Hydrogels in Cancer Drug Delivery Systems

  • Sung-Joo Hwang
  • Namjin Baek
  • Haesun Park
  • Kinam Park
Part of the Cancer Drug Discovery and Development book series (CDD&D)

Abstract

Hydrogels have played a vital role in the development of controlled-release drug delivery systems. A hydrogel (also called an aquagel) is a three-dimensional (3-D) network of hydrophilic polymers swollen in water (1). The 3-D polymer network of a hydrogel is maintained in the form of elastic solid in the sense that there exists a remembered reference configuration to which the system returns even after being deformed for a very long time. By definition, hydrogels usually contain water at least 10% of the total weight. The term hydrogel implies that the material is already swollen in water. Dried hydrogels (or xerogels) absorb water to swell, and the size of the swollen gel depends on how much water is absorbed. A hydrogel swells for the same reason that an analogous linear polymer dissolves in water to form an ordinary polymer solution. The extent of swelling is usually measured by the swelling ratio, which is the volume (or weight) of the swollen gel divided by the volume (or weight) of the xerogel. If the weight of absorbed water exceeds 95% of the total weight, a hydrogel is often called a superabsorbent. Thus, 20g of fully swollen superabsorbent will have 1g or less of polymer network and 19g or more of water (i.e., the swelling ratio is more than 20). The swelling ratio of many hydrogels can easily reach greater than 100. Despite such a large quantity of water, highly swollen hydrogels still maintain solid forms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Park K, Shalaby SWS, Park H. Biodegradable Hydrogels for Drug Delivery Technomic, Lancaster, PA. 1993, Ch. 1.Google Scholar
  2. 2.
    Akiyoshi K, Taniguchi I, Fukui H, Sunamoto J. Hydrogel nanoparticle formed by self-assembly or hydrophobized polysaccharide: stabilization of adriamycin by complexation. Eur J Pharm Biopharm 1996; 42:286–290.Google Scholar
  3. 3.
    Akiyoshi K, Deguchi S, Tajima H, Nishikawa 1, Sunamoto J. microscopic structure ana mermoresponsiveness of a hydrogel nanoparticle by self-assembly of a hydrophobized polysaccharide, Macromolecules 1997; 30:857–861. 11.CrossRefGoogle Scholar
  4. 4.
    Narayani R, Panduranga Rao K. Collagen-poly (EMA) hydrogeis ror thie controlled uenvery w methotrexate and cisplatin, Int J Pharm 1996; 138:121–124.CrossRefGoogle Scholar
  5. 5.
    Blanco MD, Trigo RM, Garcia O, Teijon JM. Controlled release or cytarabine from poly(2-hyuroAyethyl methacrylate-co-n-vinyl-2-pyrrolidone) hydrogels, J Biomater Sci Polymer Edn 1997; 8:709–719.CrossRefGoogle Scholar
  6. 6.
    Teijon JM, Trigo RM, Garcia O, Blanco MD. Cytarabine trapping in poly(2-hydroxyetnyi metnacrylate) hydrogels-drug delivery studies, Biomaterials 1997; 18:383–388.PubMedCrossRefGoogle Scholar
  7. 7.
    Beyssac E, Bregni C, Aiache JM, Gerula S, Smolko E. Hydrogel implants for methotrexate obtained by ionizing radiation, Drug Devel Ind Pharm 1996; 22:439 414.Google Scholar
  8. 8.
    Garcia O, Trigo RM, Blanco MD, leijon JM. influence of aegree of crossimung on 5-uoiuuraii release from poly(2-hydroxyethyl methacrylate) hydrogels, Biomaterials 1994; 15:689–694.PubMedCrossRefGoogle Scholar
  9. 9.
    Trigo RM, Blanco MD, Teijon JM, Sastre R. Anticancer drug, ara-C, release from pHEMA hydrogels, Biomaterials 1994; 15:1181–1186.PubMedCrossRefGoogle Scholar
  10. 10.
    Blanco MD, Garcia O, Trigo RM, Teijon JM, Katime I. 5-Fluorouracil release from copolymeric hydrogels of itaconic acid monoester, Biomaterials 1996; 17:1061–1067.PubMedCrossRefGoogle Scholar
  11. 11.
    Blanco MD, Garcia O, Olmo R, Teijon JM, Katime 1. elease of 5-nuorouraeilfro ply (cr yiauueco-monopropyl itaconate) hydrogels, J Chromatogr B: Biomed Appl 1996; 680:243–253.CrossRefGoogle Scholar
  12. 12.
    Chen J, Park H, Park K. Synthesis of superporous hydrogels: hydrogels with fast swelling and superabsorbent properties, J Biomed Mater Res 1999; 44:53–62.PubMedCrossRefGoogle Scholar
  13. 13.
    Kato T. Encapsulated drugs in targeted cancer therapy, in Controllea Drug Delivery. vol. II. tnicat Applications (Bruck SD, ed). CRC, Boca Raton, FL, 1983, pp 189–240.Google Scholar
  14. 14.
    Lindberg B, Lote K, Teder H. Dioderadable starch microspheres-A new medical tool, in microspheres and Drug Therapy-Pharmaceutical, Immunological and Medical Aspects (Davis SS, Illum L, McVie JG, Tomlinson E, eds). Elsevier, New York, 1983, pp 153–188.Google Scholar
  15. 15.
    Horak D, Svec F, Adamyan A, et al. Hydrogels in endovascular embolization. V. Antitumour agent methotrexate-containing p(HEMA), Biomaterials 1992; 13:361–366.PubMedCrossRefGoogle Scholar
  16. 16.
    Fiorentini G, Campanini A, Dazzi C, et al. Chemoembolization in liver malignant involvement. txperiences on 17 cases, Minerva Chirurgica 1994; 49:281–285.PubMedGoogle Scholar
  17. 17.
    Päuser S, Wagner S, Lippman M, et al. Evaluation of efficient chemoembolization mixtures by magnetic resonance imaging therapy monitoring: An experimental study on the VX2 tumor in the rabbit liver, Cancer Res 1996; 56:1863–1867.PubMedGoogle Scholar
  18. 18.
    Colleoni M, Audisio RA, De Braud F, Fazio N, Martinelli G, Goldhirsch, A. Practical considerations in the treatment of hepatocellular carcinoma, Drugs 1998; 55:367–382.PubMedCrossRefGoogle Scholar
  19. 19.
    Taguchi T. Liver tumor targeting of drugs: Spherex, a vascular occlusive agent, Jap J Cancer & Chemotherapy 1995; 22:969–976.Google Scholar
  20. 20.
    Tellez C, Benson AB, Lyster MT, et al. Phase II trial of chemoembolization for the treatment or metastatic colorectal carcinoma to the Liver and review of the literature, Cancer 1998; 82:1250–1259. .PubMedCrossRefGoogle Scholar
  21. 21.
    Kyotani S, Nishioka Y, Okamura M, et al. A study of embolizing materials for chemo-embolization therapy of hepatocellular carcinoma: antitumor effect of cis-diamminedichloroplatinum(II) albumin microspheres, containing chitin and treated with chitosan on rabbits with VX2 hepatic tumors, Chem Pharmaceut Bull 1992; 40:2814–2816.CrossRefGoogle Scholar
  22. 22.
    Teder H, Johansson CJ. The effect of different dosages of degradable starch microspheres (Spherex) on the distribution of doxorubicin regionally administered to the rat, Anticancer Res 1993; 13:2161–2164.PubMedGoogle Scholar
  23. 23.
    Chang D, Jenkins SA, Grime SJ, Nott DM, Cooke T. Increasing hepatic arterial flow to hypovascular hepatic tumours using degradable starch microspheres, Br J Cancer 1996; 73:961–965.PubMedCrossRefGoogle Scholar
  24. 24.
    Horak D, Svec F, Isakov Y, et al. Use of poly(2-hydroxyethyl methacrylate) for endovascular occlusion in pediatric surgery, Clin Mater 1992; 9:43–48.PubMedCrossRefGoogle Scholar
  25. 25.
    Begg AC, Deurloo MJ, Kop W, Bartelink H. Improvement of combined modality therapy with cisplatin and radiation using intratumoral drug administration in murine tumors, Radiother Oncol 1994; 31:129–137.PubMedCrossRefGoogle Scholar
  26. 26.
    Deurloo MJ, Kop W, van Tellingen O, Bartelink H, Begg AC. Intratumoural administration of cisplatin in slow-release devices: II. Pharmacokinetics and intratumoural distribution, Cancer Chemother Pharmacol 1991; 27:347–353.PubMedCrossRefGoogle Scholar
  27. 27.
    Deurloo MJ, Bohlken S, Kop W, et al. Intratumoural administration of cisplatin in slow-release devices. I. Tumour response and toxicity, Cancer Chemotherapy & Pharmacology 1990; 27:135–140.CrossRefGoogle Scholar
  28. 28.
    Park KB, Kim YM, Kim JR. Radioactive chitosan complex for radiation therapy. U.S. Patent 1998; 5:762,903.Google Scholar
  29. 29.
    Suzuki Y, Momose Y, Higashi N, et al. Biodistribution and kinetics of Holmium-166-chitosan complex (DW-166HC) in rats and mice, J Nucl Med 1998; 39:2161–2166.PubMedGoogle Scholar
  30. 30.
    Chiellini E, Solaro R, Leonardi G, Giannasi D, Mazzanti G. New polymeric hydrogel formulations for the controlled release of alpha-interferon, J Controlled Rel 1992: 22:273–282.CrossRefGoogle Scholar
  31. 31.
    Veronese FM, Ceriotti G, Keller G, Lora S, Carenza M. Controlled release of narciclasine from poly(hema) matrices polymerized by a chemical initiator and by gamma irradiation, Radiation Physics & Chemistry 1990; 1990:88–92.Google Scholar
  32. 32.
    Veronese FM, Ceriotti G, Caliceti P, Lora S, Carenza M. Slow release of narciclasine from matrices obtained by radiation-induced polymerization, J Controlled Rel 1991; 16:291–298.CrossRefGoogle Scholar
  33. 33.
    Giammona G, Pitarresi G, Tomarchio V, Cavallaro G, Mineo M. Crosslinked alpha, beta-polyasparthydrazide hydrogels: effect of crosslinking degree and loading method on cytarabine release rate, J Controlled Rel 1996; 41:195–203.CrossRefGoogle Scholar
  34. 34.
    Jeyanthi R, Panduranga Rao K. In vivo biocompatibility of collagen-poly(hydroxyethyl methacrylate) hydrogels, Biomaterials 1990; 11:238–243.PubMedCrossRefGoogle Scholar
  35. 35.
    Jeyanthi R, Panduranga Rao K. Controlled release of anticancer drugs from collagen-poly(HEMA) hydrogel matrices, J Controlled Rel 1990; 13:91–98.CrossRefGoogle Scholar
  36. 36.
    Jeyanthi R, Panduranga Rao K. Equilibrium swelling behavior of collagen-poly (HEMA) copolymeric hydrogels, J App Polymer Sci 1991; 43:2332–2336.CrossRefGoogle Scholar
  37. 37.
    Uemura K, Kurono Y, Ikeda K. Application of implantable collagen-poly (hydroxyethyl methacrylate) hydrogels containing camptothecin derivative to solid tumor chemotherapy, Jpn J Hosp Pharm Byoin Yakugaku 1994; 20:33–40.CrossRefGoogle Scholar
  38. 38.
    Jeyanthi R, Nagarajan B, Panduranga Rao, K. Solid tumor chemotherapy using implantable collagenpoly(HEMA) hydrogel containing 5-fluorouracil, J Pharm Pharmacol 1991; 43:60–62.PubMedCrossRefGoogle Scholar
  39. 39.
    Ulbrich K, Subr V, Seymour LW, Duncan R. Novel biodegradable hydrogels prepared using the divinylic crosslinking agent N,O-dimethacryloylhydroxylamine. Part 1. Synthesis and characterization of rates of gel degradation, and rate of release of model drugs, in vitro and in vivo, J Controlled Rel 1993; 24:181–190.CrossRefGoogle Scholar
  40. 40.
    Ulbrich K, Subr V, Podperova P, Buresova M. Synthesis of novel hydrolytically degradable hydrogels for controlled drug release, J Controlled Rel 1995; 34:155–165.CrossRefGoogle Scholar
  41. 41.
    Weissleder R, Bogdanov A, Frank H, et al. AUR Memorial Award 1993. A drug system (PDH) for interventional radiology. Synthesis, properties, and efficacy, Investigative Radiology 1993; 28:1083–1089.PubMedCrossRefGoogle Scholar
  42. 42.
    Weissleder R, Poss K, Wilkinson R, Zhou C, Bogdanov A, Jr. Quantitation of slow drug release from an implantable and degradable gentamicin conjugate by in vivo magnetic resonance imaging, Antimicrobial Agents & Chemoth 1995; 39:839–845.CrossRefGoogle Scholar
  43. 43.
    Giammona G, Pitarresi G, Carlisi B, Cavallaro G. Crosslinked alpha, beta-polyasparthydrazide micromatrices for controlled release of anticancer drugs, J Bioact Compat Polymers 1995; 10:28–40.Google Scholar
  44. 44.
    Giammona G, Carlisi B, Cavallaro G, Pitarresi G, Spampinato S. A new water-soluble synthetic polymer, alpha, beta -polyasparthydrazide, as poential plasm expander and drug carrier, J Controlled Rel 1994; 29:63–72.CrossRefGoogle Scholar
  45. 45.
    Ravichandran P, Shantha KL, Rao KP. Preparation, swelling characteristics and evaluation of hydrogels for stomach specific drug delivery, Int J Pharm 1997; 154:89–94.CrossRefGoogle Scholar
  46. 46.
    Yamini C, Shantha KL, Rao KP. Synthesis and characterization of po1y[n-viny1–2-pyrro1idone-po1yethylene glycol diacrylate] copolymeric hydrogels for drug delivery, J Macromol Sci Pure Appl Chem A34 1997; 12:2461–2470.CrossRefGoogle Scholar
  47. 47.
    Dolz M, Gonzalez F, Herraez M, Diez O. Influence of polymer concentration on tne 5-nuorouracii release rate from Carbopol hydrogels, J Pharmacie de Belgique 1994; 49:509–513.Google Scholar
  48. 48.
    Dolz M, Rodriguez FG, Dominguez MH. The influence ot neutralizer concentration on me rheologicaa behavior of a 0.1% Carbopol hydrogel, Pharmazie 1992; 47:351–355.Google Scholar
  49. 49.
    Gelliarth KA, DeSantis P. A brief review of the pathophysiology and treatment of cutaneous i-cell lymphoma “mycosis fungoides”, Ostomy Wound Manag 1995; 41:44–48.Google Scholar
  50. 50.
    Gross G, Roussaki A, Pfister H. Postoperative interferon hydrogel treatment. A method tor the successful therapy of chronic persistent giant condylomas in an immunologically deficient patient with Hodgkin’s disease, Hautarzt 1988; 39:684–687.PubMedGoogle Scholar
  51. 51.
    Fierlbeck G, Rassner G, Pfister H. Condylomata acuminata in children-detection ot V b/11 ana 2. Local therapy with interferon-beta hydrogel, Hautarzt 1992; 43:148–151.PubMedGoogle Scholar
  52. 52.
    Umejima H, Kikuchi A, Kim NS, Uchida T, Goto S. Preparation and evaluation ot Eucragit gels. v Rectal absorption of 5-fluorouracil from Eudispert hv gels in rats, J Pharm Sci 1995; 84:199–202.PubMedCrossRefGoogle Scholar
  53. 53.
    Okada N, Fushimi M, Nagata Y, et al. A quantative in vivo method of analyzing human tumor-induced angiogenesis in mice using agarose microencapsulation and hemoglobin enzyme-linked immunosorbent assay, Jap J Cancer Res 1995; 86:1182–1188.CrossRefGoogle Scholar
  54. 54.
    Okada N, Kaneda Y, Miyamoto H, et al. Selective enhancement by tumor necrosis tactor-alpha ot vascular permeability of new blood vessels induced with agarose hydrogel-entrapped Meth-A fibrosarcoma cells, Jap J Cancer Res 1996; 87:831–836.CrossRefGoogle Scholar
  55. 55.
    Winchester JF, Rahman A, Tilstone WJ, Kessler A, Mortensen L, Schreiner (E, Schein S. sorbent removal of adriamycin in vitro and in vivo, Cancer Treatment Rep 1979; 63:1787–1793.Google Scholar
  56. 56.
    Plate NA, Valuev LI, Valueva TA, Chupov VV. Biospecific haemosorbents based on proteinase inhibitor. I. Synthesis and properties, Biomaterials 1993; 14:51–56.PubMedCrossRefGoogle Scholar
  57. 57.
    Plate NA, Valuev LI. Affinity chemotherapy and diagnostics using some novel polymeric nydrogeis, Polymers Adv Technol 1994; 5:634–644.CrossRefGoogle Scholar
  58. 58.
    Tracey KJ, Mutkoski R, Lopez JA, Franzblau W, Franzblau C. Radioimmunoassay tor methotrexate using hydroxyethylmethacrylate hydrogel, Cancer Chemother Pharmacol 1983; 10:96–99.PubMedCrossRefGoogle Scholar
  59. 59.
    Lawrence RM, Hoeprich PD. Totally synthetic medium tor susceptibility testing, Anumicrobiat Agents Chemother 1978; 13:394–398.CrossRefGoogle Scholar
  60. 60.
    Teicher, BA. Antiangiogenic Agents in Cancer Therapy Humana Press, Totowa, NJ, 1999.Google Scholar
  61. 61.
    Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vascuarture in a mouse model, Science 1998; 279:377–380.PubMedCrossRefGoogle Scholar
  62. 62.
    Wichterle O, Lim D. Hydrophilic gels for biological use, Nature 1960; 185:117–118.CrossRefGoogle Scholar
  63. 63.
    Park K, Park H. Smart hydrogels, in Concise Polymeric Materials Encyctopeaia (Saanione CD). CRC, Boca Raton, FL, 1999, pp 1476–1478.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Sung-Joo Hwang
  • Namjin Baek
  • Haesun Park
  • Kinam Park

There are no affiliations available

Personalised recommendations