Skip to main content

Endothelial Progenitor Cells

  • Chapter
  • 368 Accesses

Abstract

Differentiation of organs depends on signals derived from developing vasculature. Embryonic endothelial progenitor cells (EPCs), angioblasts, arise from migrating mesodermal cells and have a precursor in common with hematopoietic stem cells (hemangioblasts, HSCs). These cells appear together during formation of blood islands and the yolk sac capillary network with the EPCs located peripherally to the HSCs. EPCs respond to fibroblast growth factor-2, and vascular endothelial growth factor (VEGF). Activation of vasculoneogenesis in the adult in response to hyperplasia, injury, or tumor growth involves both endothelial cells in situ and circulating EPCs from the bone marrow. Bone marrow—derived EPCs may be mobilized by growth factors such as granulocyte macrophage colony-stimulating factor and VEGF. The therapeutic use of EPCs became feasible when it was shown that statins activate EPCs and enhance angiogenesis in vivo. In addition, mobilized EPCs may be expanded in vitro and used for transplantation enhancement of angiogenesis. Gene therapy to enhance circulation in premature atherosclerosis (Buerger disease) may be accomplished using phVEGF. Decreased neoangiogenesis in older animals may be corrected by transplantation of bone marrow from young animals. However, there is a major hurdle to overcome in obtaining enough EPCs for human use. There is preliminary evidence that this may be overcome by genetic modification of EPCs to overexpress angiogenic growth factors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   259.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anklesaria, P., Kase, K., Glowacki, J., et al. (1987) Engraftment of a clonal bone marrow stromal cell line in vivo stimulates hematopoietic recovery from total body irradiation. Proc. Natl. Acad. Sci. USA 84:7681–7685.

    Article  PubMed  CAS  Google Scholar 

  • Asahara, T., Murohara, T., Sullivan, A., et al. (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967.

    Article  PubMed  CAS  Google Scholar 

  • Asahara, T., Masuda, H., Takahashi, T., et al. (1999a) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ. Res. 85:221–228.

    Article  PubMed  CAS  Google Scholar 

  • Asahara, T., Takahashi, T., Masuda, H., et al. (1999b) VEGF contributes to postnatal neovascularization by mobilizing bone marrow—derived endothelial progenitor cells. EMBO J. 18:3964–3972.

    Article  PubMed  CAS  Google Scholar 

  • Brugger, W., Heimfeld, S., Berenson, R. J., Mertelsmann, R., and Kanz, L. (1995) Reconstitution of hematopoiesis after high-dose chemotherapy by autogous progenitor cells generated ex vivo. N. Engl. J. Med. 333:283–287.

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet, P., Ferreira, V., Breier, G., et al. (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:435–439.

    Article  PubMed  CAS  Google Scholar 

  • Chauhan, A., More, R. S., Mullins, P. A., Taylor, G., Petch, M. C., and Schofield, P. M. (1996) Aging-associated endothelial dysfunction in humans is reversed by L-arginine. J. Am. Coll. Cardiol. 28:1796–1804.

    Article  PubMed  CAS  Google Scholar 

  • Cosentino, F. and Luscher, T. F. (1998) Endothelial dysfunction in diabetes mellitus. J. Cardiovasc. Pharmacol. 32.S54—S61.

    Google Scholar 

  • Couffinhal, T., Silver, M., Kearney, M., et al. (1999). Impaired collateral vessel development associated with reduced expression of vascular endothelial growth factor in ApoE-1- mice. Circulation 99:3188–3198.

    Article  PubMed  CAS  Google Scholar 

  • Dimmeler, S., Aicher, A., Vasa, M., et al. (2001) HMG-CoA-reductase inhibitors (statins) increase endothelial progenitor cells via the P13 kinase/Akt pathway. J. Clin. Invest. 108:391–397.

    PubMed  CAS  Google Scholar 

  • Drexler, H., Zeiher, A.M., Meinzer, K., and Just, H. (1991) Correction of endothelial dysfunction in coronary microcirculation of hypercholesterolemic patients by L-arginine. Lancet 338:1546–1550.

    Article  PubMed  CAS  Google Scholar 

  • Evans, J. T., Kelly, P. F., O’Neill, E., and Garcia, J. V. (1999) Human cord blood CD34+CD38- cell transduction via lentivirus-based gene transfer vectors. Hum. Gene Ther. 10:1479–1489.

    Article  PubMed  CAS  Google Scholar 

  • Ferrara, N., Carver-Moore, K., Chen, H., et al. (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380:439–442.

    Article  PubMed  CAS  Google Scholar 

  • Flamme, I. and Risau, W. (1992) Induction of vasculogenesis and hematopoiesis in vitro. Development 116:435–439.

    PubMed  CAS  Google Scholar 

  • Flax, J. D., Aurora, S., Yang, C., et al. (1998) Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nat. Biotechnol. 16:1033–1039.

    Article  PubMed  CAS  Google Scholar 

  • Folkman, J. (1971) Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285:1182–1186.

    Article  PubMed  CAS  Google Scholar 

  • Folkman, J. (1993) Tumor angiogenesis. In: Cancer Medicine (Holland, J. F., Frei, E. III, Bast, R. C. Jr., Kute, D. W., Morton, D. L., and Weichselbaum, R. R., eds.), Lea & Febiger, Philadelphia, PA, pp. 153–170.

    Google Scholar 

  • Gehling, U. M., Ergun, S., Schumacher, U., et al. (2000) In vivo differentiation of endothelial cells from AC133-positive progenitor cells. Blood 95:3106–3112.

    PubMed  CAS  Google Scholar 

  • Gerhard, M., Roddy, M.-A., Creager, S. J., and Creager, M. A. (1996) Aging progressively impairs endothelium-dependent vasodilation in forearm resistance vessles of humans. Hypertension 27:849–853.

    Article  PubMed  CAS  Google Scholar 

  • Gill, M., Dias, S., Hattori, K., et al. (2001) Vascular trauma induces rapid but transient mobilization of VEGFR(+)AC133(+) endothelial precursor cells. Circ. Res. 88:167–174.

    Article  PubMed  CAS  Google Scholar 

  • Gunsilius, E., Duba, H. C., Petzer, A. L., et al. (2000) Evidence from a leukaemia model for maintenance of vascular endothelium by bonemarrow-derived endothelial cells. Lancet 355:1688–1691.

    Article  PubMed  CAS  Google Scholar 

  • Hattori, K., Dias, S., Heissig, B., et al. (2001) Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J. Exp. Med. 193: 1005–1014.

    Article  PubMed  CAS  Google Scholar 

  • Hatzopoulos, A. K., Folkman, J., Vasile, E., Eiselen, G. K., and Rosenberg, R. D. (1998) Isolation and characterization of endothelial progenitor cells from mouse embyros. Development 125:1457–1468.

    PubMed  CAS  Google Scholar 

  • His, W. (1900). Leoithoblast und angioblast der wirbelthiere. Abhandl. KSGes. Wiss. Math. Phys. 22:171–328.

    Google Scholar 

  • Isner, J. M., Baumgartner, I., Rauh, G., et al. (1998) Treatment of thromboangiitis obliterans (Buerger’s disease) by intramuscular gene transfer of vascular endothelial growth factor: preliminary clinical results. J. Vasc. Surg. 28:964–975.

    Article  PubMed  CAS  Google Scholar 

  • Iwaguro, H., Yamaguchi, J., Kalka, C., et al. (2002) Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation 105:732–738.

    Article  PubMed  CAS  Google Scholar 

  • Johnstone, M. D., Creager, S. J., Scales, K. M., Cusco, J. A., Lee, B. K., and Creager, M. A. (1993) Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. Circulation 88:2510–2516.

    Article  PubMed  CAS  Google Scholar 

  • Kalka, C., Masuda, H., Gordon, R., Silver, M., and Asahara, T. (1999) Age dependent response in mobilization of endothelial progenitor cells (EPC) to VEGF gene therapy in human subjects. Circulation 100:1–40.

    Article  Google Scholar 

  • Kalka, C., Masuda, H., Takahashi, T., et al. (2000a) Vascular endothelial growth factor 165 gene transfer augments circulating endothelial progenitor cells in human subjects. Circ. Res. 86:1198–1202.

    Article  PubMed  CAS  Google Scholar 

  • Kalka, C., Masuda, H., Takahashi, T., et al. (2000b) Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc. Natl. Acad. Sci. USA 97:3422–3427.

    Article  PubMed  CAS  Google Scholar 

  • Kalka, C., Tehrani, H., Laudenberg, B., et al. (2000c) Mobilization of endothelial progenitor cells following gene therapy with VEGF165 in patients with inoperable coronary disease. Ann. Thorac. Surg. 70: 829–834.

    Article  PubMed  CAS  Google Scholar 

  • Kawamoto, A., Gwon, H.-C., Iwaguro, H., et al. (2001). Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 103:634–637.

    Article  PubMed  CAS  Google Scholar 

  • Kessinger, A. and Armitage, J. O. (1991) The evolving role of autologous peripheral stem cell transplantation following high-dose therapy for malignancies. Blood 77:211–213.

    PubMed  CAS  Google Scholar 

  • Kocher, A. A., Schuster, M. D., Szabolcs, M. J., et al. (2001) Neovascularization of ischemic myocardium by human bone marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat. Med. 7:430–436.

    Article  PubMed  CAS  Google Scholar 

  • Kureishi, Y., Luo, Z., and Shiojima, I. (2000) The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals. Nat. Med. 6:1004–1010.

    Article  PubMed  CAS  Google Scholar 

  • Lammert, E., Cleaver, O., and Melton, D. (2001) Induction of pancreatic differentiation by signals from blood vessels. Science 294: 564–567.

    Article  PubMed  CAS  Google Scholar 

  • Lin, Y., Weisdorf, D. J., Solovey, A., and Hebbel, R. P. (2000) Origins of circulating endothelial cells and endothelial outgrowth from blood. J. Clin. Invest. 105:71–77.

    Article  PubMed  CAS  Google Scholar 

  • Lindvall, O., Brundin, P., Widner, H., et al. (1990) Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’ s disease. Science 247:574–577.

    Article  PubMed  CAS  Google Scholar 

  • Llevadot, J., Murasawa, S., Kureishi, Y., et al. (2001) HMG-CoA reductase inhibitor mobilizes bone-marrow derived endothelial progenitor cells. J. Clin. Invest. 108:399–405.

    PubMed  CAS  Google Scholar 

  • Luscher, T. F. and Tshuci, M. R. (1993) Endothelial dysfunction in coronary artery disease. Ann. Rev. Med. 44:395–418.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto, K., Yoshitomi, H., Rossant, J., and Zaret, K. S. (2001) Liver organogenesis promoted by endothelial cells prior to vascular function. Science 294:559–563.

    Article  PubMed  CAS  Google Scholar 

  • Pardanaud, L., Altman, C., Kitos, P., and Dieterien-Lievre, F. (1989) Relationship between vasculogenesis, angiogenesis and haemopoiesis during avian ontogeny. Development 105:473–485.

    PubMed  CAS  Google Scholar 

  • Peichev, M., Naiyer, A. J., Pereira, D., et al. (2000) Expression of VEGFR2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors. Blood 95:952–958.

    PubMed  CAS  Google Scholar 

  • Poole, T. J., Finkelstein, E. B., and Cox, C. M. (2001) The role of FGF and VEGF in angioblast induction and migration during vascular development. Dev. Dyn. 220:1–17.

    Article  PubMed  CAS  Google Scholar 

  • Risau, W. and Flamme, I. (1995) Vasculogenesis. Ann. Rev. Cell Dev. Biol. 11:73–91.

    Article  CAS  Google Scholar 

  • Risau, W., Sariola, H., Zerwes, H.-G., et al. (1988) Vasculogenesis and angiogenesis in embryonic stem cell-derived embryoid bodies. Development 102:471–478.

    PubMed  CAS  Google Scholar 

  • Rivard, A., Asahara, T., Takahashi, T., Chen, D., and Isner, J. M. (1998) Contribution of endothelial progenitor cells to neovascularization (vasculogenesis) is impaired with aging. Circulation 98: 1–39.

    Article  Google Scholar 

  • Rivard, A., Fabre, J.-E., Silver, M., et al. (1999a) Age-dependent impairment of angiogenesis. Circulation 99:111–120.

    Article  PubMed  CAS  Google Scholar 

  • Rivard, A., Silver, M., Chen, D., et al. (1999b) Rescue of diabetes related impairment of angiogenesis by intramuscular gene therapy with adeno-VEGF. Am. J. Pathol. 154:355–364.

    Article  PubMed  CAS  Google Scholar 

  • Shalaby, F., Rossant, J., Yamaguchi, T. P., et al. (1995) Failure of bloodisland formation and vasculogenesis in Flk-1 deficient mice. Nature 376:62–66.

    Article  PubMed  CAS  Google Scholar 

  • Sheridan, W. P., Begley, C. G., and Juttener, C. (1992) Effect of peripheral-blood progenitor cells mobilised by filgrastim (G-CSF) on platelet recovery after high-dose chemotherapy. Lancet 339:640–644.

    Article  PubMed  CAS  Google Scholar 

  • Shi, Q., Rafii, S., Wu, M. H.-D., et al. (1998) Evidence for circulating bone marrow-derived endothelial cells. Blood 92:362–367.

    PubMed  CAS  Google Scholar 

  • Shintani, S., Murohara, T., Ikeda, H., et al. (2001) Augmentation of postnatal neovascularization with autologous bone marrow transplantation. Circulation 103:897–903.

    Article  PubMed  CAS  Google Scholar 

  • Shpall, E. J., Jones, R. B., and Bearman, S. I. (1994) Transplantation of enriched CD34-positive autologous marrow into breast cancer patients following high-dose chemotherapy. J. Clin. Oncol. 12:28–36.

    PubMed  CAS  Google Scholar 

  • Taddei, S., Virdis, A., Mattei, P., et al. (1995) Aging and endothelial function in normotensive subjects and patients with essential hypertension. Circulation 91:1981–1987.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, T., Kalka, C., Masuda, H., et al. (1999) Ischemia- and cytokineinduced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat. Med. 5:434–438.

    Article  PubMed  CAS  Google Scholar 

  • Tschudi, M. R., Barton, M., Bersinger, N. A., et al. (1996) Effect of age on kinetics of nitric oxide release in rat aorta and pulmonary artery../. Clin. Invest. 98:899–905.

    Article  CAS  Google Scholar 

  • Van Belle, E., Rivard, A., Chen, D., et al. (1997). Hypercholesterolemia attenuates angiogenesis but does not preclude augmentation by angiogenic cytokines. Circulation 96:2667–2674.

    Article  PubMed  Google Scholar 

  • Vasa, M., Breitschopf, K., Zeiher, A. M., and Dimmeler, S. (2000) Nitric oxide activates telomerase and delays endothelial cell senescence. Circ. Res. 87:540–542.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, M. and Orkin, S. H. (1996) In vitro differentiation of murine embryonic stem cells: new approaches to old problems. J. Clin. Invest. 97:591–595.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita, J., Itoh, H., Hirashima, M., et al. (2000) Flk 1 -positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408:92–96.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Asahara, T., Isner, J.M. (2004). Endothelial Progenitor Cells. In: Sell, S. (eds) Stem Cells Handbook. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-411-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-411-5_19

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-367-1

  • Online ISBN: 978-1-59259-411-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics