Skip to main content

Neural Stem Cells

From In Vivo to In Vitro and Back Again—Practical Aspects

  • Chapter
Stem Cells Handbook

Abstract

The application of neural stem cell transplantation for cellular repair of lesions of the brain and spinal cord appears to have much greater promise than bone marrow transplantation, viral-mediated gene therapy, or systemic enzyme replacement. The initial approach for treatment of Parkinson’s disease by transfer of dopamine-producing cells provides a prototype for cell transplantation therapy that can be extended to the use of multipotent neural stem cells, which not only have the ability to self-renew and to differentiate into cells of all glial and neuronal lineages, but also can migrate to areas of CNS disease or injury. How transplanted cells and injured/diseased brain communicate with each other in what appears to be directed migration and differentiation is a subject of current investigation. The abililty to isolate and culture cells in vitro that have the migration and differentiation properties of neural stem cells is a major advance in obtaining cells for transplantation therapy. Such cells are relative easy to inject into the ventricles, migrate across the blood—brain barrier, and integrate as different CNS cell type into damaged brain, yet do not give rise to inappropriate cell type or neoplasms. In some proof-of-principle experimental models, transplanted neural stem cells have been used to treat a mouse model of neurogenic lysosomal storage disease, mutant mice with congenital anatomic abnormalities, myelination disorders, hypoxic—ischemic injury, amyloid plaques, and brain tumors by delivery of oncolysis-promoting cytosine deaminase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 259.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aboody, K. S., Brown, A., Rainov, N. G., er al. (2000) Neural stem cells display extensive tropism for pathology in the adult brain: evidence from intracranial gliomas. Proc. Natl. Acad. Sci. USA 97:12,846–12,851.

    Article  CAS  Google Scholar 

  • Akerud, P., Canals, J. M., Snyder, E. Y., and Arenas, E. (2001) Neuroprotection through delivery of GDNF by neural stem cells in a mouse model of Parkinson’s disease. J. Neurosci. 21(20):8108–8118.

    PubMed  CAS  Google Scholar 

  • Alvarez-Buylla, A. and Temple, S. (1998) Neural stem cells. J. Neurobiol. 36:105–314.

    Article  PubMed  CAS  Google Scholar 

  • Anton, R., Kordower, J. H., Maidment, N. T., et al. (1994) Neural-targeted gene therapy for rodent and primate hemiparkinsonism, Exp. Neurol. 127:207–218.

    Article  PubMed  CAS  Google Scholar 

  • Anton, R., Kordower, J. H., Kane, D. J., Markahma, C. H., and Bredesen, D. E. (1995) Neural transplantation of cells expressing the antiapoptotic gene bd -2. Cell Transplant. 4:49–54.

    Article  PubMed  CAS  Google Scholar 

  • Auguste, K. I., Nakajima, K., Miyata, T., et al. (2000) Neural progenitor transplantation into reeler cerebellum complements mutant lamination and neuronal survival by Reelin-and non-Reelin-producing processes. J. Neurosci., in revision.

    Google Scholar 

  • Bjorklund, A. and Lindvall, O. (2000). Cell replacement therapies for central nervous system disorders. Nat. Neurosci. 3:537–544.

    Article  PubMed  CAS  Google Scholar 

  • Bottenstein, J. E. and Sato, G. H. (1980) Fibronectin and polylysine requirement for proliferation of neuroblastoma cells in defined medium. Exp. Cell. Res. 129(2):361–366.

    Article  PubMed  CAS  Google Scholar 

  • Brüstle, O., Choudhary, K., Karram, K., et al. (1998) Chimeric brains generated by intarventricular transplantation of fetal human brain cells into embryonic rats. Nat. Biotechnol. 11:1040–1049.

    Article  Google Scholar 

  • Chen, K. S. and Gage, F. H. (1995) Somatic gene transfer of NGF to the aged brain: behavioral and morphologic amelioration. J. Neurosci. 15 (4):2819–2825.

    PubMed  CAS  Google Scholar 

  • Doering, L. and Snyder, E. Y. (2000) Cholinergic expression by a neural stem cell line grafted to the adult medial septum/diagonal band complex. J. Neurosci. Res. 61:597–604.

    Article  PubMed  CAS  Google Scholar 

  • Dunnett, S. B. and Bjorklund, A. (2000) Functional Neural Transplantation, Raven, New York.

    Book  Google Scholar 

  • Fisher, L. J. (1997) Neural precursor cells: applications for the study and repair of the central nervous system. Neurobiol. Dis. 4:1–22.

    Article  PubMed  CAS  Google Scholar 

  • Flax, J. D., Aurora, S., Yang, C., et al. (1998) Engraftable human neural stem cells respond to developmental cues, replace neurons, and expess foreign genes. Nat. Biotechnol. 16:1033–1039.

    Article  PubMed  CAS  Google Scholar 

  • Freed, C. R., Greene P. E., Breeze, R. E., et al. (2001) Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N. Engl. J. Med. 344:763–765.

    Article  Google Scholar 

  • Fricker, R. A., Carpenter, M. K., Winkler, C., Greco, C., Gates, M. A., and Bjorklund, A. (1999) Site-specific migration and neuronal differentiation of human neural progenitor cells after transplantation in the adult rat brain. J. Neurosci. 19(14):5990–6005.

    PubMed  CAS  Google Scholar 

  • Gage, F. H. (2000) Mammalian neural stem cells. Science 287:14331438.

    Google Scholar 

  • Goldman, S. A. and Luskin, M. B. (1998) Strategies utilized by migrating neurons of the postnatal vertebrate forebrain. Trends Neurosci. 21(3): 107–14.

    Article  PubMed  CAS  Google Scholar 

  • Gould, E., Reeves, A. J., Graziano, M. S., and Gross, C. G. (1999) Neurogenesis in the neocortex of adult primates. Science 286:548–552.

    Article  PubMed  CAS  Google Scholar 

  • Grill, R., Murai, K., Blesch, A., Gage, F. H., and Tuszynski, M. H. (1997) Cellular delivery of neurotrophin-3 promotes corticospinal axonal growth and partial functional recovery after spinal cord injury. J. Neurosci. 17:5560–5572.

    PubMed  CAS  Google Scholar 

  • Gritti, A., Bonfanti, L., Doetsch, F., et al. (2002) Multipotent neural stem cells reside into the rostral extension and olfactory bulb of adult rodents. J. Neurosci. 22(2):437–45.

    PubMed  CAS  Google Scholar 

  • Gussoni, E., Soneoka, Y., Strickland, C. D., et al. (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401(6751):390–394.

    PubMed  CAS  Google Scholar 

  • Himes BT, Liu Y, Solowska JM, Snyder EY, Fischer I, Tessler A (2001) Transplants of cells genetically modified to express neurotrophin-3 rescue axotomized Clarke’s nucleus neurons after spinal cord hemisection in adult rats. J. Neurosci. Res. 65(6):549–564.

    Article  PubMed  CAS  Google Scholar 

  • Hodges, H., Veizovic, T., Bray, N., et al. (2000) Conditionally immortal neuroepithelial stem cell grafts reverse age-associated memory impairments in rats. Neuroscience 101:945–955.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan, P. L., Simon, S., Cartwright, C. A., and Eckhart, W. (1987) cDNA cloning with a retrovirus expression vector: generation of a pp60c-src cDNA clone. J. Virol. 61:1731–1734.

    PubMed  CAS  Google Scholar 

  • Kordower, J. H., Freeman, T. B., Snow, B. J., et al. (1995) Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tisssue in a patient with Parkinson’s disease. N. Engl. J. Med. 332(17):1118–1124.

    Article  PubMed  CAS  Google Scholar 

  • Lacorazza, H. D., Flax, J. D., Snyder, E. Y., and Jendoubi, M. (1996) Expression of human 13-hexosaminidase a-subunit gene (the gene defect of Tay-Sachs disease) in mouse brains upon engraftment of transduced progenitor cells. Nat. Med. 4:424–429.

    Article  Google Scholar 

  • Liu, Y., Himes, B. T., Solowska, J., et al. (1999) Intraspinal delivery of neurotrophin-3 using neural stem cells genetically modified by recombinant retrovirus. Exp. Neurol. 158:9–26.

    Article  PubMed  CAS  Google Scholar 

  • Lois, C. and Alvarez-Buylla, A. (1994) Long distance neuronal migration in the adult mammalian brain. Science 264:1145–1148.

    Article  PubMed  CAS  Google Scholar 

  • Lu, P., Jones, L., Park, K. I., Snyder, E. Y., and Tuszynski, M. (2000) Neural stem cells secrete BDNF and GDNF, and promote axonal growth after spinal cord injury [abstract]. Soc. Neurosci. Abstr. 26:332.

    Google Scholar 

  • Luskin, M. B. (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11:173–189.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, W. P., Sharpe, A. H., and Snyder, E. Y. (1999) Neural stem cells as engraftable packaging lines optimize viral vector-mediated gene delivery to the CNS: evidence from studying retroviral env-related neurodegeneration. J. Virol. 73:6841–6851.

    PubMed  CAS  Google Scholar 

  • Magavi, S. S., Leavitt, B. R., and Macklis, J. D. (2000) Induction of neurogenesis in the neocortex of adult mice. Nature 405:951–955.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Serrano, A., Lundberg, C., Horellou, P., et al. (1995a) CNS-derived neural progeniutor cells for gene transfer of nerve growth factor to the adult rat brain: complete rescue of axotomized cholinergic neurons after transplantation into the septum. J. Neurosci. 15(8): 5668–5680.

    PubMed  CAS  Google Scholar 

  • Martinez-Serrano, A., Fischer, W., and Bjorklund, A. (1995b) Reversal of age-dependent cognitive impairments and cholinergic neuron atrophy by NGF-secreting neural progenitors grafted to the basal forebrain. Neuron 15:473–484.

    Article  PubMed  CAS  Google Scholar 

  • McKay, R. (1997) Stem cells in the central nervous system. Science 276:66–71.

    Article  PubMed  CAS  Google Scholar 

  • Neufeld, E. F. and Fratantoni, J. C. (1970) Inborn errors of mucopolysaccharide metabolism. Science 169:141–146.

    Article  PubMed  CAS  Google Scholar 

  • Nikkhah, G., Cunningham, M. G., Cenci, M. A., McKay, R. D., and Bjorklund, A. (1995a) Dopaminergic microtransplants into the substantia nigra of neonatal rats with bilateral 6–0HDA lesions. I. Evidence for anatomical reconstruction of the nigrostriatal pathway. J. Neurosci. 15(5):3548–3561.

    PubMed  CAS  Google Scholar 

  • Nikkhah, G., Cunningham, M. G., McKay, R., and Bjorklund, A. (1995b) Dopaminergic microtransplants into the substantia nigra of neonatal rats with bilateral 6-OHDA lesions. II. Transplant-induced behavioral recovery. J. Neurosci. 15(5):3562–3570.

    PubMed  CAS  Google Scholar 

  • Ourednik, J., Ourednik, V., Lynch, W. P., Snyder, E. Y., and Schachner, M. (1999) Massive regeneration of substantia nigra neurons in aged parkinsonian mice after transplantation of neural stem cells overexpressing Li [abstract]. Soc. Neurosci. Abstr. 25:1310.

    Google Scholar 

  • Ourednik, V., Ourednik, J., Flax, J. D., et al. (2001a) Segregation of human neural stem cells in the developing primate forebrain. Science 293(5536):1820–1824.

    Article  PubMed  CAS  Google Scholar 

  • Ourednik, V., Ourednik, J., Kosaras, B., Sidman, R. L., and Snyder, E. Y. (2001b) Nerve cell rescue and behavioral changes induced by grafted clonal neural stem cells in ataxic cerebellar mouse mutants [abstract]. Soc. Neurosci. Abstr. 27:371.3.

    Google Scholar 

  • Ourednik, V., Ourednik, J., Lynch, W. P., Snyder, E. Y., and Schachner, M. (2002) Neural stem cells display an inherent mechanism for rescuing dysfunctional neurons. Nat. Biotechnol. 20(11):1103–1110.

    Article  PubMed  CAS  Google Scholar 

  • Park, K. I., Jensen, F. E., Stieg, P. E., and Snyder, E. Y. (1998) Hypoxicischemic (HI) injury may direct the proliferation, migation, and differentiation of endogenous neural progenitors [abstract]. Soc. Neurosci. Abstr. 24:1310.

    Google Scholar 

  • Park, K. I., Liu, S., Flax, J. D., Nissim, S., Stieg, P. E., and Snyder, E. Y. (1999) Transplantation of neural progenitor and stem-like cells: developmental insights may suggest new therapies for spinal cord and other CNS dysfunction. J. Neurotrauma 16(8):675–687.

    Article  PubMed  CAS  Google Scholar 

  • Park, K. I., Teng, Y. D., and Snyder, E. Y. (2002) The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nat. Biotechnol. 20(11):1111–1117.

    Article  PubMed  CAS  Google Scholar 

  • Park, K. I., Lee, K. H., Lee, B. W., Teng, Y. D., and Snyder, E. Y. (2002) Transplanted human neural stem cells replace lost neural cells and promote neuronal reinnervation and functional recovery in injured rat spinal cord [abstract]. Soc. Neurosci. Abstr. Program 825.9.

    Google Scholar 

  • Pincus, D. W., Keyoung, H. M., Harrison-Restelli, C., et al. (1998). FGF2/BDNF-associated maturation of new neurons generated from adult human subependymal cells. Ann. Neurol. 43:576–585.

    Article  PubMed  CAS  Google Scholar 

  • Reubinoff, B. E., Itsykson, P., Turetsky, T., et al. (2001) Neural progenitors from human embryonic stem cells: derivation, expansion, and characterization of their developmental potential in vitro and in vivo. Nat. Biotechnol. 19:1134–1140.

    Article  CAS  Google Scholar 

  • Rosario, C. M., Yandava, B. D., Kosaras, B., Zurakowski, D., Sidman, R. L., and Snyder, E. Y. (1997) Differentiation of engrafted multipotent neural progenitors toward replacement of missing granule neurons in meander tail cerebellum may help determine the locus of mutant gene action. Development 124:4213–4224.

    PubMed  CAS  Google Scholar 

  • Roy, N. S., Wang, S., Jiang, L., et al. (2000) In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus. Nat. Med. 6:271–277.

    Article  PubMed  CAS  Google Scholar 

  • Rubio, F. J., Kokai, Z., del Arco, A., et al. (1999) BDNF gene transfer to the mammalian brain using CNS-derived neural precursors. Gene Ther. 6:1851–1866.

    Article  PubMed  CAS  Google Scholar 

  • Rubio, F. J., Bueno, C., Villa, A., Navarro, B., and Martinez-Serrano, A (2000) Genetically perpetuated human neural stem cells engraft and differentiate into the adult mammalian brain. Mol. Cell Neurosci. 16:1–13.

    Article  PubMed  CAS  Google Scholar 

  • Ryder, E. F., Snyder, E. Y., and Cepko, C. L. (1990) Establishment and characterization of multipotent neural cell lines using retrovirus vector mediated oncogene transfer. J. Neurobiol. 21:356–375.

    Article  PubMed  CAS  Google Scholar 

  • Sabate, O., Horellou, P., Vigne, E., et al. (1995) Transplantation to the rat brain of human neural progenitors that were genetically modified using adenoviruses. Nat. Genet. 9:256–260.

    Article  PubMed  CAS  Google Scholar 

  • Snyder, E. Y. (1998) Neural stem-like cells: developmental lessons with therapeutic potential. Neuroscientist 4(6):408–425.

    Article  Google Scholar 

  • Snyder, E. Y. and Flax, J. D. (1995) Transplantation of neural progenitors and stem-like cells as a strategy for gene therapy and repair of neurodegenerative diseases. Ment. Retard. Dev. Dis. Res. Rev. 1:27–38.

    Article  Google Scholar 

  • Snyder, E. Y. and Kim, S. U. (1979) Hormonal requirements for neuronal survival in culture. Neurosci. Lett. 13(3):225–230.

    Article  PubMed  CAS  Google Scholar 

  • Snyder, E. Y. and Park, K. I. (2002) Limitations in brain repair. Nat. Med. 8(9):928–930.

    Article  PubMed  CAS  Google Scholar 

  • Snyder, E. Y., Deitcher, D. L., Walsh, C., Arnold-Aldea, S., Hartwieg, E. A., and Cepko, C. L. (1992) Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell 68:33–55.

    Article  PubMed  CAS  Google Scholar 

  • Snyder, E. Y., Taylor, R. M., and Wolfe, J. H. (1995) Neural progenitor cell engraftment corrects lysosomal storage throughout the MPS VII mouse brain. Nature 374:367–370.

    Article  PubMed  CAS  Google Scholar 

  • Snyder, E. Y., Yoon, C., Flax, J. D., and Macklis, J. D. (1997) Multipotent neural precursors can differentiate toward replacement of neurons undergoing targeted apoptotic degeneration in adult mouse neocortex. Proc. Natl. Acad. Sci. USA 94(21):11,663–11,668.

    Article  CAS  Google Scholar 

  • Suhonen JO, Peterson DA, Ray J, Gage FH (1996) Differentiation of adult hippocampus-derived progenitors into olfactory neurons in vivo. Nature 383:624–627.

    Article  PubMed  CAS  Google Scholar 

  • Tate, B. A., Werzanski, D., Marciniak, A., and Snyder, E. Y. (2000) Migration of neural stem cells to Alzheimer-like lesions in an animal model of AD [abstract]. Soc. Neurosci Abstr. 26:496.

    Google Scholar 

  • Teng, Y. D., Lavik, E. B., Qu, X., et al. (2002) Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc. Natl. Acad. Sci. USA 99: 3024–3029.

    Article  PubMed  CAS  Google Scholar 

  • Tuszynski, M. H. and Gage, F. H. (1995) Bridging grafts and transient nerve growth factor infusions promote long-term central nervous system neuronal rescue and partial functional recovery. Proc. Natl. Acad. Sci. USA 92(10):4621–4625.

    Article  PubMed  CAS  Google Scholar 

  • Uchida, N., Buck, D. W., He, D., et al. (2000) Direct isolation of human central nervous system stem cells. Proc. Natl. Acad. Sci. USA 97: 14,720–14,725.

    Article  CAS  Google Scholar 

  • Vescovi, A. L., Parati, E. A., Gritti, A., et al. (1999) Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human neural stem cell lines by epigenetic stimulation. Exp. Neurol. 156:71–83.

    Article  PubMed  CAS  Google Scholar 

  • Vescovi, A. L. and Snyder, E. Y. (1999) Establishment and properties of neural stem cell clones: plasticity in vitro and in vivo. Brain Pathol. 9:569–598.

    Article  CAS  Google Scholar 

  • Villa, A., Snyder, E. Y., Vescovi, A., and Martinez-Serrano, A. (2000) Establishment and properties of a growth factor-dependent, perpetual neural stem cell line from the human CNS. Exp. Neurol. 161: 67–84.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, S., Reynolds, B. A., Vescovi, A. L., Morshead, C., and van der Kooy, D. (1996) Is there a neural stem cell in the mammalian forebrain? Trends Neurosci. 19:387–393.

    Article  PubMed  CAS  Google Scholar 

  • Yandava, B., Billinghurst, L., and Snyder, E. (1999) “Global” cell replacement is feasible via neural stem cell transplantation: evidence from the dysmyelinated shiverer mouse brain. Proc. Natl. Acad. Sci. USA 96:7029–7034.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, S. C., Wernig, M., Duncan, I. D., Brustle, O., and Thomson, J. A. (2001) In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat. Biotechnol. 19:1129–1133.

    Article  PubMed  CAS  Google Scholar 

  • Zlomanczuk, P., Mrugala, M., de la Iglesia, H. O., et al. (2002). Transplanted clonal neural stem-like cells respond to remote photic stimulation following incorporation within the suprachiasmatic nucleus. Exp. Neurol. 174(2):162–168.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Marconi, M.A. et al. (2004). Neural Stem Cells. In: Sell, S. (eds) Stem Cells Handbook. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-411-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-411-5_17

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-367-1

  • Online ISBN: 978-1-59259-411-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics