Skip to main content

Pathogenesis of Pituitary Adenomas

  • Chapter
Book cover Management of Pituitary Tumors
  • 98 Accesses

Abstract

The pituitary gland is an extremely well-defined structure that occupies a central place both anatomically and physiologically in the chain of neuroendocrine command from the hypothalamus and higher brain centers to the peripheral endocrine organs. Isolated as it is from ultraviolet radiation and from direct contact with ingested and inhaled irritants and carcinogens, it is remarkable that occult pituitary adenomas can be disclosed by imaging and histologic studies in as many as 11% of people at autopsy(1) (Fig. 1). Overt pituitary adenoma formation presenting with symptoms and signs of space occupation, hypopituitarism, and/or one of the classic syndromes of hormone excess is fortunately relatively rare, and true pituitary carcinoma characterized by metastatic spread has been described fewer than 100 times (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Molitch M. Meta-analytical data from 19 published series of pituitary incidentalomas totalling 12,300 autopsy examinations. Paper presented at: Ann. Meeting of the American Endocrine Society; June 11–14,1997; Minneapolis, MN.

    Google Scholar 

  2. Lubke D, Saeger W. Carcinomas of the pituitary: definition and review of the literature. Gen Diagn Pathol 1995; 141: 81–92.

    PubMed  CAS  Google Scholar 

  3. Pei L, Melmed S. Isolation and characterization of a pituitary tumor-transforming gene (PTTG). Mol Endocrinol 1997; 11: 433–441.

    Article  PubMed  CAS  Google Scholar 

  4. Jeffcoate WJ, Pound N, Sturrock NDC, Lambourne J. Long-term follow-up of patients with hyperprolactinaemia. Clin. Endocrinol. 1996; 45: 299–303.

    Article  CAS  Google Scholar 

  5. Buchfelder M, Nomikos P, Schott W, Fahlbusch R. Persistent suppression of prolactin following surgery and dopamine-agonist treatment in a patient with a large macroprolactinoma. Paper presented at: 81st Ann. Meeting of the American Endocrine Society; June 12–15, 1999; San Diego: P576.

    Google Scholar 

  6. Robinson DB, Michaels RD. Empty sella resulting from the spontaneous resolution of a pituitary macroadenoma. Arch Intern Med 1992; 152: 1920–1923.

    Article  PubMed  CAS  Google Scholar 

  7. Van Zandijcke M, Casselman J. The vanishing pituitary adenoma. Acta Neurol Belg 1994; 94: 256–258.

    PubMed  Google Scholar 

  8. Burke CW, Adams CB, Esiri MM, Morris C, Bevan JS. Transsphenoidal surgery for Cushing’ s disease: does what is removed determine the endocrine outcome? Clin Endocrinol (Oxf) 1990; 33: 525–537.

    Article  CAS  Google Scholar 

  9. Atkinson AB, Chestnutt A, Crothers E, et al. Cyclical Cushing’s disease: two distinct rhythms in a patient with a basophil adenoma. J Clin Endocrinol Metab 1985; 60: 328–332.

    Article  PubMed  CAS  Google Scholar 

  10. Atkinson AB, Kennedy AL, Carson DJ,1-Iadden DR, Weaver JA, Sheridan B. Five cases of cyclical Cushing’s syndrome. Br Med J 1985; 291: 1453–1457.

    Article  CAS  Google Scholar 

  11. Popovic V, Micic D, Nesovic M, et al. Cushing’s disease cycling over ten years. Exp Clin Endocrinol 1990; 92: 143–148.

    Google Scholar 

  12. Levy A, Lightman SL. Local production of hypothalamic trophic peptides in human pituitary tumors. Clin Chem Enz Comm 1992; 5: 265–273.

    Google Scholar 

  13. Levy A, Powell M, Lightman SL. Colocalization of corticotrophin-releasing hormone and oxytocin transcripts in human pituitary adenomas. Endocr J 1993; 1: 117–122.

    Google Scholar 

  14. Levy A, Lightman SL. Quantitative in-situ hybridization histochemistry of anterior pituitary hormone mRNA species in human pituitary adenomas. Acta Endocrinal (Copen) 1988; 119: 397–404.

    CAS  Google Scholar 

  15. Levy A. Monoclonality of endocrine tumors: what does it mean? Trends Endocrinol Metab 2001; 12: 301–307.

    Article  PubMed  CAS  Google Scholar 

  16. Levy A. Is monoclonality in pituitary adenomas synonymous with neoplasia? Clin Endocrinol (Oxf) 2000; 52: 393–397.

    Article  CAS  Google Scholar 

  17. Cartier SM, Riggs AD. Mammalian X-chromosome inactivation. Annu Rev Genet 1983; 17: 155–190

    Article  Google Scholar 

  18. Alexander JM, Biller BM, Bikkal H, Zervas NT, Arnold A, Klibanski A. Clinically nonfunctioning pituitary tumors are monoclonal in origin. J Clin Invest 1990; 86: 336–340.

    Article  PubMed  CAS  Google Scholar 

  19. Herman V, Fagin J, Gonsky E, Kovacs K, Melmed S. Clonal origins of pituitary adenomas. J Clin Endocrinol Metab 1990; 71: 1427–1433.

    Article  PubMed  CAS  Google Scholar 

  20. Jacoby LB, Hedley-Whyte ET, Pulaski K, Seizinger BR, Martuza RL. Clonal origin of pituitary adenomas. J Neurosurg 1990; 73: 731–735.

    Article  PubMed  CAS  Google Scholar 

  21. Schulte HM, Oldfield EH, Allolio B, Katz DA, Berkman RA, Ali IU. Clonal composition of pituitary adenomas in patients with Cushing’s disease: determination by X-chromosome inactivation analysis. J Clin Endocrinol Metab 1991; 73: 1302–1308.

    Article  PubMed  CAS  Google Scholar 

  22. Gicquel C, LeBouc Y, Craig I, Luton JP, Girard F, Bertagna X. Pituitary corticotroph adenomas are monoclonal. Paper presented at: Endocrine Society 73rd Annual Meeting; 1991; Atlanta, GA: 439.

    Google Scholar 

  23. Vogelstein B, Fearon ER, Hamilton SR, et al. Clonal analysis using recombinant DNA probes from the X-chromosome. Cancer Res 1987; 47: 4806–4813.

    PubMed  CAS  Google Scholar 

  24. Laws E, Jr., Scheithauer BW, Carpenter S, Randall RV, Abbound CF. The pathogenesis of acromegaly. Clinical and immunocytochemical analysis in 75 patients. J Neurosurg 1985; 63: 35–38.

    Article  PubMed  Google Scholar 

  25. Levy A, Lightman SL. Growth hormone-releasing hormone transcripts in human pituitary adenomas. J Clin Endocrinol Metab 1992; 74: 1474–1476.

    Article  PubMed  CAS  Google Scholar 

  26. Wakabayashi I, Inokuchi K, Hasegawa O, Sugihara H, Minami S. Expression of growth hormone(GH)-releasing factor gene in GH-producing pituitary adenoma. J Clin Endocrinol Metab 1992; 74: 357–361.

    Article  PubMed  CAS  Google Scholar 

  27. Clayton RN, Pfeifer M, Wass JAH, et al. Human pituitary tumors have multiclonal origins. Paper produced at: The Endocrine Society’s 81st Annual Meeting; 1999, San Diego, California: P121.

    Google Scholar 

  28. Clayton RN, Pfeifer M, Atkinson AB, et al. Different patterns of allelic loss (loss of heterozygosity) in recurrent human pituitary tumors provide evidence for multiclonal origins. Clin Cancer Res 2000; 6: 3973–3982.

    PubMed  CAS  Google Scholar 

  29. Nolan LA, Lunness HR, Lightman SL, Levy A. The effects of age and spontaneous adenoma formation on trophic activity in the rat pituitary gland: a comparison with trophic activity in the human pituitary and in human pituitary adenomas. J Neuroendocrinol 1999; 11: 393–401.

    Article  PubMed  CAS  Google Scholar 

  30. Tiltman AJ. Smooth muscle neoplasms of the uterus. Curr Opin Obstet Gynecol 1997; 9: 48–51.

    Article  PubMed  CAS  Google Scholar 

  31. Murry CE, Gipaya CT, Bartosek T, Benditt EP, Schwartz SM. Monoclonality of smooth muscle cells in human atherosclerosis. Am J Pathol 1997; 151: 697–705.

    PubMed  CAS  Google Scholar 

  32. Chung IM, Schwartz SM, Murry CE. Clonal architecture of normal and atherosclerotic aorta: implications for atherogenesis and vascular development. Am J Pathol 1998; 152: 913–923.

    PubMed  CAS  Google Scholar 

  33. Aihara T, Noguchi S, Sasaki Y, Imaoka S. Does monoclonality mean malignancy. Hepatology 1996; 24: 1550.

    Article  PubMed  CAS  Google Scholar 

  34. Tsai YC, Simoneau AR, Spruck CHr, et al. Mosaicism in human epithelium: macroscopic monoclonal patches cover the urothelium. J Urol 1995; 153: 1698–1700.

    Article  Google Scholar 

  35. Schnall AM, Kovacs K, Brodkey JS, Pearson OH. Pituitary Cushing’s disease without adenoma. Acta Endocrinol (Copen) 1980; 94: 297–303.

    CAS  Google Scholar 

  36. Kruse A, Klinken L, Holck S, Lindholm J. Pituitary histology in Cushing’s disease. Clin Endocrinol (0x0 1992; 37: 254–259.

    Article  CAS  Google Scholar 

  37. Bochicchio D, Losa M, Buchfelder M. Factors influencing the immediate and late outcome of Cushing’s disease treated by transsphenoidal surgery: a retrospective study by the European Cushing’s Disease Survey Group. J Clin Endocrinol Metab 1995; 80: 3114–3120.

    Article  PubMed  CAS  Google Scholar 

  38. Lissett CA, Peacey SR, Laing I, Tetlow L, Davis JR, Shalet SM. The outcome of surgery for acromegaly: the need for a specialist pituitary surgeon for all types of growth hormone (GH) secreting adenoma. Clin Endocrinol (Oxf) 1998; 49: 653–657.

    Article  CAS  Google Scholar 

  39. Nowell PC, Croce CM. Chromosomal approaches to oncogenes and oncogenesis. FASEB J. 1988; 2: 3054–3060.

    PubMed  CAS  Google Scholar 

  40. Migeon BR, Axelman J, Stetten G. Clonal evolution in human lymphoblast cultures. Am J Hum Genet 1988; 42: 742–747.

    PubMed  CAS  Google Scholar 

  41. Heim S, Caron M, Jin Y, Mandahl N, Mitelman F. Genetic convergence during serial in vitro passage of a polyclonal squamous cell carcinoma. Cytogenet Cell Genet 1989; 52: 133–135.

    Article  PubMed  CAS  Google Scholar 

  42. Jiang X, Yao KT. The clonal progression in the neoplastic process of nasopharyngeal carcinoma. Biochem Biophys Res Commun 1996; 221: 122–128.

    Article  PubMed  CAS  Google Scholar 

  43. Thorner MO, Perryman RL, Cronin MJ, et al. Somatotroph hyperplasia: successful treatment of acromegaly by removal of a pancreatic islet tumor secreting a growth hormone releasing factor. J Clin Invest 1982; 70: 965–977.

    Article  PubMed  CAS  Google Scholar 

  44. Ezzat S, Asa SL, Stefaneanu L, et al. Somatotroph hyperplasia without pituitary adenoma associated with a long standing growth hormone-releasing hormone-producing bronchial carcinoid. J Clin Endocrinol Metab 1994; 78: 555–560.

    Article  PubMed  CAS  Google Scholar 

  45. Asa SL, Scheithauer BW, Bilbao JM, et al. A case for hypothalamic acromegaly: a clinico-pathological study of six patients with hypothalamic gangliocytomas producing growth hormone-releasing hormone. J Clin Endocrinol Metab 1984; 58: 796–803.

    Article  PubMed  CAS  Google Scholar 

  46. Bevan JS, Asa SL, Rossi ML, Esiri MM, Adams CB, Burke CW. Intrasellar gangliocytoma containing gastrin and growth hormone-releasing hormone associated with a growth hormone-secreting pituitary adenoma. Clin Endocrinol (Oxf) 1989; 30: 213–234.

    Article  CAS  Google Scholar 

  47. Carey RM, Varma SK, Drake JCR, et al. Ectopic secretion of corticotropin-releasing factor as a cause of Cushing’s syndrome; a clinical, morphologic and biochemical study. N Engl J Med 1984; 311: 381–388.

    Google Scholar 

  48. Childs GV, Rougeau D, Unabia G. Corticotropin-releasing hormone and epidermal growth factor: mitogens for anterior pituitary corticotropes. Endocrinology 1995; 136: 1595–1602.

    Article  PubMed  CAS  Google Scholar 

  49. Saeger W, Puchner MJA, Ludecke DK. Combined sellar gangliocytoma and pituitary adenoma in acromegaly or Cushing’s disease: a report of 3 cases. Virchows Arch 1994; 425: 93–99.

    Article  PubMed  CAS  Google Scholar 

  50. Asa SL, Kovacs K, Stefaneanu L, et al. Pituitary adenomas in mice transgenic for growth hormone-releasing hormone. Endocrinology 1992; 131: 2083–2089.

    Article  PubMed  CAS  Google Scholar 

  51. Asa SL, Ezzat S. The cytogenesis and pathogenesis of pituitary adenomas. Endocr Rev 1998; 19: 798–827.

    Article  PubMed  CAS  Google Scholar 

  52. Salvatori R, Thakker RV, Lopes MB, et al. Absence of mutations in the growth hormone (GH)-releasing hormone receptor gene in GH-secreting pituitary adenomas. Clin Endocrinol (Oxt) 2001; 54: 301–307.

    Article  CAS  Google Scholar 

  53. Jorge BH, Agarwal SK, Lando VS, et al. Study of the multiple endocrine neoplasia type I, growth hormone-releasing hormone receptor, Gs alpha, and Gi2 alpha genes in isolated familial acromegaly. J Clin Endocrinol Metab 2001; 86: 542–544.

    Article  PubMed  CAS  Google Scholar 

  54. Petersenn S, Heyens M, Ludecke DK, Beil FU, Schulte HM. Absence of somatostatin receptor type 2 A mutations and gip oncogene in pituitary somatotroph adenomas. Clin Endocrinol (Oxf) 2000; 52: 35–42.

    Article  CAS  Google Scholar 

  55. Corbetta S, Ballare E, Mantovani G, et al. Somatostatin receptor subtype 2 and 5 in human GH-secreting pituitary adenomas: analysis of gene sequence and mRNA expression. Eur J Clin Invest 2001; 31: 208–214.

    Article  PubMed  CAS  Google Scholar 

  56. Karl M, Lamberts SW, Koper JW, et al. Cushing’s disease preceded by generalized glucocorticoid resistance: clinical consequences of a novel, dominant-negative glucocorticoid receptor mutation. Proc Assoc Am Physicians 1996; 108: 296–307.

    PubMed  CAS  Google Scholar 

  57. Karl M, Von Wiehert G, Kempter E, et al. Nelson’s syndrome associated with a somatic frame shift mutation in the glucocorticoid receptor gene. J Clin Endocrinol Metab 1996; 81: 124–129.

    Article  PubMed  CAS  Google Scholar 

  58. Vallar L, Spada A, Giannattasio G. Altered Gs and adenylate cyclase activity in human growth hormone-secreting pituitary adenomas. Nature 1987; 330: 566–568.

    Article  PubMed  CAS  Google Scholar 

  59. Landis CA, Masters SB, Spada A, Pace AM, Boume HR, Vallar L. GTPase inhibiting mutations activate the a chain of Gs and stimulate adenylyl cyclase in human pituitary tumors. Nature 1989; 340: 692–696.

    Article  PubMed  CAS  Google Scholar 

  60. Lyons J, Landis CA, Harsh G, et al. Two G protein oncogenes in human endocrine tumors. Science 1990; 249: 655–659.

    Article  PubMed  CAS  Google Scholar 

  61. Spada A, Arosio M, Bochicchio D, et al. Clinical, biochemical, and morphological correlates in patients bearing growth hormone-secreting pituitary tumors with or without constitutively active adenylyl cyclase. J Clin Endocrinol Metab 1990; 71: 1421–1426.

    Article  PubMed  CAS  Google Scholar 

  62. Johnson MC, Codner E, Eggers M, Mosso L, Rodriguez JA, Cassorla F. Gsp mutations in Chilean patients harboring growth hormone-secreting pituitary tumors. J Pediatr Endocrinol Metab 1999; 12: 381–387.

    Article  PubMed  CAS  Google Scholar 

  63. Landis CA, Harsh G, Lyons J, Davis RL, McCormick F, Bourne HR. Clinical characteristics of acromegalic patients whose pituitary tumors contain mutant Gs protein. J Clin Endocrinol Metab 1990; 71: 1089–1095.

    Article  Google Scholar 

  64. Harris PE, Alexander JM, Bikkal HA, et al. Glycoprotein hormone alpha-subunit production in somatotroph adenomas with and without Gs alpha mutations. J Clin Endocrinol Metab 1992; 75: 918–923.

    Article  PubMed  CAS  Google Scholar 

  65. Williamson EA, Daniels M, Foster S, Kelly WF, Kendall-Taylor P, Harris PE. Gs alpha and Gi2 alpha mutations in clinically non-functioning pituitary tumors. Clin Endocrinol (Oxf) 1994; 41: 815–520.

    Article  CAS  Google Scholar 

  66. Williamson EA, Ince PG, Harrison D, Kendall-Taylor P, Harris PE. G-protein mutations in human pituitary adrenocorticotrophic hormone-secreting adenomas. Eur J Clin Invest 1995; 25: 128–131.

    Article  PubMed  CAS  Google Scholar 

  67. Chandrasekharappa SC, Guru SC, Manickam P, et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science 1997; 276: 404–407.

    Article  PubMed  CAS  Google Scholar 

  68. Marx SJ, Agarwal SK, Heppner C, et al. The gene for multiple endocrine neoplasia type 1: recent findings. Bone 1999; 25: 119–122.

    Article  PubMed  CAS  Google Scholar 

  69. Yazgan O, Pfarr CM. Differential binding of the Menin tumor suppressor protein to JunD isoforms. Cancer Res 2001; 61: 916–920.

    PubMed  CAS  Google Scholar 

  70. Ohkura N, Kishi M, Tsukada T, Yamaguchi K. Menin, a gene product responsible for multiple endocrine neoplasia type 1, interacts with the putative tumor metastasis suppressor nm23. Biochem Biophys Res Commun 2001; 282: 1206–1210.

    Article  PubMed  CAS  Google Scholar 

  71. Kaji H, Canaff L, Lebrun JJ, Goltzman D, Hendy GN. Inactivation of menin, a Smad3interacting protein, blocks transforming growth factor type beta signaling. Proc Natl Acad Sci USA 2001; 98: 3837–3842.

    Article  PubMed  CAS  Google Scholar 

  72. Fukino K, Kitamura Y, Sanno N, Teramoto A, Emi M. Analysis of the MEN1 gene in sporadic pituitary adenomas from Japanese patients. Cancer Lett 1999; 144: 85–92.

    Article  PubMed  CAS  Google Scholar 

  73. Bergman L, Boothroyd C, Palmer J, et al. Identification of somatic mutations of the MENT gene in sporadic endocrine tumors. Br J Cancer 2000; 83: 1003–1008.

    Article  PubMed  CAS  Google Scholar 

  74. Friedman E, Adams EF, Höög A, et al. Normal structural dopamine type 2 receptor gene in prolactin-secreting and other pituitary tumors. J Clin Endocrinol Metab 1994; 78: 568–574.

    Article  PubMed  CAS  Google Scholar 

  75. Eubanks PJ, Sawicki MP, Samara GJ, et al. Putative tumor-suppressor gene on chromosome 11 is important in sporadic endocrine tumor formation. Am J Surg 1994; 167: 180–185.

    Article  PubMed  CAS  Google Scholar 

  76. Evans CO, Brown MR, Parks JS, Oyesiku NM. Screening for MEN1 tumor suppressor gene mutations in sporadic pituitary tumors. J Endocrinol Invest 2000; 23: 304–309.

    PubMed  CAS  Google Scholar 

  77. Prezant TR, Levine J, Melmed S. Molecular characterization of the men 1 tumor suppressor gene in sporadic pituitary tumors. J Clin Endocrinol Metab 1998; 83: 1388–1391.

    Article  PubMed  CAS  Google Scholar 

  78. Farrell WE, Simpson DJ, Bicknell J, et al. Sequence analysis and transcript expression of the MEN1 gene in sporadic pituitary tumors. Br J Cancer 1999; 80: 44–50.

    Article  PubMed  CAS  Google Scholar 

  79. Zhuang Z, Ezzat SZ, Vortmeyer AO, et al. Mutations of the MEN 1 tumor suppressor gene in pituitary tumors. Cancer Res 1997; 57: 5446–5451.

    PubMed  CAS  Google Scholar 

  80. Teh BT, Kytola S, Farnebo F, et al. Mutation analysis of the MEN 1 gene in multiple endocrine neoplasia type 1, familial acromegaly and familial isolated hyperparathyroidism. J Clin Endocrinol Metab 1998; 83: 2621–2626.

    Article  PubMed  CAS  Google Scholar 

  81. Gadelha MR, Prezant TR, Une KN, et al. Loss of heterozygosity on chromosome 11g13 in two families with acromegaly/gigantism is independent of mutations of the multiple endocrine neoplasia type I gene. J Clin Endocrinol Metab 2000; 85: 4920–4921.

    Article  Google Scholar 

  82. Romero F, Multon MC, Ramos-Morales F, et al. Human securin, hPTTG, is associated with Ku heterodimer, the regulatory subunit of the DNA-dependent protein kinase. Nucleic Acids Res 2001; 29: 1300–1307.

    Article  PubMed  CAS  Google Scholar 

  83. Yu R, Ren SG, Horwitz GA, Wang Z, Melmed S. Pituitary tumor transforming gene (PTTG) regulates placental JEG-3 cell division and survival: evidence from live cell imaging. Mol Endocrinol 2000; 14: 1137–1146.

    Article  PubMed  CAS  Google Scholar 

  84. Zhang X, Horwitz GA, Heaney AP, et al. Pituitary tumor transforming gene (PTTG) expression in pituitary adenomas. J Clin Endocrinol Metab 1999; 84: 761–767.

    Article  PubMed  CAS  Google Scholar 

  85. Barbacid M. Ras genes. Annu Rev Biochem 1987;56:779–827.

    Google Scholar 

  86. Karga HJ, Alexander JM, Hedley-Whyte ET, Klibanski A, Jameson JL. Ras mutations in human pituitary tumors. J Clin Endocrinol Metab 1992; 74: 914–919.

    Article  PubMed  CAS  Google Scholar 

  87. Bates AS, Buckley N, Boggild MD, et al. Clinical and genetic changes in a case of a Cushing’s carcinoma. Clin Endocrinol (Oxf) 1995; 42: 663–670.

    Article  CAS  Google Scholar 

  88. Pei L, Melmed S, Scheithauer BW, Kovacs K, Benedict WF, Prager D. Frequent loss of heterozygosity at the retinoblastoma susceptibility gene (RB) locus in aggressive pituitary tumors: evidence for a chromosome 13 tumor suppressor gene other than RB. Cancer Res 1995; 55: 1613–1616.

    PubMed  CAS  Google Scholar 

  89. Kulig E, Jin L, Qian X, et al. Apoptosis in nontumorous and neoplastic human pituitaries: expression of the Bc1–2 family of proteins. Am J Pathol 1999; 154: 767–774.

    Article  PubMed  CAS  Google Scholar 

  90. Harada K, Aria K, Kurisu K, Tahara H. Telomerase activity and the expression of telomerase components in pituitary adenoma with malignant transformation. Surg Neurol 2000; 53: 267–274.

    Article  PubMed  CAS  Google Scholar 

  91. Wu SQ, Storer BE, Bookland EA, et al. Nonrandom chromosome losses in stepwise neoplastic transformation in vitro of human uroepithelial cells. Cancer Res 1991; 51: 3323–3326.

    PubMed  CAS  Google Scholar 

  92. Tanaka K, Oshimura M, Kikuchi R, Seki M, Hayashi T, Miyaki M. Suppression of tumorigenicity in human colon carcinoma cells by introduction of normal chromosome 5 or 18. Nature 1991; 349: 340–342.

    Article  PubMed  CAS  Google Scholar 

  93. Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science 1991; 253: 49–53

    Google Scholar 

  94. Malkin D, Li FP, Strong LC, et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 1990; 250: 1223–1238.

    Article  Google Scholar 

  95. Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 1992; 358: 80–83.

    Article  PubMed  CAS  Google Scholar 

  96. Michalovitz D, Halevy O, Oren M. p53 mutations: gains or losses? J Cell Biochem 1991; 45: 22–29.

    Google Scholar 

  97. Farmer G, Bargonetti J, Zhu H, Friedman P, Prywes R, Prives C. Wild-type p53 activates transcription in vitro. Nature 1992; 358: 83–86.

    Article  PubMed  CAS  Google Scholar 

  98. Lane DP. p53, guardian of the genome. Nature 1992; 358: 15–16.

    Article  PubMed  CAS  Google Scholar 

  99. Yonish RE, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 1991; 353: 345–347.

    Article  Google Scholar 

  100. Levy A, Hall L, Yeudall WA, Lightman SL. P53 gene mutations in pituitary adenomas: a rare event. Clin Endocrinol 1994; 41: 809–814.

    Article  CAS  Google Scholar 

  101. Ikeda H, Yoshimoto T, Shida N. Molecular analysis of p21 and p27 genes in human pituitary adenomas. Br J Cancer 1997; 76: 1119–1123.

    Article  PubMed  CAS  Google Scholar 

  102. Dahia PL, Aguiar RC, Honegger J, et al. Mutation and expression analysis of the p27/kipl gene in corticotrophin-secreting tumors. Oncogene 1998; 16: 69–76.

    Article  PubMed  CAS  Google Scholar 

  103. Byström C, Larsson C, Blomberg C, et al. Localization of the MEN 1 gene to a small region within chromosome 11q13 by deletion mapping in tumors. Proc Natl Acad Sci USA 1990; 87: 1968–1972.

    Article  PubMed  Google Scholar 

  104. Herman V, Drazin NZ, Gonsky R, Melmed S. Molecular screening of pituitary adenomas for gene mutations and rearrangements. J Clin Endocrinol Metab 1993; 77: 50–55.

    Article  PubMed  CAS  Google Scholar 

  105. Cai WY, Alexander JM, Hedley-Whyte ET, et al. Ras mutations in human prolactinomas and pituitary carcinomas. J Clin Endocrinol Metab 1994; 78: 89–93.

    Article  PubMed  CAS  Google Scholar 

  106. Pei L, Melmed S, Scheithauer B, Kovacs K, Prager D. H-ras mutations in human pituitary carcinoma metastases. J Clin Endocrinol Metab 1994; 78: 842–846.

    Article  PubMed  CAS  Google Scholar 

  107. Boggild MD, Jenkinson S, Pistorello M, et al. Molecular genetic studies of sporadic pituitary adenomas. J Clin Endocrinol Metab 1994; 78: 387–392.

    Article  PubMed  CAS  Google Scholar 

  108. Woloschak M, Roberts JL, Post K. c-Myc, c fos, and c-myb gene expression in human pituitary adenomas. J Clin Endocrinol Metab 1994; 79: 253–257.

    Article  PubMed  CAS  Google Scholar 

  109. Cryns VL, Alexander JM, Klibanski A, Arnold A. The retinoblastoma gene in human pituitary tumors. J Clin Endocrinol Metab 1993; 77: 644–646.

    Article  PubMed  CAS  Google Scholar 

  110. Farrell WE, Simpson DJ, Bicknell JE, Talbot AJ, Bates AS, Clayton RN. Chromosome 9p deletions in invasive and noninvasive nonfunctional pituitary adenomas: the deleted region involves markers outside of the MTS 1 and MTS2 genes. Cancer Res 1997; 57: 2703–2709.

    PubMed  CAS  Google Scholar 

  111. Yoshimoto K, Tanaka C, Yamada S, et al. Infrequent mutations of p16INK4A and p15INK4B genes in human pituitary adenomas. Eur J Endocrinol 1997; 136: 74–80.

    Article  PubMed  CAS  Google Scholar 

  112. Jaffrain-Rea ML, Ferretti E, Toniato E, et al. p16 (INK4a, MTS-1) gene polymorphism and methylation status in human pituitary tumors. Clin Endocrinol (Oxf) 1999; 51: 317–325.

    Article  CAS  Google Scholar 

  113. Wenbin C, Asai A, Teramoto A, Sanno N, Kirino T. Mutations of the MEN 1 tumor suppressor gene in sporadic pituitary tumors. Cancer Lett 1999; 142: 43–47.

    Article  PubMed  CAS  Google Scholar 

  114. Poncin J, Stevenaert A, Beckers A. Somatic MEN1 gene mutation does not contribute significantly to sporadic pituitary tumorigenesis. Eur J Endocrinol 1999; 140: 573–576.

    Article  PubMed  CAS  Google Scholar 

  115. Finelli P, Giardino D, Rizzi N, et al. Non-random trisomies of chromosomes 5, 8 and 12 in the prolactinoma sub-type of pituitary adenomas: conventional cytogenetics and interphase FISH study. Int J Cancer 2000; 86: 344–350.

    Article  PubMed  CAS  Google Scholar 

  116. Takino H, Herman V, Weiss M, Melmed S. Purine-binding factor (nm23) gene expression in pituitary tumors: marker of adenoma invasiveness. J Clin Endocrinol Metab 1995; 80: 1733–1738.

    Article  PubMed  CAS  Google Scholar 

  117. Clayton RN, Boggild M, Bates AS, Bicknell J, Simpson D, Farrell W. Tumor suppressor genes in the pathogenesis of human pituitary tumors. Horm Res 1997; 47: 185–193.

    Article  PubMed  CAS  Google Scholar 

  118. Farrell WE, Clayton RN. Tumor suppressor genes in pituitary tumor formation. Baillieres Best Pract Res Clin Endocrinol Metab 1999; 13: 381–393.

    Article  PubMed  CAS  Google Scholar 

  119. Rock JP, Babu VR, Drumheller T, Chason J. Cytogenetic findings in pituitary adenoma: results of a pilot study. Surg Neurol 1993; 40: 224–229.

    Article  PubMed  CAS  Google Scholar 

  120. Rey JA, Bello MJ, de Campos JM, Kusak ME, Martinez-Castro P, Benitez J. A case of pituitary adenoma with 58 chromosomes. Cancer Genet Cytogenet 1986; 23: 171–174.

    Article  PubMed  CAS  Google Scholar 

  121. Dietrich CU, Pandis N, Bjerre P, Schroder HD, Heim S. Simple numerical chromosome aberrations in two pituitary adenomas. Cancer Genet Cytogenet 1993; 69: 118–121.

    Article  PubMed  CAS  Google Scholar 

  122. Larsen JB, Schroder HD, Sorensen AG, Bjerre P, Heim S. Simple numerical chromosome aberrations characterize pituitary adenomas. Cancer Genet Cytogenet 1999; 114: 144–149.

    Article  PubMed  CAS  Google Scholar 

  123. Mertens F, Johansson B, Hoglund M, Mitelman F. Chromosomal imbalance maps of malignant solid tumors: a cytogenetic survey of 3185 neoplasms. Cancer Res 1997; 57: 2765–2780.

    PubMed  CAS  Google Scholar 

  124. Anniko M, Tribukait B, Wersall J. DNA ploidy and cell phase in human pituitary tumors. Cancer 1984; 53: 1708–1713.

    Article  PubMed  CAS  Google Scholar 

  125. Anniko M, Tribukait B. DNA pattern of human pituitary tumors. Am J Otolaryngol 1985; 6: 103–110.

    Article  PubMed  CAS  Google Scholar 

  126. Bates AS, Farrell WE, Bicknell EJ, et al. Allelic deletion in pituitary adenomas reflects aggressive biological activity and has potential value as a prognostic marker. J Clin Endocrinol Metab 1997; 82: 818–824.

    Article  PubMed  CAS  Google Scholar 

  127. Johansson B, Heim S, Mandahl N, Mertens F, Mitelman F. Trisomy 7 in nonneoplastic cells. Genes Chromosomes Cancer 1993; 6: 199–205.

    Article  PubMed  CAS  Google Scholar 

  128. Mertens F, Palsson E, Lindstrand A, et al. Evidence of somatic mutations in osteoarthritis. Hum Genet 1996; 98: 651–656.

    Article  PubMed  CAS  Google Scholar 

  129. Broberg K, Hoglund M, Lindstrand A, Toksvig-Larsen S, Mandahl N, Mertens F. Polyclonal expansion of cells with trisomy 7 in synovia from patients with osteoarthritis. Cytogenet Cell Genet 1998; 83: 30–34.

    Article  PubMed  CAS  Google Scholar 

  130. Broberg K, Toksvig-Larsen S, Lindstrand A, Mertens F. Trisomy 7 accumulates with age in solid tumors and non-neoplastic synovia. Genes Chromosomes Cancer 2001; 30: 310–315.

    Article  PubMed  CAS  Google Scholar 

  131. Roque L, Serpa A, Clode A, Castedo S, Soares J. Significance of trisomy 7 and 12 in thyroid lesions with follicular differentiation: a cytogenetic and in situ hybridization study. Lab Invest 1999; 79: 369–378.

    PubMed  CAS  Google Scholar 

  132. Aaltonen LA, Peltomaki P, Leach FS, et al. Clues to the pathogenesis of familial colorectal cancer. Science 1993; 260: 812–816.

    Article  PubMed  CAS  Google Scholar 

  133. Cahill DP, Kinzler KW, Vogelstein B, Lengauer C. Genetic instability and darwinian selection in tumors. Trends Cell Biol 1999; 9: M57–60.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Levy, A. (2003). Pathogenesis of Pituitary Adenomas. In: Powell, M.P., Lightman, S.L., Laws, E.R. (eds) Management of Pituitary Tumors. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-390-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-390-3_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-327-5

  • Online ISBN: 978-1-59259-390-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics