Skip to main content

Gene Therapy of Chronic Lymphocytic Leukemia

  • Chapter
Chronic Lymphocytic Leukemia

Part of the book series: Contemporary Hematology ((CH))

  • 196 Accesses

Abstract

The term gene therapy describes a new type of medicine mediated by the transfer of genes into somatic cells. Knowledge of viruses and how they introduce their genetic material into cells has allowed for development of virus-derived “vectors” that can infect cells and thereby introduce a selected gene(s). Through advances in molecular biology we can achieve high-level expression of the transferred genes (or transgene) in almost any type of mammalian cell. The transgene can direct synthesis of an intracellular, cell surface, or secreted protein(s) that complements a genetic defect or that provides for a desired phenotype. Alternatively, the transferred genetic material may mitigate expression of genes encoding unwanted or mutated proteins through “gene interference” or gene complementation. Conceivably, transfer and expression of appropriate genes could be used to correct for genetic deficiencies or allow for expression of a desired characteristic(s) by vector-infected (or transduced) cells. Although we have yet to realize the application of this technology in clinical practice, gene therapy arguably has tremendous potential for altering our approach to the treatment of a variety of genetic and acquired diseases, including cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. National Institutes of Health, Office of Biotechnology Activities. Clinical Trials in Human Gene Transfer-Recombinant and Gene Transfer, 2002, http://www4.od.nih.gov/oba/rac/clinicaltrial.htm

  2. Dunbar CE, Cottler-Fox M, O’ Shaughnessy JA, et al. Retrovirally marked CD34-enriched peripheral blood and bone marrow cells contribute to long-term engraftment after autologous transplantation. Blood 1995; 85: 3048–3057.

    PubMed  CAS  Google Scholar 

  3. Verhasselt B, De Smedt M, Verhelst R, Naessens E, Plum J. Retrovirally transduced CD34++ human cord blood cells generate T cells expressing high levels of the retroviral encoded green fluorescent protein marker in vitro. Blood 1998; 91: 431–440.

    PubMed  CAS  Google Scholar 

  4. Stewart AK, Sutherland DR, Nanji S, et al. Engraftment of gene-marked hematopoietic progenitors in myeloma patients after transplant of autologous long-term marrow cultures. Hum Gene Ther 1999; 10: 1953–1964.

    Article  PubMed  CAS  Google Scholar 

  5. Kay MA, Glorioso JC, Naldini L. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med 2001; 7: 33–40.

    Article  PubMed  CAS  Google Scholar 

  6. Sharma S, Cantwell M, Kipps TJ, Friedmann T. Efficient infection of a human T-cell line and of human primary peripheral blood leukocytes with a pseudotyped retrovirus vector. Proc Natl Acad Sci USA 1996;93:11, 842–11, 847.

    Google Scholar 

  7. Lukashok SA, Horwitz MS. New perspectives in adenoviruses. Curr Clin Top Infect Dis 1998; 18: 286–305.

    PubMed  CAS  Google Scholar 

  8. Curiel DT. Strategies to adapt adenoviral vectors for targeted delivery. Ann NY Acad Sci 1999; 886: 158–171.

    Article  PubMed  CAS  Google Scholar 

  9. Yang Y, Ertl HC, Wilson JM. MHC class I-restricted cytotoxic T lymphocytes to viral antigens destroy hepatocytes in mice infected with El-deleted recombinant adenoviruses. Immunity 1994; 1: 433–442.

    Article  PubMed  CAS  Google Scholar 

  10. Yang Y, Wilson JM. Clearance of adenovirus-infected hepatocytes by MHC class I-restricted CD4+ CTLs in vivo. J Immunol 1995; 155: 2564–2570.

    PubMed  CAS  Google Scholar 

  11. Borgland SL, Bowen GP, Wong NC, Libermann TA, Muruve DA. Adenovirus vector-induced expression of the C-X-C chemokine IP-l0 is mediated through capsid-dependent activation of NF-kappaB. J Virol 2000; 74: 3941–3947.

    Article  PubMed  CAS  Google Scholar 

  12. Cantwell MJ, Sharma S, Friedmann T, Kipps TJ. Adenovirus vector infection of chronic lymphocytic leukemia B cells. Blood 1996; 88: 4676–4683.

    PubMed  CAS  Google Scholar 

  13. McDonald D, Stockwin L, Matzow T, Blair Zajdel ME, Blair GE. Coxsackie and adenovirus receptor (CAR)-dependent and major histocompatibility complex (MHC) class I-independent uptake of recombinant adenoviruses into human tumour cells. Gene Ther 1999; 6: 1512–1519.

    Article  PubMed  CAS  Google Scholar 

  14. Santis G, Legrand V, Hong SS, et al. Molecular determinants of adenovirus serotype 5 fibre binding to its cellular receptor CAR. J Gen Virol 1999; 80: 1519–1527.

    PubMed  CAS  Google Scholar 

  15. Hidaka C, Milano E, Leopold PL, et al. CAR-dependent and CAR-independent pathways of adenovirus vector-mediated gene transfer and expression in human fibroblasts. J Clin Invest 1999; 103: 579–587.

    Article  PubMed  CAS  Google Scholar 

  16. Gomez-Navarro J, Curiel DT, Douglas JT. Gene therapy for cancer. Eur J Cancer 1999; 35: 867–885.

    Article  PubMed  CAS  Google Scholar 

  17. Kouraklis G. Gene therapy for cancer: from the laboratory to the patient. Dig Dis Sci 2000; 45: 1045–1052.

    Article  PubMed  CAS  Google Scholar 

  18. Muzyczka N. Use of adeno-associated virus as a general transduction vector for mammalian cells. Curr Top Microbiol Immunol 1992; 158: 97–129.

    Article  PubMed  CAS  Google Scholar 

  19. Duan D, Sharma P, Yang J, et al. Circular intermediates of recombinant adeno-associated virus have defined structural characteristics responsible for long-term episomal persistence in muscle tissue. J Virol 1998; 72: 8568–8577.

    PubMed  CAS  Google Scholar 

  20. Nakai H, Iwaki Y, Kay MA, Couto LB. Isolation of recombinant adeno-associated virus vector-cellular DNA junctions from mouse liver. J Virol 1999; 73: 5438–5447.

    PubMed  CAS  Google Scholar 

  21. Miao CH, Snyder RO, Schowalter DB, et al. The kinetics of rAAV integration in the liver. Nat Genet 1998; 19: 13–15.

    Article  PubMed  CAS  Google Scholar 

  22. Russell DW, Kay MA. Adeno-associated virus vectors and hematology. Blood 1999; 94: 864–874.

    PubMed  CAS  Google Scholar 

  23. Monahan PE, Samulski RJ. Adeno-associated virus vectors for gene therapy: more pros than cons? Mol Med Today 2000; 6: 433–440.

    Article  PubMed  CAS  Google Scholar 

  24. Tal J. Adeno-associated virus-based vectors in gene therapy. J Biomed Sci 2000; 7: 279–291.

    Article  PubMed  CAS  Google Scholar 

  25. Clark KR, Liu X, McGrath JP, Johnson PR. Highly purified recombinant adeno-associated virus vectors are biologically active and free of detectable helper and wild-type viruses. Hum Gene Ther 1999; 10: 1031–1039.

    Article  PubMed  CAS  Google Scholar 

  26. Omori F, Messner HA, Ye C, et al. Nontargeted stable integration of recombinant adeno-associated virus into human leukemia and lymphoma cell lines as evaluated by fluorescence in situ hybridization. Hum Gene Ther 1999; 10: 537–543.

    Article  PubMed  CAS  Google Scholar 

  27. Krisky DM, Marconi PC, Oligino TJ, et al. Development of herpes simplex virus replication-defective multigene vectors for combination gene therapy applications. Gene Ther 1998; 5: 1517–1530.

    Article  PubMed  CAS  Google Scholar 

  28. Wolfe D, Goins WF, Kaplan TJ, et al. Herpesvirus-mediated systemic delivery of nerve growth factor. Mol Ther 2001; 3: 61–69.

    Article  PubMed  CAS  Google Scholar 

  29. Eling DJ, Johnson PA, Sharma S, Tufaro F, Kipps T.T. Chronic lymphocytic leukemia B cells are highly sensitive to infection by herpes simplex virus-1 via herpesvirus-entry-mediator A. Gene Ther 2000; 7: 1210–1216.

    Article  PubMed  CAS  Google Scholar 

  30. Frenkel N, Singer O, Kwong AD. Minireview: the herpes simplex virus amplicon-a versatile defective virus vector. Gene Ther 1994; 1: S40–46.

    PubMed  Google Scholar 

  31. Spaete RR, Frenkel N. The herpes simplex virus amplicon: a new eucaryotic defective-virus cloning-amplifying vector. Cell 1982; 30: 295–304.

    Article  PubMed  CAS  Google Scholar 

  32. Fraefel C, Song S, Lim F, et al. Helper virus-free transfer of herpes simplex virus type 1 plasmid vectors into neural cells. J Virol 1996; 70: 7190–7197.

    PubMed  CAS  Google Scholar 

  33. Stavropoulos TA, Strathdee CA. An enhanced packaging system for helper-dependent herpes simplex virus vectors. J Virol 1998; 72: 7137–7143.

    PubMed  CAS  Google Scholar 

  34. Saeki Y, Ichikawa T, Saeki A, et al. Herpes simplex virus type 1 DNA amplified as bacterial artificial chromosome in Escherichia coli: rescue of replication-competent virus progeny and packaging of amplicon vectors. Hum Gene Ther 1998; 9: 2787–2794.

    Article  PubMed  CAS  Google Scholar 

  35. Tolba KA, Bowers WJ, Hilchey SP, et al. Development of herpes simplex virus-1 amplicon-based immunotherapy for chronic lymphocytic leukemia. Blood 2001; 98: 287–295.

    Article  PubMed  CAS  Google Scholar 

  36. Han S, Mahato RI, Sung YK, Kim SW. Development of biomaterials for gene therapy. Mol Ther 2000; 2: 302–317.

    Article  PubMed  CAS  Google Scholar 

  37. Kozak M. Structural features in eukaryotic mRNAs that modulate the initiation of translation. J Biol Chem 1991; 266: 19867–19870.

    PubMed  CAS  Google Scholar 

  38. Zhu D, Rice J, Savelyeva N, Stevenson FK. DNA fusion vaccines against B-cell tumors. Trends Mol Med 2001; 7: 566–572.

    Article  PubMed  CAS  Google Scholar 

  39. Rice J, Elliott T, Buchan S, Stevenson FK. DNA fusion vaccine designed to induce cytotoxic T cell responses against defined peptide motifs: implications for cancer vaccines. J Immunol 2001; 167: 1558–1565.

    PubMed  CAS  Google Scholar 

  40. Stevenson FK, Rosenberg W. DNA vaccination: a potential weapon against infection and cancer. Vox Sang 2001; 80: 12–18.

    Article  PubMed  CAS  Google Scholar 

  41. Uchida E, Mizuguchi H, Ishii-Watabe A, Hayakawa T. Comparison of the efficiency and safety of non-viral vector-mediated gene transfer into a wide range of human cells. Biol Pharm Bull 2002; 25: 891–897.

    Article  PubMed  CAS  Google Scholar 

  42. Dalpke AH, Zimmermann S, Albrecht I, Heeg K. Phosphodiester CpG oligonucleotides as adjuvants: polyguanosine runs enhance cellular uptake and improve immunostimulative activity of phosphodiester CpG oligonucleotides in vitro and in vivo. Immunology 2002; 106: 102–112.

    Article  PubMed  CAS  Google Scholar 

  43. Yuen AR, Sikic BI. Clinical studies of antisense therapy in cancer. Front Biosci 2000; 5: D588–593.

    Article  PubMed  CAS  Google Scholar 

  44. Hemmi H, Takeuchi O, Kawai T, et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000; 408: 740–745.

    Article  PubMed  CAS  Google Scholar 

  45. Weiner GJ. The immunobiology and clinical potential of immunostimulatory CpG oligodeoxynucleotides. J Leukoc Biol 2000; 68: 455–463.

    PubMed  CAS  Google Scholar 

  46. Decker T, Schneller F, Kronschnabl M, et al. Immunostimulatory CpG-oligonucleotides induce functional high affinity IL-2 receptors on B-CLL cells: costimulation with IL-2 results in a highly immunogenic phenotype. Exp Hematol 2000; 28: 558–568.

    Article  PubMed  CAS  Google Scholar 

  47. Castro JE, Motta M, Kipps TJ. The level of cell surface expression of TLR-9 does not correlate with the degree of activation mediated by immunostimulatory DNA sequences in patients with B cell CLL. In: Proceedings of the American Society of Hematology Annual Meeting, Orlando, FL, 2001, abstract 643.

    Google Scholar 

  48. Marschitz I, Tinhofer I, Hittmair A, et al. Analysis of Bcl-2 protein expression in chronic lymphocytic leukemia. A comparison of three semiquantitation techniques. Am J Clin Pathol 2000; 113: 219–229.

    Article  PubMed  CAS  Google Scholar 

  49. Pepper C, Thomas A, Hoy T, Cotter F, Bentley P. Antisense-mediated suppression of Bcl-2 highlights its pivotal role in failed apoptosis in B-cell chronic lymphocytic leukaemia. Br J Haematol 1999; 107: 611–615.

    Article  PubMed  CAS  Google Scholar 

  50. Klein A, Miera O, Bauer O, Golfier S, Schriever F. Chemosensitivity of B cell chronic lymphocytic leukemia and correlated expression of proteins regulating apoptosis, cell cycle and DNA repair. Leukemia 2000; 14: 40–46.

    Article  PubMed  CAS  Google Scholar 

  51. Stoetzer OJ, Pogrebniak A, Scholz M, et al. Drug-induced apoptosis in chronic lymphocytic leukemia. Leukemia 1999; 13: 1873–1880.

    Article  PubMed  CAS  Google Scholar 

  52. Pepper C, Hooper K, Thomas A, Hoy T, Bentley P. Bcl-2 antisense oligonucleotides enhance the cytotoxicity of chlorambucil in B-cell chronic lymphocytic leukaemia cells. Leuk Lymphoma 2001; 42: 491–498.

    Article  PubMed  CAS  Google Scholar 

  53. O’Brien S, et al. Bc1–2 antisense (Genasense) as monotherepy for refractory chronic lymphocytic leukemia. In: Proceeding of the American Society of Hematology Annual Meeting, Orlando, FL, 2001.

    Google Scholar 

  54. Bubenik J, Zeuthen J, Bubenikova D, Simova J, Jandlova T. Gene therapy of cancer: use of IL-2 gene transfer and kinetics of local T and NK cell subsets. Anticancer Res 1993; 13: 1457–1460.

    PubMed  CAS  Google Scholar 

  55. Simova J, Bubenik J, Jandlova T, Indrova M. Irradiated IL-2 gene-modified plasmacytoma vaccines are more efficient than live vaccines. Int J Oncol 1998; 12: 1195–1198.

    PubMed  CAS  Google Scholar 

  56. Takahashi S, Rousseau RF, Yotnda P, et al. Autologous antileukemic immune response induced by chronic lymphocytic leukemia B cells expressing the CD40 ligand and interleukin 2 transgenes. Hum Gene Ther 2001; 12: 659–670.

    Article  PubMed  CAS  Google Scholar 

  57. Kato K, Cantwell MJ, Sharma S, Kipps Ti. Gene transfer of CD40-ligand induces autologous immune recognition of chronic lymphocytic leukemia B cells. J Clin Invest 1998; 101: 1133–1141.

    Article  PubMed  CAS  Google Scholar 

  58. Nishimura T, Watanabe K, Yahata T, et al. The application of IL-12 to cytokine therapy and gene therapy for tumors. Ann NY Acad Sci 1996; 795: 375–378.

    Article  PubMed  CAS  Google Scholar 

  59. Fernandez NC, Levraud JP, Haddada H, Perricaudet M, Kourilsky P. High frequency of specific CD8+ T cells in the tumor and blood is associated with efficient local IL-12 gene therapy of cancer. J Immunol 1999; 162: 609–617.

    PubMed  CAS  Google Scholar 

  60. Aguilar-Santelises M, Gigliotti D, Osorio LM, et al. Cytokine expression in B-CLL in relation to disease progression and in vitro activation. Med Oncol 1999; 16: 289–295.

    Article  PubMed  CAS  Google Scholar 

  61. Gautam SC, Pindolia KR, Xu YX, et al. Antileukemic activity of TNF-alpha gene therapy with myeloid progenitor cells against minimal leukemia. J Hematother 1998; 7: 115–125.

    Article  PubMed  CAS  Google Scholar 

  62. Gautam SC, Xu YX, Pindolia KR, et al. TNF-alpha gene therapy with myeloid progenitor cells lacks the toxicities of systemic TNF-alpha therapy. J Hematother 1999; 8: 237–245.

    Article  PubMed  CAS  Google Scholar 

  63. Ranheim EA, Kipps TJ. Tumor necrosis factor-alpha facilitates induction of CD80 (B7–1) and CD54 on human B cells by activated T cells: complex regulation by IL-4, IL-10, and CD40L. Cell Immunol 1995; 161: 226–235.

    Article  PubMed  CAS  Google Scholar 

  64. Sivaraman S, Venugopal P, Ranganathan R, et al. Effect of interferon-alpha on CD20 antigen expression of B-cell chronic lymphocytic leukemia. Cytokines Cell Mol Ther 2000; 6: 81–87.

    Article  PubMed  CAS  Google Scholar 

  65. Sivaraman S, Deshpande CG, Ranganathan R, et al. Tumor necrosis factor modulates CD 20 expression on cells from chronic lymphocytic leukemia: a new role for TNF alpha? Microsc Res Tech 2000; 50: 251–257.

    Article  PubMed  CAS  Google Scholar 

  66. Villani F, Galimberti M, Mazzola G, et al. Pulmonary toxicity of alpha tumor necrosis factor in patients treated by isolation perfusion. J Chemother 1995; 7: 452–454.

    PubMed  CAS  Google Scholar 

  67. Krigel RL, Padavic-Shaller KA, Rudolph AA, et al. Hemorrhagic gastritis as a new dose-limiting toxicity of recombinant tumor necrosis factor. J Natl Cancer Inst 1991; 83: 129–131.

    Article  PubMed  CAS  Google Scholar 

  68. Kuei JH, Tashkin DP, Figlin RA. Pulmonary toxicity of recombinant human tumor necrosis factor. Chest 1989; 96: 334–338.

    Article  PubMed  CAS  Google Scholar 

  69. Man RA, Addison CL, Snider D, et al. Tumour immunotherapy using an adenoviral vector expressing a membrane-mutant of murine TNF alpha. Gene Ther 1997; 4: 1181–1188.

    Article  Google Scholar 

  70. Marr RA, Hitt M, Gauldie J, Muller WJ, Graham FL. A p75 tumor necrosis factor receptor-specific mutant of murine tumor necrosis factor alpha expressed from an adenovirus vector induces an antitumor response with reduced toxicity. Cancer Gene Ther 1999; 6: 465–474.

    Article  PubMed  CAS  Google Scholar 

  71. Cantwell M, Kipps TJ. Infection of CLL using chimeric construcs of TNF. In: Proceedings of the IWCLL, San Diego, CA, 2002.

    Google Scholar 

  72. Hirano N, Takahashi T, Ohtake S, et al. Expression of costimulatory molecules in human leukemias. Leukemia 1996; 10: 1168–1176.

    PubMed  CAS  Google Scholar 

  73. Cantwell MJ, Hua T, Pappas J, Kipps TJ. Acquired CD40-ligand deficiency in chronic lymphocytic leukemia. Nature Med 1997; 3: 984–989.

    Article  PubMed  CAS  Google Scholar 

  74. Ranheim EA, Kipps TJ. Activated T cells induce expression of B7/BBI on normal or leukemic B cells through a CD40-dependent signal. J Exp Med 1993; 177: 925–935.

    Article  PubMed  CAS  Google Scholar 

  75. Van Kooten C, Banchereau J, CD40–CD40ligand: a multifunctional receptor-ligand pair. Adv Immunol 1996; 61: 1–77.

    Article  PubMed  Google Scholar 

  76. Lanier LL, O’Fallon S, Somoza C, et al. CD80 (B7) and CD86 (B70) provide similar costimulatory signals for T cell proliferation, cytokine production, and generation of CTL. J Immunol 1995; 154: 97–105.

    PubMed  CAS  Google Scholar 

  77. Matulonis U, Dosiou C, Freeman G, et al. B7–1 is superior to B7–2 costimulation in the induction and maintenance of T cell-mediated antileukemia immunity. Further evidence that B7–1 and B7–2 are functionally distinct. J Immunol 1996; 156: 1126–1131.

    PubMed  CAS  Google Scholar 

  78. Wierda WG, Cantwell MJ, Woods SJ, et al. CD40-ligand (CD 154) gene therapy for chronic lymphocytic leukemia. Blood 2000; 96: 2917–2924.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Castro, J.E., Kipps, T.J. (2004). Gene Therapy of Chronic Lymphocytic Leukemia. In: Faguet, G.B. (eds) Chronic Lymphocytic Leukemia. Contemporary Hematology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-412-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-412-2_18

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-355-8

  • Online ISBN: 978-1-59259-412-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics