Skip to main content

Nutrition, Longevity, and Integrity of the Immune System

  • Chapter
Aging, Immunity, and Infection

Part of the book series: Infectious Disease ((ID))

  • 171 Accesses

Abstract

In his masterpiece, Thales to Dewey (1), the philosopher, Gordon H. Clark, wrote the following in a discussion of epistemology: “knowledge is explanation, and to explain a matter is to state its cause.” If that be true (not relatively, of course), then we know very little about the fascinating effects of dietary manipulation on longevity and on immune capabilities. We are able to describe the effects but not to explain them.

It is one thing to ask whether we should increase people’s life span, and to answer no; it is quite another to ask whether we should make people immune to heart disease, cancer, dementia, and to decide that we should not. It might thus be appropriate to think of ‘immortality’ as the, possibly unwanted, side effect of treating or preventing debilitating illness.

—John Harris, “Intimations of Immortality,” Science 2000;288:59

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clark GH. Thales to Dewey, 2nd ed. The Jefferson, MD: Trinity Foundation, 1989.

    Google Scholar 

  2. McCay CM, Crowell MF, Maynard LA. The effect of retarded growth upon the length of the lifespan and upon the ultimate body size. J Nutr 1935; 10: 63–79.

    CAS  Google Scholar 

  3. Weindruch R, Walford RL. The Retardation of Aging and Disease by Dietary Restriction. Springfield, IL: Thomas, 1998.

    Google Scholar 

  4. Larsen PL, Clarke CF. Extension of life-span in Caenorhabditis elegans by a diet lacking coenzyme Q. Science 2002; 295: 120–123.

    Article  CAS  PubMed  Google Scholar 

  5. Jiang JC, Jaruga E, Repnevskaya MV, Jazwinski SM. An intervention resembling caloric restriction prolongs life span and retards aging in yeast. FASEB J 2000; 14: 2135–2137.

    CAS  PubMed  Google Scholar 

  6. Sohal RS, Orr WC. In: Esser K, Martin GM, eds. Molecular Aspects of Aging New York: Wiley, 1995: 109–127.

    Google Scholar 

  7. Roth GS, Lane MA, Ingram DK, et al. Biomarkers of caloric restriction may predict longevity in humans. Science 2002; 297: 811.

    Article  CAS  PubMed  Google Scholar 

  8. Sohal RS, Weindruch R. Oxidative stress, caloric restriction, and aging. Science 1996; 273: 59–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Weindruch R, Gottesman SRS, Walford RL. Modification of age-related immune decline in mice dietarily restricted from or after midadulthood. Proc Natl Acad Sci USA 1982; 79: 898–902.

    Article  CAS  PubMed  Google Scholar 

  10. Yu BP, Masoro ET, Murata I, et al. Life span study of SPF Fischer 344 male rats fed ad libitum or restricted diets: longevity, growth, lean body mass and disease. J Gerontol 1982; 37: 130–141.

    Article  CAS  PubMed  Google Scholar 

  11. Chen J, Astle CM, Harrison DE. Delayed immune aging in diet-restricted B6 CBAT6 F1 mice is associated with preservation of naïve T cells. J Gerontol Biol Sci 1998; 53A: B330 - B337.

    Article  CAS  Google Scholar 

  12. Venkatraman JT, Attwood VG, Turturro A, et al. Maintenance of virgin T cells and immune functions by food restriction during aging in long-lived B6D2F1 female mice. Aging: Immunol Infect Dis 1994; 5: 13–25.

    Google Scholar 

  13. Fernandes G, Venkatraman JT, Turturro A, et al. Effect of food restriction on life span and immune functions in long-lived Fischer-344 X Brown Norway F 1 rats. J Clin Immunol 1997; 17: 85–95.

    Article  CAS  PubMed  Google Scholar 

  14. Miller RA. The aging immune system: Primer and prospectus. Science 1996; 273: 70–74.

    Article  CAS  PubMed  Google Scholar 

  15. Miller RA, Harrison DE. Delayed reduction in T cell precursor frequencies accompanies diet-induced lifespan extension. J Immunol 1985; 134: 1426–1429.

    CAS  PubMed  Google Scholar 

  16. Volk MJ, Pugh TD, Kim MJ, et al. Dietary restriction from middle age attenuates age-associated lymphoma development and interleukin 6 dysregulation in C57BL/ 6 mice. Cancer Res 1944; 54: 3054–3061.

    Google Scholar 

  17. Effros RB, Walford RL, Weindruch R, Mitcheltree C. Influences of dietary restriction on immunity to influenza in aged mice. J Gerontol Biol Sci 1991; 46: B142 - B147.

    CAS  Google Scholar 

  18. Bender BS, Johnson MP, Small PA Jr. Influenza in senescent mice: Impaired cytotoxic T-lymphocyte activity is correlated with prolonged infection. Immunology 1991; 72: 514–519.

    CAS  PubMed  Google Scholar 

  19. Bender BS, Small PA Jr. Heterotypic immune mice lose protection against influenza virus infection with senescence. J Infect Dis 1993; 168: 873–880.

    Article  CAS  PubMed  Google Scholar 

  20. Powers DC. Influenza A virus-specific cytotoxic T lymphocyte activity declines with advancing age. J Am Geriatr Soc 1993; 41: 1–5.

    CAS  PubMed  Google Scholar 

  21. Yap KL, Ada GL, McKenzie IFC. Transfer of specific cytotoxic T lymphocytes protects mice inoculated with influenza virus. Nature 1978; 273: 238–240.

    Article  CAS  PubMed  Google Scholar 

  22. Bender BS, Croghan T, Zhang L, Small PA Jr. Transgenic mice lacking class I major histocompaatibility complex-restricted T cells have delayed viral clearance and increased mortality after influenza virus challenge. J Exp Med 1992; 175: 1143–1151.

    Article  CAS  PubMed  Google Scholar 

  23. Taylor SF, Cottey RJ, Zander DS, Bender BS. Influenza infection of ßZmicroglobulin-deficient (P2 m/) mice reveals a loss of CD4+ T cell functions with aging. J Immunol 1997; 159: 3453–3459.

    CAS  PubMed  Google Scholar 

  24. Padgett DA, MacCallum RC, Sheridan JF. Stress exacerbates age-related decrements in the immune response to an experimental influenza viral infection. J Gerontol Biol Sci 1998; 53A: B347 - B353.

    Article  CAS  Google Scholar 

  25. Linskens MHK, Feng J, Andrews WH, et al. Cataloging altered gene expression in young and senescent cells using enhanced differential display. Nucleic Acids Res 1995; 23: 3244–3251.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Goyns MH, Charlton MA, Dunford JE, et al. Differential display analysis of gene expression indicates that age-related changes are restricted to a small cohort of genes. Mech Ageing Dev 1998; 101: 73–90.

    Article  CAS  PubMed  Google Scholar 

  27. Lee C-K, Klopp RG, Weindruch R, Prolla TA. Gene expression profile of aging and its retardation by caloric restriction. Science 1999; 285: 1390–1393.

    Article  CAS  PubMed  Google Scholar 

  28. Weindruch R, Kayo T, Lee C-K, Prolla TA. Microarray profiling of gene expression in aging and its alteration by caloric restriction in mice. J Nutr 2001; 131: 9185–9235.

    Google Scholar 

  29. Ly DH, Lockhart DJ, Lerner RA, Schultz PG. Mitotic misregulation and human aging. Science 2000; 287: 2486–2492.

    Article  CAS  PubMed  Google Scholar 

  30. Clarke SD, Abraham S. Gene expression: Nutrient control of pre-and posttranscriptional events. FASEB J 1992; 6: 3146–3152.

    CAS  PubMed  Google Scholar 

  31. Berdanier CD. Nutrient-gene interactions: Today and tomorrow. FASEB J 1994; 8: 1

    CAS  PubMed  Google Scholar 

  32. Kim M-J C, Berdanier CD. Nutrient-gene interactions determine mitochondrial function: Effect of dietary fat. FASEB J 1998; 12: 2243–2248.

    Google Scholar 

  33. Barzilai N, Gupta G. Revisiting the role of fat mass in the life extension induced by caloric restriction. J Gerontol Biol Sci 1999; 54A: B89 - B96.

    Article  CAS  Google Scholar 

  34. Masoro ET. Commentary on “Revisiting the Role of Fat Mass in the Life Extension Induced by Caloric Restriction.” J Gerontol Biol Sci 1999; 54A: B97.

    Google Scholar 

  35. Harrison DE, Archer JR, Astle CM. Effects of food restriction on aging: separation of food intake and adiposity. Proc Natl Acad Sci USA 1984; 81: 1835–1838.

    Article  CAS  PubMed  Google Scholar 

  36. Wang Z-W, Pan W-T, Lee Y, et al. The role of leptin resistance in the lipid abnormalities of aging. FASEB J 2001; 15: 108–114.

    Article  CAS  PubMed  Google Scholar 

  37. Bjorback C, Elmquist JK, Frantz JD, et al. Identification of SOCS-3 as a potential mediator of central leptin resistance. Mol Cell 1998; 1: 619–625.

    Article  Google Scholar 

  38. Bjorback C, El-Haschimi K, Frantz JD, Flier JS. The role of SOCS-3 in leptin signaling and leptin resistance. J Biol Chem 1999;274:30059–30065.

    Google Scholar 

  39. Patel N, Brinkman-Van der Linden EC, Altmann SW, et al. OB-BP1/Siglec-6, a leptin-and sialic acid-binding protein of the immunoglobulin superfamily. J Biol Chem 1999;274:22, 729–22, 738.

    Google Scholar 

  40. Ahima RS, Prabakaran D, Mantzoros C, et al. Role of leptin in the neuroendocrine response to fasting. Nature 1996; 382: 250–252.

    Article  CAS  PubMed  Google Scholar 

  41. Faggioni R, Feingold KR, Grunfeld C. Leptin regulation of the immune response and the immunodeficiency of malnutrition. FASEB J 2001; 15: 2565–2571.

    Article  CAS  PubMed  Google Scholar 

  42. Lesourd B. Protein undernutrition as the major cause of decreased immune function in the elderly: Clinical and functional implications. Nutr Rev 1995; 53: S86 - S94.

    CAS  Google Scholar 

  43. Badaro R, Jones TC, Lorenco R, et al. A prospective study of visceral leishmania-sis in an endemic area of Brazil. J Infect Dis 1986; 154: 639–649.

    Article  CAS  PubMed  Google Scholar 

  44. Harrison LH, Naidu TG, Drew JS, et al. Reciprocal relationships between under-nutrition and the parasitic disease visceral leishmaniasis. Rev Infect Dis 1986; 8: 447–453.

    Article  CAS  PubMed  Google Scholar 

  45. Anstead GM, Chandrasekar B, Zhao W, et al. Malnutrition alters the innate immune response and increases early visceralization following Leishmania donovani infection. Infect Immun 2001; 69: 4709–4718.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Chandra RK. Nutritional regulation of immunity and risk of infection in old age. Immunology 1989; 67: 141–147.

    CAS  PubMed  Google Scholar 

  47. Sullivan DH, Sun S, Walls RC. Protein-energy undernutrition among elderly hospitalized patients: A prospective study. JAMA 1999; 281: 2013–2019.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Albright, J.F., Albright, J.W. (2003). Nutrition, Longevity, and Integrity of the Immune System. In: Aging, Immunity, and Infection. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-402-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-402-3_5

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9787-8

  • Online ISBN: 978-1-59259-402-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics