Skip to main content

Hematopoietic Stem Cells

Identification, Characterization, and Assays

  • Chapter
  • 369 Accesses

Abstract

The small population of pluripotent hematopoietic stem cells (PHSCs) in the bone marrow consists of short-term reconstituting cells (STRCs) and long-term reconstituting cells (LTRCs), based on how quickly the transplanted cells can produce progeny in an irradiated recipient. They can be “purified” using a combination of cell size; density; fluorescent dye uptake; resistance to cytotoxic chemicals; and cell-surface markers including Thy 1.1 (T), Sca-1 (S), c-kit (K), lineage (L), CD38 (38), and CD34 (34). Using five-color fluorescence-activated cell sorting the long term, very primitive mouse LTRCs are L-/lo, S+, K+, 38+, 34-, and appear to mature to L-/lo, S+, K+, 38+, 34+ cells and then to L-/lo, S+, K+, 38-, 34+; thus, STRCs acquire CD34 and lose CD38 on maturation from CD34- LTRCs. CD34 has been used to isolate PHSCs for human transplantation studies; therefore, the LTRC may be lost during this procedure. Experimental transplantation studies indicate that the best reconstitution occurs when both cell populations are present, the more mature cells activating the immature cells after myeloablation, whereas the mature cells provide negative control in normal animals. Functionally the type of assay that has been most widely used for the quantitation of mouse stem cells is the in vivo repopulating assay. Different numbers of donor cells are combined with a standard number of normal bone marrow cells. The normal cells protect against the immediate effects of myeloablation and compete with the donor stem cells. The proportions of mature cells derived from the donor stem cells are determined by the detection of a donor-specific marker, such as an isoenzyme, Y-chromosome, or congenic antigen. Similarly, using limiting dilution transplant of a donor test population of cells and a standard number of stem cell—compromised serially transplanted cells, the relative contribution of the donor cells is measured as a competitive repopulating unit. Finally, the repopulating stem cell unit assay using complete myeloablation and busulfan-treated bone marrow radioprotective support cells provides comparatively rapid and sensitive detection of the very small numbers of LTRCs present in limiting dilution transplants. This procedure utilizes busulfan because it appears preferentially stem cell toxic, and it provides radioprotective support cells that are unable to compete effectively with normal donor stem cells in the population under investigation. Stem cells are selected based on their ability to produce both lymphoid and myeloid repopulation in severely ablated mice, rather than competitive ability.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   259.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Belloc, F., Dumain, P., Boisseau, M. R., et al. (1994) A flow cytometric method using Hoechst 33342 and propidium iodide for simultaneous cell cycle analysis and apoptosis determination in unfixed cells. Cytometry 17:59–65.

    Article  PubMed  CAS  Google Scholar 

  • Berenson, R. J., Andrews, R. G., Bensinger, W. I., et al. (1988) Antigen CD34+ marrow cells engraft lethally irradiated baboons. J. Clin. Invest. 81:951–955.

    Article  PubMed  CAS  Google Scholar 

  • Berrios, V. M., Dooner, G. J., Nowakowski, G., et al. (2001) The molecular basis for the cytokine-induced defect in homing and engraftment of hematopoietic stem cells. Exp. Hematol. 29:1326–1335.

    Article  PubMed  CAS  Google Scholar 

  • Bhatia, M., Bonnet, D., Murdoch, B., Gan, O. I., and Dick, J. E. (1998) A newly discovered class of human hematopoietic cells with SCID-repopulating activity. Nat. Med. 4:1038–1045.

    Article  PubMed  CAS  Google Scholar 

  • Cardoso, A. A., Li, M. L., Batard, B., et al. (1993) Release from quiescence of CD34+CD38- human umbilical cord blood cells reveals their potentiality to engraft adults. Proc. Natl. Acad. Sci. USA 90:8707–8711.

    Article  PubMed  CAS  Google Scholar 

  • Down, J.D. and Ploemacher, R.E. (1993) Transient and permanent engraftment potential of murine hematopoietic stem cell subsets: differential effects of host conditioning with gamma radiation and cytotoxic drugs. Exp. Hematol. 21:913–921.

    PubMed  CAS  Google Scholar 

  • Gallacher, L., Murdoch, B., Wu, D. M., Karanu, F. N., Keeney, M., and Bhatia, M. (2000) Isolation and characterization of human CD34(-) Lin(-) and CD34(+) Lin(-) hematopoietic stem cells using cell surface markers AC133 and CD7. Blood 95:2813–2820.

    PubMed  CAS  Google Scholar 

  • Gan, O. I., Murdoch, B., Larochelle, A., and Dick, J. E. (1997) Differential maintenance of primitive human SCID-repopulating cells, clonogenic progenitors, and long-term culture-initiating cells after incubation on human bone marrow stromal cells. Blood 90:641–650.

    PubMed  CAS  Google Scholar 

  • Goodell, M. A., Brose, K., Paradis, G., Conner, A. S., and Mulligan, R. C. (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J. Exp. Med. 183:1797–1806.

    Article  PubMed  CAS  Google Scholar 

  • Goodell, M. A., Rosenzweig, M., Kim, H., et al. (1997) Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat. Med. 3:1337–1345.

    Article  PubMed  CAS  Google Scholar 

  • Hampson, I. N., Spooncer, E. and Dexter, T. M. (1989) Evaluation of a mouse Y chromosome probe for assessing marrow transplantation. Exp. Hematol. 17:313–315.

    PubMed  CAS  Google Scholar 

  • Harrison, D. E. (1980) Competitive repopulation: a new assay for longterm stem cell functional capacity. Blood 55:77–81.

    PubMed  CAS  Google Scholar 

  • Harrison, D. E. and Lerner, C. P. (1991) Most primitive hematopoietic stem cells are stimulated to cycle rapidly after treatment with 5-fluo-rouracil. Blood 78:1237–1240.

    PubMed  CAS  Google Scholar 

  • Harrison, D. E. and Zhong, R.-K. (1992) The same exhaustible multilineage precursor produces both meyloid and lymphoid cells as early as 3–4 weeks after marrow transplantation. Proc. Natl. Acad. Sci. USA 89:10,134–10,138.

    Article  CAS  Google Scholar 

  • Harrison, D. E., Jordan, C. T., Zhong, R. K., and Astle, C. M. (1993) Primitive hemopoietic stem cells: direct assay of most productive populations by competitive repopulation with simple binomial, correlation and covariance calculations. Exp. Hematol. 21:206–219.

    PubMed  CAS  Google Scholar 

  • Hassan, M. (1999) The role of busulfan in bone marrow transplantation. Med. Oncol. 16:166–176.

    Article  PubMed  CAS  Google Scholar 

  • Huang, S. and Terstappen, L. W. (1994) Lymphoid and myeloid differentiation of single human CD34+, HLA-DR+, CD38-hematopoietic stem cells. Blood 83:1515–1526

    PubMed  CAS  Google Scholar 

  • Ito, T., Tajima, F., and Ogawa, M. (2000) Developmental changes of CD34 expression by murine hematopoietic stem cells. Exp. Hematol. 28:1269–1273.

    Article  PubMed  CAS  Google Scholar 

  • Jones, R. J., Wagner, J. E., Celano, P., Sicha, M. S., and Sharkis, S. J. (1990) Separation of pluripotent haematopoietic stem cells from spleen colony-forming cells. Nature 347:188–189.

    Article  PubMed  CAS  Google Scholar 

  • Krause, D. S., Ito, T., Fackler, M. J., et al. (1994) Characterization of murine CD34, a marker for hematopoietic progenitor and stem cells. Blood 84:691–701.

    PubMed  CAS  Google Scholar 

  • Nagasawa, T., Hirota, S., Tachibana, K., et al. (1996) Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382:635–638.

    Article  PubMed  CAS  Google Scholar 

  • Okada, S., Nakauchi, H., Nagayoshi, K., et al. (1991) Enrichment and characterization of murine hematopoietic stem cells that express c-kit molecule. Blood 78:1706–1712.

    PubMed  CAS  Google Scholar 

  • Osawa, M., Nakamura, K., Nishi, N., Takahashi, N., Tokuomoto, Y., Inoue, H., and Nakauchi, H. (1996) In vivo self-renewal of c-kit+ Seal+ Lin/low- hemopoietic stem cells. J. Immunol. 156:3207–3214.

    PubMed  CAS  Google Scholar 

  • Osawa, M., Hanada, K., Hamada, H., and Nakauchi, H. (1996b) Longterm lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273:242–245.

    Article  PubMed  CAS  Google Scholar 

  • Parkman, R., Rappeport, J. M., Hellman, S., et al. (1984) Busulfan and total body irradiation as antihematopoietic stem cell agents in the preparation of patients with congenital bone marrow disorders for allogenic bone marrow transplantation. Blood 64:852–857.

    PubMed  CAS  Google Scholar 

  • Ponting, I., Wang, H.-M., Chiu, L., Shpaner, A., and Shin, F. (2000) Excessive stem cell competition in the competitive long-term repopulation assay—development of a solution. Exp. Hematol. 28:39 (abstract).

    Article  Google Scholar 

  • Randall, T. D., Lund, F. E., Howark, M. C., and Weissman, I. L. (1996) Expression of murine CD38 defines a population of long-term reconstituting hematopoietic stem cells. Blood 87:4057–4067.

    PubMed  CAS  Google Scholar 

  • Sato, T., Laver, J. H., and Ogawa, M. (1999) Reversible expression of CD34 by murine hematopoietic stem cells. Blood 94:2548–2553.

    PubMed  CAS  Google Scholar 

  • Shapiro, H. M. (1981) Flow cytometric estimation of DNA and RNA content in intact cells stained with Hoechst 33342 and Pyronin Y. Cytometry 2:143–150.

    Article  CAS  Google Scholar 

  • Sitnicka, E., Ruscetti, F. W., Priestley, G. V., Wolf, N. S., and Bartelmez, S. H. (1996) Transforming growth factor beta 1 directly and reversibly inhibits the initial cell divisions of long-term repopulating hematopoietic stem cells. Blood 88:82–88.

    PubMed  CAS  Google Scholar 

  • Spangrude, G. J., Heimfeld, S., and Weissman, I.L. (1988) Purification and characterization of mouse hematopoietic stem cells [published erratum appears in Science (1989) 244(4908):1030]. Science 241:58–62.

    Article  PubMed  CAS  Google Scholar 

  • Spangrude, G. J., Brooks, D. M., and Tumas, D. B. (1995) Long-term repopulation of irradiated mice with limiting numbers of purified hematopoietic stem cells: in vivo expansion of stem cell phenotype but not function. Blood 85:1006–1016.

    PubMed  CAS  Google Scholar 

  • Stewart, F. M., Zhong, S., Wuu, J., Hsieh, C., Nilsson, S. K., and Quesenberry, P. J. (1998) Lymphohematopoietic engraftment in minimally myeloablated hosts. Blood 91:3681–3687.

    PubMed  CAS  Google Scholar 

  • Szilvassy, S. J. and Cory, S. (1993) Phenotypic and functional characterization of competitive long-term repopulating hematopoietic stem cells enriched from 5-fluorouracil-treated murine marrow. Blood 81: 2310–2320.

    PubMed  CAS  Google Scholar 

  • Szilvassy, S. J., Humphries, R. K., Lansdorp, P. M., Eaves, A. C., and Eaves, C. J. (1990) Quantitative assay for totipotent reconstituting hematopoietic stem cells by a competitive repopulation strategy. Proc. Natl. Acad. Sci. USA 87:8736–8740.

    Article  PubMed  CAS  Google Scholar 

  • Szilvassy, S. J., Meyerrose, T. E., Ragland, P. L., and Grimes, B. (2001) Homing and engraftment defects in ex vivo expanded murine hematopoietic cells are associated with downregulation of beta l integrin. Exp. Hematol. 29:1494–1502.

    Article  PubMed  CAS  Google Scholar 

  • Tajima, F., Deguchi, T., Laver, J. H., Zeng, H., and Ogawa, M. (2001) Reciprocal expression of CD38 and CD34 by adult murine hematopoieitc stem cells . Blood 97: 2618–2624.

    Article  PubMed  CAS  Google Scholar 

  • Terstappen, L. W., Huang, S., Safford, M., Lansdorp, P. M., and Loken, M. R. (1991) Sequential generations of hematpoietic colonies derived from single nonlineage-committed CD34+CD38- progenitor cells. Blood 77:1218–1227.

    PubMed  CAS  Google Scholar 

  • Till, J. E. and McCulloch, E. A. (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res. 14:213–222.

    Article  PubMed  CAS  Google Scholar 

  • Van Zant, G. (1984) Studies of hematopoietic stem cells. J. Exp. Med. 159:679–690.

    Article  PubMed  Google Scholar 

  • Voermans, C., van Hennik, P. B., and van der Schoot, C. E. (2001) Homing of human hematopoietic stem and progenitor cells: new insights, new challenges? J. Hematother. Stem Cell Res. 10:725–738.

    Article  PubMed  CAS  Google Scholar 

  • Zanjani, E. D, Almeida-Porada, G., Livingston, A. G., Flake, A. W., and Ogawa, M. (1998) Human bone marrow CD34- cells engraft in vivo and undergo multilineage expression that includes giving rise to CD34+ cells. Exp. Hemato. 26:353–360.

    CAS  Google Scholar 

  • Zhao, Y., Lin, Y., Zhan, Y., et al. (2000) Murine hematopoietic stem cell characterization and its regulation in BM transplantation. Blood 96: 3016–3022.

    PubMed  CAS  Google Scholar 

  • Zhong, R. K., Astle, C. M., and Harrison, D. E. (1996) Distinct developmental patterns of short-term and long-term functioning lymphoid and myeloid precursors defined by competitive limiting dilution analysis in vivo. J. Immunol. 157:138–145.

    PubMed  CAS  Google Scholar 

  • Ziegler, B. L., Valtieri, M., Porada, G. A., et al. (1999) KDR receptor: a key marker defining hematopoietic stem cells. Science 285: 1553–1558.

    Article  PubMed  CAS  Google Scholar 

  • Zijlmans, J. M., Visser, J. W. M., Kleiverda, K., Kluin, P. M., Willemze, R., and Fibbe, W. E. (1995) Modification of rhodamine staining allows identification of hematopoietic stem cells with preferential shortterm or long-term bone marrow-repopulating ability. Proc. Natl. Acad. Sci. USA 92:8901–8905.

    Article  PubMed  CAS  Google Scholar 

  • Zou, Y. R., Kottmann, A. H., Kuroda, M., Taniuchi, I., and Littman, D. R. (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393:595–599.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ponting, I., Zhao, Y., Anderson, W.F. (2004). Hematopoietic Stem Cells. In: Sell, S. (eds) Stem Cells Handbook. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-411-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-411-5_14

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-367-1

  • Online ISBN: 978-1-59259-411-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics