Skip to main content

Immune System

  • Chapter
Combat Medicine
  • 119 Accesses

Abstract

The golden hour—that precious 60-minute countdown to stabilize the wounds of soldiers, to save their lives and limbs—extends to days and weeks in field hospitals. After the battle of El Alamein, a surgeon wrote that severe wounds were often followed by illness (more or less serious, lasting for several days) in which many factors other than blood loss or its late effects operated (1). The precise nature of these factors has been a source of debate ever since. Most critically wounded soldiers die immediately from rupture of the heart or major blood vessels or massive neurologic trauma. Around 50% of severely injured trauma patients who survive their initial injuries will succumb days to weeks after injury because of abnormalities of the immune system and infection/septic complications leading to the systemic inflammatory response syndrome (SIRS) and multiple organ system failure (MOF) despite proper therapy. The development of MOF after trauma is associated with remote organ failure (ROF), the dysfunction of organs that were not affected by the injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Foex BA. Systemic responses to trauma. Br Med Bull 1999;55:726–743.

    Article  PubMed  CAS  Google Scholar 

  2. Catania RA, Chaudry IH. Immunological consequences of trauma and shock. Ann Acad Med Singapore 1999;28 1:120–132.

    PubMed  CAS  Google Scholar 

  3. Angele MK, Schwacha MG, Ayala A, Chaudry IH. Effect of gender and sex hormones on immune responses following shock. Shock 2000;14:81–90.

    Article  PubMed  CAS  Google Scholar 

  4. Deitch EA. Animal models of sepsis and shock: a review and lessons learned. Shock 1998;9:1–11.

    Article  PubMed  CAS  Google Scholar 

  5. Ayala A, Perrin MM, Wang P, Ertel W, Chaudry IH. Hemorrhage induces enhanced Kupffer cell cytotoxicity while decreasing peritoneal or splenic macrophage capacity. Involvement of cell-associated tumor necrosis factor and reactive nitrogen. J Immunol 1991;147:4147–4154.

    PubMed  CAS  Google Scholar 

  6. Kelly CJ, Gallagher H, Wolf BA, Daly JM. Alterations in macrophage signal transduction pathways mediate post-traumatic changes in macrophage function. J Surg Res 1994;57:221–226.

    Article  PubMed  CAS  Google Scholar 

  7. Mayberry A, Ayala A, Chaudry IH. Hemorrhage affects the ability of murine peritoneal macrophages to alkanize intracellular pH in acidic environments. J Surg Res 1995;58:682–686.

    Article  PubMed  CAS  Google Scholar 

  8. Akgun S, Ertel NH, Mosenthal A, Oser W Postsurgical reduction of serum lipoproteins: interleukin-6 and the acute-phase response. J Lab Clin Med 1998;131:103–108.

    Article  PubMed  CAS  Google Scholar 

  9. Ertel W, Morrison MH, Ayala A, Chaudry IH. Eicosanoids regulate tumor necrosis factor synthesis after hemorrhage in vitro and in vivo. J Trauma 1991;31:609–615.

    Article  PubMed  CAS  Google Scholar 

  10. Walker C, Kristensen F, Bettens F, deWeck AL. Lymphokine regulation of activated (Gl) lymphocytes. I. Prostaglandin E2-induced inhibition of interleukin 2 production. J Immunol 1983;130:1770–1773.

    PubMed  CAS  Google Scholar 

  11. Knapp W, Baumgartner G. Monocyte-mediated suppression of human B lymphocyte differentiation in vitro. J Immunol 1978;121:1177–1183.

    PubMed  CAS  Google Scholar 

  12. Meldrum DR, Ayala A, Chaudry IH. Energetics of defective macrophage antigen presentation after hemorrhage as determined by ultraresolution 31P nuclear magnetic resonance spectrometry: restoration with adenosine triphosphate-MgCl2. Surgery 1992;112:150–156.

    PubMed  CAS  Google Scholar 

  13. Moore EE, Moore FA, Franciose RJ, Kim FJ, Biffl WL, Banerjee A. The postishemic gut serves as a priming bed for circulating neutrophils that provoke multiple organ failure. J Trauma 1994;37:881–887.

    Article  PubMed  CAS  Google Scholar 

  14. Botha A J, Moore FA, Moore EE, Fontes B, Banerjee A, Peterson VM. Postinjury neutrophil priming and activation states: therapeutic challenges. Shock 1995;3: 157–166.

    Article  PubMed  CAS  Google Scholar 

  15. Botha AJ, Moore FA, Moore EE, Sauaia A, Banerjee A, Peterson VM. Early neutrophil sequestration after injury: a pathogenic mechanism for multiple organ failure. J Trauma 1995;39:411–417.

    Article  PubMed  CAS  Google Scholar 

  16. Mizgerd JP, Meek BB, Kutkoski GJ, Bullard DC, Beaudet AL, Doerschuk CM. Selectins and neutrophil traffic: margination and Streptococcus pneumoniae-induced emigration in murine lungs. J Exp Med 1996;184:639–645.

    Article  PubMed  CAS  Google Scholar 

  17. Ramamoorthy C, Sharar SR, Harlan JM, Tedder TF, Winn RK. Blocking L-selectin function attenuates reperfusion injury following hemorrhagic shock in rabbits. Am J Physiol 1996;271:H1871-H1877.

    PubMed  CAS  Google Scholar 

  18. Turnage RH, Kadesky KM, Rogers T, Hernandez R, Bartula L, Myers SI. Neutrophil regulation of splanchnic blood flow after hemorrhagic shock. Ann Surg 1995;222:66–72.

    Article  PubMed  CAS  Google Scholar 

  19. Blazar BA, Rodrick ML, O’Mahony JB, et al. Suppression of natural killer-cell function in humans following thermal and traumatic injury. J Clin Immunol 1986;6:26–36.

    Article  PubMed  CAS  Google Scholar 

  20. Keane RM, Birmingham W, Shatney CM, Winchurch RA, Munster AM. Prediction of sepsis in the multitraumatic patient by assays of lymphocyte responsiveness. Surg Gynecol Obstet 1983;156:163–167.

    PubMed  CAS  Google Scholar 

  21. Abraham E, Lee RJ, Chang YH. The role of interleukin 2 in hemorrhage-induced abnormalities of lymphocyte proliferation. Circ Shock 1986;18:205–213.

    PubMed  CAS  Google Scholar 

  22. Schmand JF, Ayala A, Chaudry IH. Effects of trauma, duration of hypotension, and resuscitation regimen on cellular immunity after hemorrhagic shock. Crit Care Med 1994;22:1076–1083.

    Article  PubMed  CAS  Google Scholar 

  23. Zellweger R, Ayala A, DeMaso CM, Chaudry IH. Trauma-hemorrhage causes prolonged depression in cellular immunity. Shock 1995;4:149–153.

    Article  PubMed  CAS  Google Scholar 

  24. De AK, Kodys K, Puyana JC, Fudem G, Pellegrini J, Miller-Graziano CL. Only a subset of trauma patients with depressed mitogen responses have true T cell dysfunctions. Clin Immunol Immunopathol 1997;82:73–82.

    Article  PubMed  CAS  Google Scholar 

  25. Sayeed MM. Signaling mechanisms of altered cellular responses in trauma, burn, and sepsis: role of Ca2+. Arch Surg 2000;135:1432–1442.

    Article  PubMed  CAS  Google Scholar 

  26. Schaffer M, Barbul A. Lymphocyte function in wound healing and following injury. Br J Surg 1998;85:444–460.

    Article  PubMed  CAS  Google Scholar 

  27. Albina JE, Henry WL Jr. Suppression of lymphocyte proliferation through the nitric oxide synthesizing pathway. J Surg Res 1991;50:403–4109.

    Article  PubMed  CAS  Google Scholar 

  28. McRitchie DI, Girotti MJ, Rotstein OD, Teodorczyk-Injeyan JA. Impaired antibody production in blunt trauma. Possible role for T cell dysfunction. Arch Surg 1990;125:91–96.

    Article  PubMed  CAS  Google Scholar 

  29. Richter M, Jodouin CA, Moher D, Barron P. Immunologic defects following trauma: a delay in immunoglobulin synthesis by cultured B cells following traumatic accidents but not elective surgery. J Trauma 1990;30:590–596.

    Article  PubMed  CAS  Google Scholar 

  30. Abraham E, Freitas AA, Coutinho AA. Hemorrhage in mice produces alterations in B cell repertoires. Cell Immunol 1989;122:208–217.

    Article  PubMed  CAS  Google Scholar 

  31. Abraham E, Freitas AA. Hemorrhage in mice induces alterations in immunoglobu-lin-secreting B cells. Crit Care Med 1989;17:1015–1019.

    Article  PubMed  CAS  Google Scholar 

  32. Ertel W, Morrison MH, Ayala A, Chaudry IH. Insights into the mechanisms of defective antigen presentation after hemorrhage. Surgery 1991;110:440–445.

    PubMed  CAS  Google Scholar 

  33. Faist E, Mewes A, Baker CC, et al. Prostaglandin E2 (PGE2)-dependent suppression of interleukin alpha (IL-2) production in patients with major trauma. J Trauma 1987;27:837–848.

    Article  PubMed  CAS  Google Scholar 

  34. Angele MK, Xu YX, Ayala A, et al. Gender dimorphism in trauma-hemorrhage-induced thymocyte apoptosis. Shock 1999;12:316–322.

    Article  PubMed  CAS  Google Scholar 

  35. Zellweger R, Wichmann MW, Ayala A, DeMaso CM, Chaudry IH. Prolactin: a novel and safe immunomodulating hormone for the treatment of immunodepres-sion following severe hemorrhage. J Surg Res 1996;63:53–58.

    Article  PubMed  CAS  Google Scholar 

  36. Zhu XL, Zellweger R, Zhu XH, Ayala A, Chaudry IH. Cytokine gene expression in splenic macrophages and Kupffer cells following hemorrhage. Cytokine 1995;7:8–14.

    Article  PubMed  CAS  Google Scholar 

  37. Olsen NJ, Kovacs WJ. Gonadal steroids and immunity. Endocr Rev 1996; 17: 369–384.

    PubMed  CAS  Google Scholar 

  38. Abraham E, Wunderink R, Silverman H, et al. Efficacy and safety of monoclonal antibody to human tumor necrosis factor alpha in patients with sepsis syndrome. A randomized, controlled, double-blind, multicenter clinical trial. TNF-alpha MAb Sepsis Study Group. JAMA 1995;273:934–941.

    Article  PubMed  CAS  Google Scholar 

  39. Faist E, Schinkel C, Zimmer S. Update on the mechanisms of immune suppression of injury and immune modulation. World J Surg 1996;20:454–459.

    Article  PubMed  CAS  Google Scholar 

  40. Robinson DA, Wang P, Chaudry IH. Pentoxifylline restores the depressed cardiac performance after trauma-hemorrhage and resuscitation. J Surg Res 1996;66: 51–56.

    Article  PubMed  CAS  Google Scholar 

  41. Chaudry IH. Cellular mechanisms in shock and ischemia and their correction. Am J Physiol 1983;245:R117-R134.

    PubMed  CAS  Google Scholar 

  42. Harkema JM, Chaudry IH. Magnesium-adenosine triphosphate in the treatment of shock, ischemia, and sepsis. Crit Care Med 1992;20:263–275.

    Article  PubMed  CAS  Google Scholar 

  43. Meldrum DR, Ayala A, Wang P, Ertel W, Chaudry IH. Association between decreased splenic ATP levels and immunodepression: amelioration with ATP-MgCl2. Am J Physiol 1991;261:R351-R357.

    PubMed  CAS  Google Scholar 

  44. Meldrum DR, Ayala A, Chaudry IH. Energetics of lymphocyte “burnout” in late sepsis: adjuvant treatment with ATP-MgCl2 improves energetics and decreases lethality. J Surg Res 1994;56:537–542.

    Article  PubMed  CAS  Google Scholar 

  45. Zellweger R, Ayala A, Zhu XL, Holme KR, DeMaso CM, Chaudry IH. A novel nonanticoagulant heparin improves splenocyte and peritoneal macrophage immune function after trauma-hemorrhage and resuscitation. J Surg Res 1995;59: 211–218.

    Article  PubMed  CAS  Google Scholar 

  46. Wang P, Ba ZF, Reich SS, Zhou M, Holme KR, Chaudry IH. Effects of nonanticoagulant heparin on cardiovascular and hepatocellular function after hemorrhagic shock. Am J Physiol 1996;270:H1294-H1302.

    PubMed  CAS  Google Scholar 

  47. Catania RA, Angele MK, Ayala A, Cioffi WG, Bland KI, Chaudry IH. Dehy-droepiandrosterone restores immune function following trauma-hemorrhage by a direct effect on T lymphocytes. Cytokine 1999; 11:443–450.

    Article  PubMed  CAS  Google Scholar 

  48. Zellweger R, Zhu XH, Wichmann MW, Ayala A, DeMaso CM, Chaudry IH. Prolactin administration following hemorrhagic shock improves macrophage cytokine release capacity and decreases mortality from subsequent sepsis. J Immunol 1996;157:5748–5754.

    PubMed  CAS  Google Scholar 

  49. Zellweger R, Wichmann MW, Ayala A, Chaudry IH. Metoclopramide: a novel and safe immunomodulating agent for restoring the depressed macrophage immune function after hemorrhage. J Trauma 1998;44:70–77.

    Article  PubMed  CAS  Google Scholar 

  50. Wichmann MW, Angele MK, Ayala A, Cioffi WG, Chaudry IH. Flutamide: a novel agent for restoring the depressed cell-mediated immunity following soft-tissue trauma and hemorrhagic shock. Shock 1997;8:242–248.

    Article  PubMed  CAS  Google Scholar 

  51. Angele MK, Wichmann MW, Ayala A, Cioffi WG, Chaudry IH. Testosterone receptor blockade after hemorrhage in males. Restoration of the depressed immune functions and improved survival following subsequent sepsis. Arch Surg 1997;132:1207–1214.

    Article  PubMed  CAS  Google Scholar 

  52. Choudhry MA, Ahmad S, Thompson KD, Sayeed MM. T-lymphocyte Ca2+ signalling and proliferative responses during sepsis. Shock 1994;1:466–471.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nambiar, M.P. (2003). Immune System. In: Tsokos, G.C., Atkins, J.L. (eds) Combat Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-407-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-407-8_5

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-337-4

  • Online ISBN: 978-1-59259-407-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics