat carotid artery following balloon withdrawal injury. Circulation, in press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • John L. Clifford
  • Joseph M. Miano
  • Scott M. Lippman

There are no affiliations available

Personalised recommendations