Skip to main content

Complexity of Protein-Protein Interaction Networks, Complexes, and Pathways

  • Chapter
  • 248 Accesses

Abstract

The focus of proteomic research in developing experimental techniques for protein identification and interaction studies is shifting from individual proteins to their organization in reaction pathways, complexes, and networks, i.e., to the proteome-the large-scale network comprising all protein-protein interactions in a cell, tissue, or organism. The number of complete proteomes in accessible databases exceeds 100 (1) thus making possible proteome-wide and across-proteomes analyses. Such a systemic approach offers a view of the biological machine as a whole, revealing important new details of its work. Thus, one could regard aging and diseases as specific patterns of protein network degradation and, vice versa, evolutionary beneficial factors as creating patterns of larger proteome complexity. Medicines’ side effects could be analyzed in terms of the extremely high network connectivity, thus orienting the search for new medicines toward protein complexes, rather than individual compounds (2). Potential drug and marker candidates could be identified proceeding from protein connectivity and centrality patterns.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. www.ebi.ac.uk/proteome/.

    Google Scholar 

  2. Vogelstein, B., Lane, D., and Levine, A. J. (2000) Surfing the p53 Network. Nature 408, 307–310.

    Google Scholar 

  3. Kanehisa, M., Goto, S., Kawashima, S., and Nakaya, A. (2002) The KEGG Databases at GenomeNet. Nucleic Acids Res. 30, 42–46; see also KEGG Encyclopedia, http://fire2.scl.genome.ad.jp/kegg/kegg2.html.

    Google Scholar 

  4. Harary, F. (1972) Graph Theory. Addison-Wesley, Reading, MA.

    Google Scholar 

  5. Trinajstie, N. (1992) Chemical Graph Theory. CRC Press, Boca Raton, FL.

    Google Scholar 

  6. Todeschini, R. and Consonni, (2000) V. Handbook of Molecular Descriptors. Wiley Europe, Weinheim.

    Google Scholar 

  7. Devillers, J. and Balaban, A. T. (eds.) (1999) Topological Indices and Related Descriptors in QSAR and QSPR. Gordon & Breach, Reading, UK.

    Google Scholar 

  8. Shannon, C. and Weaver, W. (1949) Mathematical Theory of Communications. University of Illinois Press, Urbana, IL.

    Google Scholar 

  9. Bonchev, D. (1983) Information-Theoretic Indices for Characterization of Chemical Structures. Research Studies Press, Chichester, U. K.

    Google Scholar 

  10. Nicolis, G. and Prigogine, I. (1989) Exploring Complexity. Piper, Munich.

    Google Scholar 

  11. Rashewsky, N. (1955) Life, information theory, and topology. Bull. Math. Biophys. 17, 229–235.

    Article  Google Scholar 

  12. Mowshowitz, A. (1968) Entropy and the complexity of graphs. I. An index of the relative complexity of a graph. Bull. Math. Biophys. 30, 175–204.

    Article  PubMed  CAS  Google Scholar 

  13. Bertz, S. H. (1983) A mathematical model of molecular complexity, in Chemical Applications of Topology and Graph Theory ( King, R. B., ed.), Elsevier, Amsterdam, pp. 206–221.

    Google Scholar 

  14. Bonchev, D. and Polansky, O. E. (1987) On the topological complexity of chemical systems, in Graph Theory and Topology in Chemistry ( King, R. B. and Rouvray, D.H., eds.), Elsevier, Amsterdam, pp. 126–158.

    Google Scholar 

  15. Bonchev, D. and Rouvray, D. H. (eds.) (2003) Mathematical Chemistry, vol. VII, Complexity in Chemistry. Taylor and Francis, London, UK.

    Google Scholar 

  16. Wiener, H. (1947) Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69, 17–20.

    Article  PubMed  CAS  Google Scholar 

  17. Bonchev, D. (1989) The concept for the center of a chemical structure and its applications. Theochemistry 185, 155–168.

    Article  Google Scholar 

  18. Bonchev, D. (1995) Topological order in molecules. 1. Molecular branching revisited. Theochemistry 336, 137–156.

    Article  CAS  Google Scholar 

  19. Bonchev, D., Balaban, A. T., Liu, X., and Klein, D. J. (1994) Molecular cyclicity and centricity of polycyclic graphs. I. Cyclicity based on resistance distances or reciprocal distances. Int. J. Quantum Chem. 50, 1–20.

    Article  CAS  Google Scholar 

  20. Bertz, S. H. and Herndon, W. C. (1986) The similarity of graphs and molecules, in Artificial Intelligence Applications to Chemistry ( Pierce, T. H. and Hohne, B. A., eds.). ACS, Washington, DC, pp. 169–175.

    Chapter  Google Scholar 

  21. Bertz, S. H. and Wright, W. F. (1998) The graph theory approach to synthetic analysis: definition and application of molecular complexity and synthetic complexity. Graph Theory Notes NYAcad. Sci. 35, 32–48.

    Google Scholar 

  22. Bonchev, D. (1997) Novel indices for the topological complexity of molecules. SAR QSAR Environ. Res. 7, 23–43.

    Article  CAS  Google Scholar 

  23. Bonchev, D. (2000) Overall connectivities/topological complexities: a new powerful tool for QSPR/QSAR. J. Chem. Inf. Comput. Sci. 40, 934–941.

    Article  PubMed  CAS  Google Scholar 

  24. Rucker, G. and Rucker, C. (2000) Walk count, labyrinthicity and complexity of acyclic and cyclic graphs and molecules. J. Chem. Inf. Comput. Sci. 40, 99–106.

    Article  PubMed  Google Scholar 

  25. Gutman, I., Rucker, C., and Rucker G. (2001) On walks in molecular graphs. J. Chem. Inf. Comput. Sci. 41, 739–745.

    Article  PubMed  CAS  Google Scholar 

  26. Rücker, G. and Rucker, C. (2001) Substructure, subgraph and walk counts as measures of the complexity of graphs and molecules. J. Chem. Inf. Comput. Sci. 41, 1457–1462.

    Article  PubMed  Google Scholar 

  27. Bonchev, D. and Seitz, W. A. (1996) The concept of complexity in chemistry, in Concepts in Chemistry: A Contemporary Challenge ( Rouvray, D. H., ed.). Research Studies Press, Taunton, UK, pp. 348–376.

    Google Scholar 

  28. Bonchev, D. and Trinajstié, N. (1977) Information theory, distance matrix, and molecular branching. J. Chem. Phys. 67, 4517–4533.

    Article  CAS  Google Scholar 

  29. Gavin, A.-C., Böschke, M., Krause, R., et al. (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147.

    Article  PubMed  CAS  Google Scholar 

  30. Barabasi, A.-L. and Albert, R. (1999) Emergence of scaling in random networks. Science 286, 509–512.

    Article  PubMed  Google Scholar 

  31. Jeong, H., Tombor, B., Albert R., Oltval Z. N., and Barabasi, A.-L. (2000) The large-scale organization of metabolic networks. Nature 407, 651–654.

    Article  PubMed  CAS  Google Scholar 

  32. Watts, D. J. and Strogatz, S. H. (1998) Collective dynamics of “small-world” networks. Nature 393, 440–442.

    Article  PubMed  CAS  Google Scholar 

  33. Platt, J. R. (1947) Influence of neighbor bonds on additive bond properties in paraffins. J. Chem. Phys. 15, 419–420.

    Article  CAS  Google Scholar 

  34. Ho, Y., Gruhler, A., Heilbut, A., et al. (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bonchev, D. (2003). Complexity of Protein-Protein Interaction Networks, Complexes, and Pathways. In: Conn, P.M. (eds) Handbook of Proteomic Methods. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-414-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-414-6_31

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-504-0

  • Online ISBN: 978-1-59259-414-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics