Skip to main content

Stem Cells in Nonmelanoma Skin Cancer

  • Chapter
Stem Cells Handbook

Abstract

Mosaic pattern analysis and genetic mutations common to all cells of a cancer show that squamous cell carcinoma (SCC) and basal cell carcinoma (BCC), as well as squamous dysplasias, are clonal, whereas focal hyperplasias are polyclonal. One compartment of putative stem cells in the skin is located in the bulge of the hair follicle. Cells in this compartment are multipotent and can give rise to progeny that differentiate into any of the epidermal cells or adnexal organs. The interfollicular epidermal proliferative unit (EPU) in normal skin is a columnar group of differentiating cells overlying 10–12 basal cells and is believed to be derived from a single, centrally located stem cell with a more limited potential than the follicular stem cell. Stem cells in the skin cycle slowly and are identified by retaining a pulsed DNA marker for extended periods. Other markers include increased expression of β31 or β4 integrins; decreased expression of the transferrin receptor or connexin 43; and unique expression of keratins 15,17, and 19. BCCs appear to arise from follicular bulge stem cells and are associated with genetic changes in the Sonic Hedgehog developmental pathway. SCCs can arise from stem cells in the interfollicular EPU and infundibulum of the hair follicle as well as the bulge. Benign squamous neoplasms may also arise from the more differentiated cell populations. Alterations in the ras pathway have been implicated in both experimental and human squamous cell carcinogenesis. Genetic or epigenetic changes in stem cell markers that have been associated with squamous cell neoplasms include alterations in integrins, telomerase, c-myc, and p63.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 259.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews, E. J. (1974) The morphological, biological, and antigenic characteristics of transplantable papillomas and keratinous cysts induced by methylcholanthrene. Cancer Res. 34:2842–2851.

    PubMed  CAS  Google Scholar 

  • Arnold, I. and Watt, F. M. (2001) c-Myc activation in transgenic mouse epidermis results in mobilization of stem cells and differentiation of their progeny. Curr. Biol. 11:558–568.

    Google Scholar 

  • Aszterbaum, M., Epstein, J., Oro, A., et al. (1999) Ultraviolet and ionizing radiation enhance the growth of BCCs and trichoblastomas in patched heterozygous knockout mice. Nat. Med. 5:1285–1291.

    Article  PubMed  CAS  Google Scholar 

  • Bailleul, B., Surani, M. A., White, S., et al. (1990) Skin hyperkeratosis and papilloma formation in transgenic mice expressing a ras oncogene from a suprabasal keratin promoter. Cell 62:697–708.

    Article  PubMed  CAS  Google Scholar 

  • Bale, A. E. and Yu, K. P. (2001) The hedgehog pathway and basal cell carcinomas. Hum. Mol. Genet. 10:757–762.

    Article  PubMed  CAS  Google Scholar 

  • Berg, R. J., van Kranen, H. J., Rebel, H. G., et al. (1996) Early p53 alterations in mouse skin carcinogenesis by UVB radiation: immunohistochemical detection of mutant p53 protein in clusters of preneoplastic epidermal cells. Proc. Natl. Acad. Sci. USA 93:274–278.

    Article  PubMed  CAS  Google Scholar 

  • Bickenbach, J. R., Vormwald-Dogan, V., Bachor, C., Bleuel, K., Schnapp, G., and Boukamp, P. (1998) Telomerase is not an epidermal stem cell marker and is downregulated by calcium. J. Invest. Dermatol. 111:1045–1052.

    Article  PubMed  CAS  Google Scholar 

  • Binder, R. L., Gallagher, P. M., Johnson, G. R., et al. (1997) Evidence that initiated keratinocytes clonally expand into multiple existing hair follicles during papilloma histogenesis in SENCAR mouse skin. Mol. Carcinog. 20:151–158.

    Article  PubMed  CAS  Google Scholar 

  • Bonifas, J. M., Pennypacker, S., Chuang, P. T., et al. (2001) Activation of expression of hedgehog target genes in basal cell carcinomas. J. Invest. Dermatol. 116:739–742.

    Article  PubMed  CAS  Google Scholar 

  • Brakebusch, C., Grose, R., Quondamatteo, F., et al. (2000) Skin and hair follicle integrity is crucially dependent on beta 1 integrin expression on keratinocytes. EMBO J. 19:3990–4003.

    Article  PubMed  CAS  Google Scholar 

  • Brown, K., Strathdee, D., Bryson, S., Lambie, W., and Balmain, A. (1998) The malignant capacity of skin tumours induced by expression of a mutant H-ras transgene depends on the cell type targeted. Curr. Biol. 8:516–524.

    Article  PubMed  CAS  Google Scholar 

  • Burnham, D. K., Gahring, L. C., and Dayes, R. A. (1986) Clonal origin of tumors induced by ultraviolet radiation. J. Natl. Cancer Inst. 76:151–157.

    PubMed  CAS  Google Scholar 

  • Chan, E. F., Gat, U., McNiff, J. M., and Fuchs, E. (1999) A common human skin tumour is caused by activating mutations in beta-catenin. Nat. Genet. 21:410–413.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z., Smith, K. J., Skelton, H. G. III, Barrett, T. L., Greenway, H. T. Jr., and Lo, S. C. (2001) Telomerase activity in Kaposi’s sarcoma, squamous cell carcinoma, and basal cell carcinoma. Exp. Biol. Med. (Maywood) 226:753–757.

    CAS  Google Scholar 

  • Chiang, C., Swan, R. Z., Grachtchouk, M., et al. (1999) Essential role for Sonic hedgehog during hair follicle morphogenesis. Dev. Biol. 205:1–9.

    Article  PubMed  CAS  Google Scholar 

  • Cotsarelis, G., Sun, T. T., and Lavker, R. M. (1990) Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61:1329–1337.

    Article  PubMed  CAS  Google Scholar 

  • Deamant, F. D. and Iannaccone, P. M. (1987) Clonal origin of chemically induced papillomas: separate analysis of epidermal and dermal components. J. Cell Sci. 88(Pt. 3):305–312.

    PubMed  Google Scholar 

  • Dickson, M. A., Hahn, W. C., Ino, Y., et al. (2000) Human keratinocytes that express hTERT and also bypass a p16(INK4a)-enforced mechanism that limits life span become immortal yet retain normal growth and differentiation characteristics. Mol. Cell. Biol. 20:1436–1447.

    Article  PubMed  CAS  Google Scholar 

  • Frame, S. and Balmain, A. (1999) Target genes and target cells in carcinogenesis. Br. J. Cancer 80(Suppl. 1):28–33.

    PubMed  CAS  Google Scholar 

  • Gat, U., DasGupta, R., Degenstein, L., and Fuchs, E. (1998) De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated beta-catenin in skin. Cell 95:605–614.

    Article  PubMed  CAS  Google Scholar 

  • Ghali, L., Wong, S. T., Green, J., Tidman, N., and Quinn, A. G. (1999) Gli 1 protein is expressed in basal cell carcinomas, outer root sheath keratinocytes and a subpopulation of mesenchymal cells in normal human skin. J. Invest. Dermatol. 113:595–599.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Suarez, E., Samper, E., Flores, J. M., and Blasco, M. A. (2000) Telomerase- deficient mice with short telomeres are resistant to skin tumorigenesis. Nat. Genet. 26:114–117.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Suarez, E., Samper, E., Ramirez, A., et al. (2001) Increased epidermal tumors and increased skin wound healing in transgenic mice overexpressing the catalytic subunit of telomerase, mTERT, in basal keratinocytes. EMBO J. 20:2619–2630.

    Article  PubMed  CAS  Google Scholar 

  • Greenhalgh, D. A., Rothnagel, J. A., Quintanilla, M. I., et al. (1993) Induction of epidermal hyperplasia, hyperkeratosis, and papillomas in transgenic mice by a targeted v-Ha-ras oncogene. Mol. Carcinog. 7:99–110.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, L. A. and Tennant, R. W. (1994) Follicular origin of epidermal papillomas in y- Ha-ras transgenic TG.AC mouse skin. Proc. Natl. Acad. Sci. USA 91:7822–7826.

    Article  PubMed  CAS  Google Scholar 

  • Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G., and Birchmeier, W. (2001) beta- Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105:533–545.

    Article  PubMed  CAS  Google Scholar 

  • Iannaccone, P. M., Gardner, R. L., and Harris, H. (1978) The cellular origin of chemically induced tumors. J. Cell Biol. 29:249–269.

    CAS  Google Scholar 

  • Iannaccone, P. M., Weinberg, W. C., and Deamant, F. D. (1987) On the clonal origin of tumors: a review of experimental models. Int. J. Cancer 39:778–784.

    Article  PubMed  CAS  Google Scholar 

  • Jones, P. H. and Watt, F. M. (1993) Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell 73:713–724.

    Article  PubMed  CAS  Google Scholar 

  • Kanjilal, S., Pierceall, W. E., Cummings, K. K., Kripke, M. L., and Ananthaswamy, H. N. (1993) High frequency of p53 mutations in ultraviolet radiation-induced murine skin tumors: evidence for strand bias and tumor heterogeneity. Cancer Res. 53:2961–2964.

    PubMed  CAS  Google Scholar 

  • Klein-Szanto, A. J., Major, S. K., and Slaga, T. J. (1980) Induction of dark keratinocytes by 12-O-tetradecanoylphorbol-13-acetate and mezerein as an indicator of tumor-promoting efficiency. Carcinogenesis 1:399–406.

    Article  PubMed  CAS  Google Scholar 

  • Levy, L., Broad, S., Diekmann, D., Evans, R. D., and Watt, F. M. (2000) betal integrins regulate keratinocyte adhesion and differentiation by distinct mechanisms. Mol. Biol. Cell 11:453–466.

    PubMed  CAS  Google Scholar 

  • Liang, L. and Bickenbach, J. R. (2002) Somatic epidermal stem cells can produce multiple cell lineages during development. Stem Cells 20:21–31.

    Article  PubMed  Google Scholar 

  • Lyle, S., Christofidou-Solomidou, M., Liu, Y., Elder, D. E., Albelda, S., and Cotsarelis, G. (1998) The C8/144B monoclonal antibody recognizes cytokeratin 15 and defines the location of human hair follicle stem cells. J. Cell Sci. 111(Pt. 21):3179–3188.

    PubMed  CAS  Google Scholar 

  • Mackenzie, I. C. (1997) Retroviral transduction of murine epidermal stem cells demonstrates clonal units of epidermal structure. J. Invest. Dermatol. 109:377–383.

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie, I. C. and Bickenbach, J. R. (1985) Label-retaining keratinocytes and Langerhans cells in mouse epithelia. Cell Tissue Res. 242:551–556.

    Article  PubMed  CAS  Google Scholar 

  • Mainiero, F., Murgia, C., Wary, K. K., et al. (1997) The coupling of alpha6beta4 integrin to Ras-MAP kinase pathways mediated by Shc controls keratinocyte proliferation. EMBO J. 16:2365–2375.

    Article  PubMed  CAS  Google Scholar 

  • McGowan, K. M. and Coulombe, P. A. (1998) Onset of keratin 17 expression coincides with the definition of major epithelial lineages during skin development. J. Cell Biol. 143:469–486.

    Article  PubMed  CAS  Google Scholar 

  • Michel, M., Torok, N., Godbout, M. J., et al. (1996) Keratin 19 as a biochemical marker of skin stem cells in vivo and in vitro: keratin 19 expressing cells are differentially localized in function of anatomic sites, and their number varies with donor age and culture stage. J. Cell Sci. 109(Pt. 5):1017–1028.

    PubMed  CAS  Google Scholar 

  • Miller, S. J. (1995) Etiology and pathogenesis of basal cell carcinoma. Clin. Dermatol. 13:527–536.

    Article  PubMed  CAS  Google Scholar 

  • Miller, S. J., Wei, Z. G., Wilson, C., Dzubow, L., Sun, T. T., and Lavker, R. M. (1993) Mouse skin is particularly susceptible to tumor initiation during early anagen of the hair cycle: possible involvement of hair follicle stem cells. J. Invest. Dermatol. 101:591–594.

    Article  PubMed  CAS  Google Scholar 

  • Mills, A. A., Zheng, B., Wang, X. J., Vogel, H., Roop, D. R., and Bradley, A. (1999) p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398:708–713.

    Article  PubMed  CAS  Google Scholar 

  • Morris, R. J. (2000) Keratinocyte stem cells: targets for cutaneous carcinogens. J. Clin. Invest. 106:3–8.

    Article  PubMed  CAS  Google Scholar 

  • Morris, R. J. and Potten, C. S. (1999) Highly persistent label-retaining cells in the hair follicles of mice and their fate following induction of anagen. J. Invest. Dermatol. 112:470–475.

    Article  PubMed  CAS  Google Scholar 

  • Morris, R. J., Fischer, S. M., and Slaga, T. J. (1986) Evidence that a slowly cycling subpopulation of adult murine epidermal cells retains carcinogen. Cancer Res. 46:3061–3066.

    PubMed  CAS  Google Scholar 

  • Morris, R. J., Tacker, K. C., Fischer, S. M., and Slaga, T. J. (1988) Quantitation of primary in vitro clonogenic keratinocytes from normal adult murine epidermis, following initiation, and during promotion of epidermal tumors. Cancer Res. 48:6285–6290.

    PubMed  CAS  Google Scholar 

  • Morris, R. J., Fischer, S. M., Klein-Szanto, A. J., and Slaga, T. J. (1990) Subpopulations of primary adult murine epidermal basal cells sedimented on density gradients. Cell Tissue Kinet. 23:587–602.

    PubMed  CAS  Google Scholar 

  • Morris, R. J., Coulter, K., Tryson, K., and Steinberg, S. R. (1997) Evidence that cutaneous carcinogen-initiated epithelial cells from mice are quiescent rather than actively cycling. Cancer Res. 57:3436–3443.

    PubMed  CAS  Google Scholar 

  • Morris, R. J., Tryson, K. A., and Wu, K. Q. (2000) Evidence that the epidermal targets of carcinogen action are found in the interfollicular epidermis of infundibulum as well as in the hair follicles. Cancer Res. 60:226–229.

    PubMed  CAS  Google Scholar 

  • Oshima, H., Rochat, A., Kedzia, C., Kobayashi, K., and Barrandon, Y. (2001) Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell 104:233–245.

    Article  PubMed  CAS  Google Scholar 

  • Owens, D. M. and Watt, F. M. (2001) Influence of betal integrins on epidermal squamous cell carcinoma formation in a transgenic mouse model: alpha3betal , but not alpha2beta 1 , suppresses malignant conversion. Cancer Res. 61:5248–5254.

    PubMed  CAS  Google Scholar 

  • Panteleyev, A. A., Botchkareva, N. V., Sundberg, J. P., Christiano, A. M., and Paus, R. (1999) The role of the hairless (hr) gene in the regulation of hair follicle catagen transformation. Am. J. Pathol. 155:159–171.

    Article  PubMed  CAS  Google Scholar 

  • Parsa, R., Yang, A., McKeon, F., and Green, H. (1999) Association of p63 with proliferative potential in normal and neoplastic human keratinocytes. J. Invest. Dermatol. 113:1099–1105.

    Article  PubMed  CAS  Google Scholar 

  • Pelengaris, S., Littlewood, T., Khan, M., Elia, G., and Evan, G. (1999) Reversible activation of c-Myc in skin: induction of a complex neoplastic phenotype by a single oncogenic lesion. Mol. Cell 3: 565–577.

    Article  PubMed  CAS  Google Scholar 

  • Pelisson, I., Soler, C., Chardonnet, Y., Euvrard, S., and Schmitt, D. (1996) A possible role for human papillomaviruses and c-myc, c-Ha-ras, and p53 gene alterations in malignant cutaneous lesions from renal transplant recipients. Cancer Detect. Prey. 20:20–30.

    CAS  Google Scholar 

  • Pellegrini, G., Dellambra, E., Golisano, O., et al. (2001) p63 identifies keratinocyte stem cells. Proc. Natl. Acad. Sci. USA 98:3156–3161.

    Article  PubMed  CAS  Google Scholar 

  • Ponten, F., Berg, C., Ahmadian, A., et al. (1997) Molecular pathology in basal cell cancer with p53 as a genetic marker. Oncogene 15:1059–1067.

    Article  PubMed  CAS  Google Scholar 

  • Raghavan, S., Bauer, C., Mundschau, G., Li, Q., and Fuchs, E. (2000) Conditional ablation of betal integrin in skin. Severe defects in epidermal proliferation, basement membrane formation, and hair follicle invagination. J. Cell Biol. 150:1149–1160.

    Article  PubMed  CAS  Google Scholar 

  • Raick, A. N. (1973) Ultrastructural, histological, and biochemical alterations produced by 12–0-tetradecanoyl-phorbol-13-acetate on mouse epidermis and their relevance to skin tumor promotion. Cancer Res. 33:269–286.

    PubMed  CAS  Google Scholar 

  • Raick, A. N. (1974) Cell differentiation and tumor-promoting action in skin carcinogenesis. Cancer Res. 34:2915–2925.

    PubMed  CAS  Google Scholar 

  • Ramirez, R. D., Wright, W. E., Shay, J. W., and Taylor, R. S. (1997) Telomerase activity concentrates in the mitotically active segments of human hair follicles. J. Invest. Dermatol. 108:113–117.

    Article  PubMed  CAS  Google Scholar 

  • Reddy, A. L. and Fialkow, P. J. (1983) Papillomas induced by initiationpromotion differ from those induced by carcinogen alone. Nature 304:69–71.

    Article  PubMed  CAS  Google Scholar 

  • Rehman, I., Quinn, A. G., Healy, E., and Rees, J. L. (1994) High frequency of loss of heterozygosity in actinic keratoses, a usually benign disease. Lancet 344:788–789.

    Article  PubMed  CAS  Google Scholar 

  • Ren, Z. P., Hedrum, A., Ponten, F., et al. (1996) Human epidermal cancer and accompanying precursors have identical p53 mutations different from p53 mutations in adjacent areas of clonally expanded non-neoplastic keratinocytes. Oncogene 12:765–773.

    PubMed  CAS  Google Scholar 

  • Ren, Z. P., Ahmadian, A., Ponten, F., et al. (1997) Benign clonal keratinocyte patches with p53 mutations show no genetic link to synchronous squamous cell precancer or cancer in human skin. Am. J. Pathol. 150:1791–1803.

    PubMed  CAS  Google Scholar 

  • Rossen, K., Dahlstrom, K. K., Mercurio, A. M., and Wewer, U. M. (1994) Expression of the alpha 6 beta 4 integrin by squamous cell carcinomas and basal cell carcinomas: possible relation to invasive potential? Acta Derm. Venereol. 74:101–105.

    PubMed  CAS  Google Scholar 

  • Rounbehler, R. J., Schneider-Broussard, R., Conti, C. J., and Johnson, D. G. (2001) Myc lacks E2F1’s ability to suppress skin carcinogenesis. Oncogene 20:5341–5349.

    Article  PubMed  CAS  Google Scholar 

  • Savoia, P., Cremona, O., Trusolino, L., Pepino, E., and Marchisio, P. C. (1994) Integrins and basement membrane proteins in skin carcinomas. Pathol. Res. Pract. 190:950–954.

    Article  PubMed  CAS  Google Scholar 

  • Slaga, T. J. and Klein-Szanto, A. J. (1983) Initiation-promotion versus complete skin carcinogenesis in mice: importance of dark basal keratinocytes (stem cells). Cancer Invest. 1:425–436.

    Article  PubMed  CAS  Google Scholar 

  • Taguchi, T., Yokoyama, M., and Kitamura, Y. (1984) Intraclonal conversion from papilloma to carcinoma in the skin of Pgk-1a/Pgk-1b mice treated by a complete carcinogenesis process or by an initiation-promotion regimen. Cancer Res. 44:3779–3782.

    PubMed  CAS  Google Scholar 

  • Tani, H., Morris, R. J., and Kaur, P. (2000) Enrichment for murine keratinocyte stem cells based on cell surface phenotype. Proc. Natl. Acad. Sci. USA 97:10,960–10,965.

    Article  CAS  Google Scholar 

  • Taylor, G., Lehrer, M. S., Jensen, P. J., Sun, T. T., and Lavker, R. M. (2000) Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 102:451–461.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, R. S., Ramirez, R. D., Ogoshi, M., Chaffins, M., Piatyszek, M. A., and Shay, J. W. (1996) Detection of telomerase activity in malignant and nonmalignant skin conditions. J. Invest. Dermatol. 106:759–765.

    Article  PubMed  CAS  Google Scholar 

  • Tennenbaum, T., Weiner, A. K., Belanger, A. J., Glick, A. B., Hennings, H., and Yuspa, S. H. (1993) The suprabasal expression of α6β4 integrin is associated with a high risk for malignant progression in mouse skin carcinogenesis. Cancer Res. 53:4803–4810.

    PubMed  CAS  Google Scholar 

  • Tennenbaum, T., Belanger, A. J., Glick, A. B., Tamura, R., Quaranta, V., and Yuspa, S. H. (1995) A splice variant of a6 integrin is associated with malignant conversion in mouse skin tumorigenesis. Proc. Natl. Acad. Sci. USA 92:7041–7045.

    Article  PubMed  CAS  Google Scholar 

  • Tuominen, H., Junttila, T., Karvonen, J., and Kallioinen, M. (1994) Celltype related and spatial variation in the expression of integrins in cutaneous tumors. J. Cutan. Pathol. 21:500–506.

    Article  PubMed  CAS  Google Scholar 

  • Waikel, R. L., Kawachi, Y., Waikel, P. A., Wang, X. J., and Roop, D. R. (2001) Deregulated expression of c-Myc depletes epidermal stem cells. Nat. Genet. 28:165–168.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, D. S., Peacocke, M., Harrington, A., James, W. D., and Tsou, H. C. (1998) Patterns of X chromosome inactivation in sporadic basal cell carcinomas: evidence for clonality. J. Am. Acad. Dermatol. 38: 49–55.

    Article  PubMed  CAS  Google Scholar 

  • Watt, F. M. (2001) Stem cell fate and patterning in mammalian epidermis. Curr. Opin. Genet. Dev. 11:410–417.

    Article  PubMed  CAS  Google Scholar 

  • Weinberg, W. C., Morgan, D., George, C., and Yuspa, S. H. (1991) A comparison of interfollicular and hair follicle derived cells as targets for the v-ras Ha oncogene in mouse skin carcinogenesis. Carcinogenesis 12:1119–1124.

    Article  PubMed  CAS  Google Scholar 

  • Weinberg, W. C., Ng, Y. K., and Iannaccone, P. M. (1992) Clonal analysis of hepatic neoplasms by mosaic pattern. In: The Role of Cell Types in Hepatocarcinogenesis. (Sirica, A. E., ed.), CRC Press, Boca Raton, FL, pp. 29–53.

    Google Scholar 

  • Winton, D. J., Blount, M. A., and Ponder, B. A. (1989) Polyclonal origin of mouse skin papillomas. Br. J. Cancer 60:59–63.

    Article  PubMed  CAS  Google Scholar 

  • Wu, A., Ichihashi, M., and Ueda, M. (1999) Correlation of the expression of human telomerase subunits with telomerase activity in normal skin and skin tumors. Cancer 86:2038–2044.

    Article  PubMed  CAS  Google Scholar 

  • Yang, A., Kaghad, M., Wang, Y., Gillett, E., Fleming, M. D., Dotsch, V., Andrews, N. C., Caput, D., and McKeon, F. (1998) p63, a p53 homolog at 3q27–29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol. Cell 2:305–316.

    Article  PubMed  CAS  Google Scholar 

  • Yang, A., Schweitzer, R., Sun, D., Kaghad, M., Walker, N., Bronson, R. T., Tabin, C., Sharpe, A., Caput, D., Crum, C., and McKeon, F. (1999) p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398:714–718.

    Article  PubMed  CAS  Google Scholar 

  • Yuspa, S. H. (1994) The pathogenesis of squamous cell cancer: lessons learned from studies of skin carcinogenesis—Thirty-third G.H.A. Clowes Memorial Award Lecture. Cancer Res. 54:1178–1189.

    PubMed  CAS  Google Scholar 

  • Zhang, W., Remenyik, E., Zelterman, D., Brash, D. E., and Wikonkal, N. M. (2001) Escaping the stem cell compartment: sustained UVB exposure allows p53-mutant keratinocytes to colonize adjacent epidermal proliferating units without incurring additional mutations. Proc. Natl. Acad. Sci. USA 98:13,948–13,953.

    CAS  Google Scholar 

  • Zhang, Y. and Kalderon, D. (2001) Hedgehog acts as a somatic stem cell factor in the Drosophila ovary. Nature 410:599–604.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, A. J. and Watt, F. M. (1999) beta-catenin signalling modulates proliferative potential of human epidermal keratinocytes independently of intercellular adhesion. Development 126:2285–2298.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Weinberg, W.C., Yuspa, S.H. (2004). Stem Cells in Nonmelanoma Skin Cancer. In: Sell, S. (eds) Stem Cells Handbook. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-411-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-411-5_26

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-367-1

  • Online ISBN: 978-1-59259-411-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics