Skip to main content

G-CSF, GM-CSF, and IL-3 Knockout Mice

  • Chapter
  • 399 Accesses

Part of the book series: Contemporary Immunology ((CONTIM))

Summary

Granulocyte colony stimulating factor (G-CSF), granulocyte-macrophage colony stimulating factor (GMCSF), and interleukin-3 (IL-3) stimulate the proliferation, differentiation, and activation of multiple hematopoietic cells. G-CSF acts primarily on mature neutrophils and their precursors, and the ability of this cytokine to promote granulopoiesis in vivo underlies its clinical application in the setting of neutropenia. GM-CSF influences a broader range of cells, including neutrophils, eosinophils, macrophages, erythroid progenitors, megakaryocyte progenitors, and dendritic cells. These properties result in marked immunostimulation, and have led to clinical testing of the cytokine as a vaccine adjuvant. IL-3 augments the numbers and functions of hematopoietic progenitors, mast cells, basophils, neutrophils, macrophages, eosinophils, erythrocytes, megakaryocytes, and dendritic cells.

In this chapter we review the generation and characterization of mice deficient in each of these cytokines. These studies have delineated essential roles for the molecules in hematopoiesis, immunity, and pulmonary homeostasis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Metcalf, D. (1993) Hematopoietic regulators: redundancy or subtlety? Blood 82, 3515–3523.

    PubMed  CAS  Google Scholar 

  2. Demetri, G. D. and Griffin, J. D. (1991) Granulocyte colony-stimulating factor and its receptor. Blood 78, 2791–808.

    PubMed  CAS  Google Scholar 

  3. Moore, M. A., Welte, K., Gabrilove, J., and Souza, L. M. (1987) Biological activities of recombinant human granulocyte colony stimulating factor (rhG-CSF) and tumor necrosis factor: in vivo and in vitro analysis. In: Neth, R., et al., eds. Haematology and Blood Transfusion. Springer-Verlag, Berlin.

    Google Scholar 

  4. Tamura, M., Hattori, K., Namura, H., et al. (1987) Induction of neutrophilic granulocytosis in mice by administration of purified human native granulocyte colony-stimulating factor (G-CSF). Biochem. Biophys. Res. Commun. 142, 454–660.

    Article  PubMed  CAS  Google Scholar 

  5. Pojda, Z., Molineux, G., and Dexter, T. M. (1990) Hemopoietic effects of short-term in vivo treatment of mice with various doses of rhG-CSF. Exp. Hematol. 18, 27–31.

    PubMed  CAS  Google Scholar 

  6. Chang, J. M., Metcalf, D., Gonda, T. J., and Johnson, G. R. (1989) Long-term exposure to retrovirally expressed granulocyte-colony-stimulating factor induces a nonneoplastic granulocytic and progenitor cell hyperplasia without tissue damage in mice. J. Clin. Invest. 84, 1488–1496.

    Article  PubMed  CAS  Google Scholar 

  7. Watari, K., Asano, S., Shirafuji, N., et al. (1989) Serum granulocyte colony-stimulating factor levels in healthy volunteers and patients with various disorders as estimated by enzyme immunoassay. Blood 73, 117–122.

    PubMed  CAS  Google Scholar 

  8. Mempel, K., Pietsch, T., Menzel, T., Seidler, C., and Welte, K. (1991) Increased serum levels of granulocyte colony-stimulating factor in patients with severe congenital neutropenia. Blood 77, 1919–1922.

    PubMed  CAS  Google Scholar 

  9. Gasson, J. C., Weisbart, R. H., Kaufman, S. E., et al. (1984) Purified human granulocyte-macrophage colony-stimulating factor: direct action on neutrophils. Science 226, 1339–1342.

    Article  PubMed  CAS  Google Scholar 

  10. Cannistra, S. A. and Griffin, J. D. (1988) Regulation of the production and function of granulocytes and monocytes. Semin. Hematol. 25, 173–188.

    PubMed  CAS  Google Scholar 

  11. Caux, C., Massacrier, C., Vanbervliet, B., et al. (1996) CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GMCSF+TNF alpha. J. Exp. Med. 184, 695–706.

    Article  PubMed  CAS  Google Scholar 

  12. Lopez, A. F., Williamson, D. J., Gamble, J. R., et al. (1986) Recombinant human granulocyte-macrophage colony-stimulating factor stimulates in vitro mature human neutrophil and eosinophil function, surface receptor expression, and survival. J. Clin. Invest. 78, 1220–1228.

    Article  PubMed  CAS  Google Scholar 

  13. Ferrero, D., Tarella, C., Badoni, R., et al. (1989) Granulocyte-macrophage colony-stimulating factor requires interaction with accessory cells or granulocyte-colony stimulating factor for full stimulation of human myeloid progenitors. Blood 73, 402–405.

    PubMed  CAS  Google Scholar 

  14. Lang, R. A., Metcalf, D., Cuthbertson, R. A., et al. (1987) Transgenic mice expressing a hemopoietic growth factor gene (GM-CSF) develop accumulations of macrophages, blindness, and a fatal syndrome of tissue damage. Cell 51, 675–686.

    Article  PubMed  CAS  Google Scholar 

  15. Johnson, G. R., Gonda, T. J., Metcalf, D., Hariharan, I. K., and Cory, S. (1989) A lethal myeloproliferative syndrome in mice transplanted with bone marrow cells infected with a retrovirus expressing granulocyte-macrophage colony stimulating factor. EMBO J. 8, 441–448.

    PubMed  CAS  Google Scholar 

  16. Dranoff, G., Jaffee, E., Lazenby, A., et al. (1993) Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc. Natl. Acad. Sci. USA 90, 3539–3543.

    Article  PubMed  CAS  Google Scholar 

  17. Rennick, D. M., Lee, F. D., Yokota, T., Arai, K. I., Cantor, H., and Nobel, G. J. (1985) A cloned MCGF cDNA encodes a multilineage hematopoietic growth factor: multiple activities of interleukin 3. J. Immunol. 134, 910–914.

    Google Scholar 

  18. Suda, T., Suda, T., Ogawa, M., and Ihle, J. N. (1985) Permissive role of interleukin 3 (IL-3) in proliferation and differentiation of multipotential hemopoietic progenitors in culture. J. Cell. Physiol. 124, 182–190.

    Article  PubMed  CAS  Google Scholar 

  19. Caux, C., Vanberbliet, B., Massacrier, C., Durand, I., and Banchereau, J. (1996) Interleukin-3 cooperates with tumor necrosis factor alpha for the development of human dendritic/Langerhans cells from cord blood CD34+ hematopoietic progenitor cells. Blood 87, 2376–2385.

    PubMed  CAS  Google Scholar 

  20. Metcalf, D., Beley, C. G., Johnson, G. R., Nicola, N. A., Lopez, A. F., and Williamson, D. J.. (1986) Effects of purified bacterially synthesized murine multi-CSF (IL-3) on hematopoiesis in normal adult mice. Blood 68, 46–57.

    PubMed  CAS  Google Scholar 

  21. Kindler, V., Thorens, B., de Kossodo, S., et al. (1986) Stimulation of hematopoiesis in vivo by recombinant bacterial murine interleukin 3. Proc. Natl. Acad. Sci. USA 83, 1001–1005.

    Article  PubMed  CAS  Google Scholar 

  22. Donahue, R. E., Seehra, J., Metzger, M., et al. (1988) Human IL-3 and GM-CSF act synergistically in stimulating hematopoiesis in primates. Science 241, 1820–1823.

    Article  PubMed  CAS  Google Scholar 

  23. Gianella-Borradori, A. (1994) Present and future clinical relevance of interleukin 3. Stem Cells 12 (Suppl. 1), 241–248.

    Article  PubMed  Google Scholar 

  24. Rothenberg, M. E., Owen, W. F. Jr., Silberstein, D. S., et al. (1988) Human eosinophils have prolonged survival, enhanced functional properties, and become hypodense when exposed to human interleukin 3. J. Clin. Invest. 81, 1986–1992.

    Article  PubMed  CAS  Google Scholar 

  25. Kimoto, M., Kinder, V., Higaki, M., Ody, C., Izui, S., and Vassalli, P. (1988) Recombinant murine IL-3 fails to stimulate T or B lymphopoiesis in vivo, but enhances immune responses to T cell-dependent antigens. J. Immunol. 140, 1889–1894.

    PubMed  CAS  Google Scholar 

  26. Cannistra, S. A., Vellenga, E., Groshek, P., Rambaldi, A., and Griffin, J. D. (1988) Human granulocyte-monocyte colony-stimulating factor and interleukin 3 stimulate monocyte cytotoxicity through a tumor necrosis factor-dependent mechanism. Blood 71, 672–676.

    PubMed  CAS  Google Scholar 

  27. Madden, K. B., Urban, J. F. Jr., Ziltener, H. J., Shcrader, J. W., Finkelman, F. D., and Katona, I. M. (1991) Antibodies to IL-3 and IL-4 suppress helminth-induced intestinal mastocytosis. J. Immunol. 147, 1387–1391.

    PubMed  CAS  Google Scholar 

  28. Pulaski, B. A., Yeh, K. Y., Shastri, N., et al. (1996) Interleukin 3 enhances cytotoxic T lymphocyte development and class I major histocompatibility complex “re-presentation” of exogenous antigen by tumor-infiltrating antigen-presenting cells. Proc. Natl. Acad. Sci. USA 93, 3669–3674.

    Article  PubMed  CAS  Google Scholar 

  29. Buchberg, A. M., Bedigian, H. G., Taylor, B. A., et al. (1988) Localization of Evi-2 to chromosome 11: linkage to other protooncogene and growth factor loci using interspecific backcross mice. Oncogene Res. 2, 149–165.

    PubMed  CAS  Google Scholar 

  30. Buchberg, A. M., Brownell, E., Nagata, S. Jenkins, N. A., and Copeland, N. G. (1989) A comprehensive genetic map of murine chromosome 11 reveals extensive linkage conservation between mouse and human. Genetics 122, 153–161.

    PubMed  CAS  Google Scholar 

  31. Barlow, D. P., Bucan, M., Lehrach, H., Hogan, B. L, and Gough, N. M. (1987) Close genetic and physical linkage between the murine haemopoietic growth factor genes GM-CSF and Multi-CSF (IL3). EMBO J. 6, 617–623.

    PubMed  CAS  Google Scholar 

  32. Lieschke, G. J., Grail, D., Hodgson, G., et al. (1994) Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood 84, 1737–1746.

    PubMed  CAS  Google Scholar 

  33. Metcalf, D., Lindeman, G. J., and Nicola, N. A. (1995) Analysis of hematopoiesis in max 41 transgenic mice that exhibit sustained elevations of blood granulocytes and monocytes. Blood 85, 2364–2370.

    PubMed  CAS  Google Scholar 

  34. Lieschke, G. J. and Dunn, A. R. (1992) Physiologic role of granulocyte colony stimulating factor: insights from in vivo studies. In: Abraham, N. G., et al., ed. Molecular Biology of Haematopoiesis. Andover, Hants, UK, p. 201.

    Google Scholar 

  35. Layton, J. E., Hockman, H., Sheridan, W. P., and Morstyn, G. (1989) Evidence for a novel in vivo control mechanism of granulopoiesis: mature cell-related control of a regulatory growth factor. Blood 74, 1303–1307.

    PubMed  CAS  Google Scholar 

  36. Basu, S., Hodgson, G., Katz, M., and Dunn, A. R. (2002) Evaluation of role of G-CSF in the production, survival, and release of neutrophils from bone marrow into circulation. Blood 100, 854–861.

    Article  PubMed  CAS  Google Scholar 

  37. Stanley, E., Metcalf, D., Sobieszczuk, P., Gough, N. M., and Dunn, A. R. (1985) The structure and expression of the murine gene encoding granulocyte-macrophage colony stimulating factor: evidence for utilisation of alternative promoters. EMBO J. 4, 2569–2573.

    PubMed  CAS  Google Scholar 

  38. Miyatake, S., Otsuka, T., Yokota, T., Lee, F., and Arai, K. (1985) Structure of the chromosomal gene for granulocyte-macrophage colony stimulating factor: comparison of the mouse and human genes. EMBO J. 4, 2561–2568.

    PubMed  CAS  Google Scholar 

  39. Dranoff, G., Crawford, A. D., Sadelain, M., et al. (1994) Involvement of granulocyte-macrophage colony-stimulating factor in pulmonary homeostasis. Science 264, 713–716.

    Article  PubMed  CAS  Google Scholar 

  40. Stanley, E., Lieschke, G. J., Grail, D., et al. (1994) Granulocyte/macrophage colony-stimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology. Proc. Natl. Acad. Sci. USA 91, 5592–5596.

    Article  PubMed  CAS  Google Scholar 

  41. Robertson, S. A., Roberts, C. T., Farr, K. L., Dunn, A. R., and Seamark, R. F. (1999) Fertility impairment in granulocyte-macrophage colony-stimulating factor-deficient mice. Biol. Reprod. 60, 251–261.

    Article  PubMed  CAS  Google Scholar 

  42. Dranoff, G. and Mulligan, R. C. (1994) Activities of granulocyte-macrophage colony-stimulating factor revealed by gene transfer and gene knockout studies. Stem Cells 12(Suppl. 1), 173–182; discussion 182–184.

    PubMed  Google Scholar 

  43. Vremec, D., Lieschke, G. J., Dunn, A. R., Robb, L., Metcalf, D., and Shortman, K. (1997) The influence of granulocyte/macrophage colony-stimulating factor on dendritic cell levels in mouse lymphoid organs. Eur. J. Immunol. 27, 40–44.

    Article  PubMed  CAS  Google Scholar 

  44. Zhan, Y., Lieschke, G. J., Grail, D., Dunn, A. R., and Cheers, C. (1998) Essential roles for granulocyte-macrophage colony-stimulating factor (GM-CSF) and G-CSF in the sustained hematopoietic response of Listeria monocytogenes-infected mice. Blood 91, 863–869.

    PubMed  CAS  Google Scholar 

  45. Wright, J. R. and Clements, J. A. (1987) Metabolism and turnover of lung surfactant. Am. Rev. Respir. Dis. 136, 426–444.

    Article  PubMed  CAS  Google Scholar 

  46. Wright, J. R. and Dobbs, L. G. (1991) Regulation of pulmonary surfactant secretion and clearance. Annu. Rev. Physiol. 53, 395–414.

    Article  PubMed  CAS  Google Scholar 

  47. Ikegami, M., Hull, W. M., Yoshida, M., Wert, S. E., and Whitsett, J. A. (2001) SP-D and GM-CSF regulate surfactant homeostasis via distinct mechanisms. Am. J. Physiol. Lung Cell. Mol. Physiol. 281, L697 - L703.

    PubMed  CAS  Google Scholar 

  48. Rosen, S. H., Castleman, B., and Liebow, A. A. (1958) Pulmonary alveolar proteinosis. N. Engl. J. Med. 258, 1123–1142.

    Article  PubMed  CAS  Google Scholar 

  49. Yoshida, M., Ikegami, M., Reed, J. A., Chroneos, Z. C., and Whitsett, J. A. (2001) GM-CSF regulates protein and lipid catabolism by alveolar macrophages. Am. J. Physiol. Lung Cell. Mol. Physiol. 280, L379 - L386.

    PubMed  CAS  Google Scholar 

  50. Ikegami, M., Veda, T., Hull, W., et al. (1996) Surfactant metabolism in transgenic mice after granulocyte macrophage-colony stimulating factor ablation. Am. J. Physiol. 270, L650 - L658.

    PubMed  CAS  Google Scholar 

  51. Huffman, J. A., Hull, W. M., Dranoff, G., Mulligan, R. C., and Whitsett, J. A. (1996) Pulmonary epithelial cell expression of GM-CSF corrects the alveolar proteinosis in GM-CSF-deficient mice. J. Clin. Invest. 97, 649–655.

    Article  PubMed  CAS  Google Scholar 

  52. Zsengeller, Z. K., Reed, J. A., Bachurski, C. J. et al. (1998) Adenovirus-mediated granulocyte-macrophage colony-stimulating factor improves lung pathology of pulmonary alveolar proteinosis in granulocyte-macrophage colony-stimulating factor-deficient mice. Hum. Gene Ther. 9, 2101–2109.

    Article  PubMed  CAS  Google Scholar 

  53. Reed, J. A., Ikegami, M., Cianciolo, E. R., et al. (1999) Aerosolized GM-CSF ameliorates pulmonary alveolar proteinosis in GM-CSF-deficient mice. Am. J. Physiol. 276 (4 Pt 1), L556 - L563.

    PubMed  CAS  Google Scholar 

  54. Kitamura, T., Tanaka, N., Watanabe, J., et al. (1999) Idiopathic pulmonary alveolar proteinosis as an autoimmune disease with neutralizing antibody against granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 190, 875–880.

    Article  PubMed  CAS  Google Scholar 

  55. Dirksen, U., Nishinakamura, R., Groneck, P., et al. (1997) Human pulmonary alveolar proteinosis associated with a defect in GM-CSF/IL-3/IL-5 receptor common beta chain expression. J. Clin. Invest. 100, 2211–2217.

    Article  PubMed  CAS  Google Scholar 

  56. Tchou-Wong, K. M., Harkin, T. J., Chi, C., Bodkin, M., and Rom, W. N. (1997) GM-CSF gene expression is normal but protein release is absent in a patient with pulmonary alveolar proteinosis. Am. J. Respir. Crit. Care Med. 156, 1999–2002.

    PubMed  CAS  Google Scholar 

  57. Thomassen, M. J., Yi, T., Raychaudhuri, B., Malur, A., and Kavuru, M. S. (2000) Pulmonary alveolar proteinosis is a disease of decreased availability of GM-CSF rather than an intrinsic cellular defect. Clin. Immunol. 95, 85–92.

    Article  PubMed  CAS  Google Scholar 

  58. Barraclough, R. M. and Gillies, A. J. (2001) Pulmonary alveolar proteinosis: a complete response to GM-CSF therapy. Thorax 56, 664–665.

    Article  PubMed  CAS  Google Scholar 

  59. Kavuru, M. S., Sullivan, E. J., Piccin, R., Thomassen, M. J., and Stoller, J. K. (2000) Exogenous granulocyte-macrophage colony-stimulating factor administration for pulmonary alveolar proteinosis. Am. J. Respir. Crit. Care Med. 161, 1143–1148.

    PubMed  CAS  Google Scholar 

  60. Seymour, J. F., Dunn, A. R., Vincetn, J. M., Presneill, J. J., and Pain, M. C. (1996) Efficacy of granulocyte-macrophage colony-stimulating factor in acquired alveolar proteinosis. N. Engl. J. Med. 335, 1924–1925.

    Article  PubMed  CAS  Google Scholar 

  61. Paine, R. 3rd, Preston, A. M., Wilcoxen, S., et al. (2000) Granulocyte-macrophage colony-stimulating factor in the innate immune response to Pneumocystis carinii pneumonia in mice. J. Immunol. 164, 2602–2609.

    PubMed  CAS  Google Scholar 

  62. LeVine, A. M., Reed, J. A., Kurak, K. E., Cianciolo, E., and Whitsett, J. A. (1999) GM-CSFdeficient mice are susceptible to pulmonary group B streptococcal infection. J. Clin. Invest. 103, 563–569.

    Article  PubMed  CAS  Google Scholar 

  63. Paine, R. 3rd, Morris, S. B., Jin, H., et al. (2001) Impaired functional activity of alveolar macrophages from GM-CSF-deficient mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 281, L1210 - L1218.

    PubMed  CAS  Google Scholar 

  64. Shibata, Y., Berclaz, P. Y., Chroneos, Z. C., Yoshida, M., Whitsett, J. A., and Trapnell, B. C. (2001) GM-CSF regulates alveolar macrophage differentiation and innate immunity in the lung through PU.1. Immunity 15, 557–567.

    Article  PubMed  CAS  Google Scholar 

  65. Zhan, Y., Basu, S., Lieschke, G. J., Grail, D., Dunn, A. R., and Cheers, C. (1999) Functional deficiencies of peritoneal cells from gene-targeted mice lacking G-CSF or GM-CSF. J. Leukoc. Biol. 65, 256–264.

    PubMed  CAS  Google Scholar 

  66. Bilyk, N. and Holt, P. G. (1993) Inhibition of the immunosuppressive activity of resident pulmonary alveolar macrophages by granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 177, 1773–1777.

    Article  PubMed  CAS  Google Scholar 

  67. Wada, H., Noguchi, Y., Marino, M. W., Dnn, A. R., and Old, L. J. (1997) T cell functions in granulocyte/macrophage colony-stimulating factor deficient mice. Proc. Natl. Acad. Sci. USA 94, 12557–12561.

    Article  PubMed  CAS  Google Scholar 

  68. Noguchi, Y., Wada, H., Marino, M. W., and Old, L. J. (1998) Regulation of IFN-gamma production in granulocyte-macrophage colony-stimulating factor-deficient mice. Eur. J. Immunol. 28, 3980–3988.

    Article  PubMed  CAS  Google Scholar 

  69. Campbell, I. K., Rich, M. J., Bischof, R. J., Dunn, A. R., Grail, D., and Hamilton, J. A. (1998) Protection from collagen-induced arthritis in granulocyte-macrophage colony-stimulating factor-deficient mice. J. Immunol. 161, 3639–3644.

    PubMed  CAS  Google Scholar 

  70. McQualter, J. L., Darwiche, R., Ewing, C., et al. (2001) Granulocyte macrophage colony-stimulating factor: a new putative therapeutic target in multiple sclerosis. J. Exp. Med. 194, 873–882.

    Article  PubMed  CAS  Google Scholar 

  71. Basu, S., Dunn, A. R., Marino, M. W., et al. (1997) Increased tolerance to endotoxin by granulocyte-macrophage colony-stimulating factor-deficient mice. J. Immunol. 159, 1412–1417.

    PubMed  CAS  Google Scholar 

  72. Mach, N., Lantz, C. S., Galli, S. J., et al. (1998) Involvement of interleukin-3 in delayed-type hypersensitivity. Blood 91, 778–783.

    PubMed  CAS  Google Scholar 

  73. Galli, S. J., Zsebo, K. M., and Geissler, E. N. (1994) The kit ligand, stem cell factor. Adv. Immunol. 55, 1–96.

    Article  PubMed  CAS  Google Scholar 

  74. Lantz, C. S., Boesiger, J., Song, C. H., et al. (1998) Role for interleukin-3 in mast-cell and basophil development and in immunity to parasites. Nature 392, 90–93.

    Article  PubMed  CAS  Google Scholar 

  75. Eisen, H. N., Orris, L., and Belman, S. (1952) Elicitation of delayed allergic skin reactions with hap-tens: the dependence of elicitation on hapten combination with protein. J. Exp. Med. 95, 473–475.

    Article  PubMed  CAS  Google Scholar 

  76. Silberberg, I., Baer, R. L., and Rosenthal, S. A. (1976) The role of Langerhans cells in allergic contact hypersensitivity. A review of findings in man and guinea pigs. J. Invest. Dermatol. 66, 210–217.

    Article  PubMed  CAS  Google Scholar 

  77. Gocinski, B. L. and Tigelaar, R. E. (1990) Roles of CD4+ and CD8+ T cells in murine contact sensitivity revealed by in vivo monoclonal antibody depletion. J. Immunol. 144, 4121–4128.

    PubMed  CAS  Google Scholar 

  78. Kitamura, T., Onishi, M., Kinoshita, S., Shibuya, A., Miyajima, A., and Nolan G. P. (1991) Expression cloning of the human IL-3 receptor cDNA reveals a shared beta subunit for the human IL-3 and GM-CSF receptors. Cell 66, 1165–1174.

    Article  PubMed  CAS  Google Scholar 

  79. Tavernier, J., Devos, R., Cornelis, S., et al. (1991) A human high affinity interleukin-5 receptor (ILSR) is composed of an IL5-specific alpha chain and a beta chain shared with the receptor for GM-CSF. Cell 66, 1175–1184.

    Article  PubMed  CAS  Google Scholar 

  80. Itoh, N., Yonehara, S., Schreurs, J., et al. (1990) Cloning of an interleukin-3 receptor gene: a member of a distinct receptor gene family. Science 247, 324–327.

    Article  PubMed  CAS  Google Scholar 

  81. Gorman, D. M., Itoh, N., Kitamura, T., et al. (1990) Cloning and expression of a gene encoding an interleukin 3 receptor-like protein: identification of another member of the cytokine receptor gene family. Proc. Natl. Acad. Sci. USA 87, 5459–5463.

    Article  PubMed  CAS  Google Scholar 

  82. Nishinakamura, R., Nakayama, N., Hirabayashi, Y., et al. (1995) Mice deficient for the IL-3/GMCSF/IL-5 beta c receptor exhibit lung pathology and impaired immune response, while beta IL3 receptor-deficient mice are normal. Immunity 2, 211–222.

    Article  PubMed  CAS  Google Scholar 

  83. Robb, L., Drinkwater, C. C., Metcalf, D., et al. (1995) Hematopoietic and lung abnormalities in mice with a null mutation of the common beta subunit of the receptors for granulocyte-macrophage colony-stimulating factor and interleukins 3 and 5. Proc. Natl. Acad. Sci. USA 92, 9565–9569.

    Article  PubMed  CAS  Google Scholar 

  84. Kopf, M., Brombacher, F., Hodgkin, P. D., et al. (1996) IL-S-deficient mice have a developmental defect in CD5+ B-1 cells and lack eosinophilia but have normal antibody and cytotoxic T cell responses. Immunity 4, 15–24.

    Article  PubMed  CAS  Google Scholar 

  85. Reed, J. A., Ikegami, M., Robb, L., Begley, C. G., Ross, G., and Whitsett, J. A. (2000) Distinct changes in pulmonary surfactant homeostasis in common beta-chain- and GM-CSF-deficient mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 278, L1164 - L1171.

    PubMed  CAS  Google Scholar 

  86. Nishinakamura, R., Wiler, R., Dirksen, U., et al. (1996) The pulmonary alveolar proteinosis in granulocyte macrophage colony-stimulating factor/interleukins 3/5 beta c receptor-deficient mice is reversed by bone marrow transplantation. J. Exp. Med. 183, 2657–2662.

    Article  PubMed  CAS  Google Scholar 

  87. Scott, C. L., Hughes, D. A., Cary, D., Nicola, N. A., Begley, C. G., and Robb, L. (1998) Functional analysis of mature hematopoietic cells from mice lacking the betac chain of the granulocyte-macrophage colony-stimulating factor receptor. Blood 92, 4119–4127.

    PubMed  CAS  Google Scholar 

  88. Yamaguchi, Y., Hayashi, Y., Sughama, Y., et al. (1988) Highly purified murine interleukin 5 (IL-5) stimulates eosinophil function and prolongs in vitro survival. IL-5 as an eosinophil chemotactic factor. J. Exp. Med. 167, 1737–1742.

    Article  PubMed  CAS  Google Scholar 

  89. Nicola, N. A., Robb, L., Metcalf, D., Cary, D., Drinkwater, C. G., and Begley, C. G. (1996) Functional inactivation in mice of the gene for the interleukin-3 (IL-3)-specific receptor beta-chain: implications for IL-3 function and the mechanism of receptor transmodulation in hematopoietic cells. Blood 87, 2665–2674.

    PubMed  CAS  Google Scholar 

  90. Seymour, J. F., Lieschke, G. J., Grail, D., Quilici, C., Hodgson, G., and Dunn, A. R. (1997) Mice lacking both granulocyte colony-stimulating factor (CSF) and granulocyte-macrophage CSF have impaired reproductive capacity, perturbed neonatal granulopoiesis, lung disease, amyloidosis, and reduced long-term survival. Blood 90, 3037–3049.

    PubMed  CAS  Google Scholar 

  91. Gillessen, S., Mach, N., Small, C., Mihm, M., and Dranoff, G. (2001) Overlapping roles for granulocyte-macrophage colony-stimulating factor and interleukin-3 in eosinophil homeostasis and contact hypersensitivity. Blood 97, 922–9928.

    Article  PubMed  CAS  Google Scholar 

  92. Lee, J. S. and Young, I. G. (1989) Fine-structure mapping of the murine IL-3 and GM-CSF genes by pulsed-field gel electrophoresis and molecular cloning. Genomics 5, 359–362.

    Article  PubMed  CAS  Google Scholar 

  93. Lieschke, G. J., Stanley, E., Grail, D., et al. (1994) Mice lacking both macrophage-and granulocyte-macrophage colony-stimulating factor have macrophages and coexistent osteopetrosis and severe lung disease. Blood 84, 27–35.

    PubMed  CAS  Google Scholar 

  94. Wiktor-Jedrzejczak, W., Bartocci, A., Ferrante, A. W. Jr., et al. (1990) Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc. Natl. Acad. Sci. USA 87, 4828–4832.

    Article  PubMed  CAS  Google Scholar 

  95. Yoshida, H., Hayashi, S., Kunisada, T., et al. (1990) The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345, 442–444.

    Article  PubMed  CAS  Google Scholar 

  96. Marks, S. C. Jr. and Lane, P. W. (1976) Osteopetrosis, a new recessive skeletal mutation on chromosome 12 of the mouse. J. Hered. 67, 11–18.

    PubMed  Google Scholar 

  97. Wiktor-Jedrzejczak, W. W., Ahmed, A., Szczylik, C., and Skelly, R. R. (1982) Hematological characterization of congenital osteopetrosis in op/op mouse. Possible mechanism for abnormal macrophage differentiation. J. Exp. Med. 156, 1516–1527.

    Article  PubMed  CAS  Google Scholar 

  98. Begg, S. K., Radley, J. M., Pllard, J. W., Chisholm, O. T., Stanley, E. R., and Bertoncello, I. (1993) Delayed hematopoietic development in osteopetrotic (op/op) mice. J. Exp. Med. 177, 237–242.

    Article  PubMed  CAS  Google Scholar 

  99. Begg, S. K. and Bertoncello, I. (1993) The hematopoietic deficiencies in osteopetrotic (op/op) mice are not permanent, but progressively correct with age. Exp. Hematol. 21, 493–495.

    PubMed  CAS  Google Scholar 

  100. Nilsson, S. K. and Bertoncello, I. (1994) Age-related changes in extramedullary hematopoiesis in the spleen of normal and perturbed osteopetrotic (op/op) mice. Exp. Hematol. 22, 377–383.

    PubMed  CAS  Google Scholar 

  101. Wu, H., Liu, X., Jaenisch, R., and Lodish, H. F. (1995) Generation of committed erythroid BFUE and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell 83, 59–67.

    Article  PubMed  CAS  Google Scholar 

  102. Lin, C. S., Lim, S. K., D’Agati, V., and Constantini, F. (1996) Differential effects of an erythropoietin receptor gene disruption on primitive and definitive erythropoiesis. Genes Dev. 10, 154–164.

    Article  PubMed  CAS  Google Scholar 

  103. Wu, H., Lee, S. H., Gao, J., Liu, X., and Iruela-Arispe, M. L. (1999) Inactivation of erythropoietin leads to defects in cardiac morphogenesis. Development 126, 3597–3605.

    PubMed  CAS  Google Scholar 

  104. Jegalian, A. G., Acurio, A., Dranoff, G., and Wu, H. (2002) Erythropoietin receptor haploinsufficiency and in vivo interplay with granulocyte-macrophage colony-stimulating factor and interleukin 3. Blood 99, 2603–2605.

    Article  PubMed  CAS  Google Scholar 

  105. Nishinakamura, R., Miyajima, A., Mee, P. J., Tybulewicz, V. L., and Murray, R. (1996) Hematopoiesis in mice lacking the entire granulocyte-macrophage colony-stimulating factor/interleukin3/interleukin-5 functions. Blood 88, 2458–2464.

    PubMed  CAS  Google Scholar 

  106. Gurney, A. L., Carver-Moore, K., de Sauvage, F. J., and Moore, M. W. (1994) Thrombocytopenia in c-mpl-deficient mice. Science 265, 1445–1447.

    Article  PubMed  CAS  Google Scholar 

  107. Alexander, W. S., Roberts, A. W., Nicola, N. A., Li, R., and Metcalf, D. (1996) Deficiencies in progenitor cells of multiple hematopoietic lineages and defective megakaryocytopoiesis in mice lacking the thrombopoietic receptor c-Mpl. Blood 87, 2162–2170.

    PubMed  CAS  Google Scholar 

  108. de Sauvage, F. J., Carver-Moore, K., Luoh, S. M., et al. (1996) Physiological regulation of early and late stages of megakaryocytopoiesis by thrombopoietin. J. Exp. Med. 183, 651–656.

    Article  PubMed  Google Scholar 

  109. Gainsford, T., Roberts, A. W., Kimura, S., et al. (1998) Cytokine production and function in cmpl-deficient mice: no physiologic role for interleukin-3 in residual megakaryocyte and platelet production. Blood 91, 2745–2752.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Enzler, T., Dranoff, G. (2003). G-CSF, GM-CSF, and IL-3 Knockout Mice. In: Fantuzzi, G. (eds) Cytokine Knockouts. Contemporary Immunology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-405-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-405-4_10

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-415-9

  • Online ISBN: 978-1-59259-405-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics