Skip to main content

Part of the book series: Contemporary Endocrinology ((COE))

  • 352 Accesses

Abstract

Androgens and their effects on behavior have been an area of study for over a century. In 1889, Brown-Sequard, using himself as case study, injected an extract from crushed animal testicles. He reported that this treatment gave him increased energy, muscular strength, stamina and mental agility (1). Although crude, this approach led the way to the discovery of androgens. Since then, the focus of most androgen research has been in the area of reproductive function. More recently, the focus of attention has turned to hormone effects on the central nervous system (CNS) and aging, with particular emphasis on potential antiaging effects of hormone replacement therapy. This chapter will explore the complex relationship between androgens and cognition. We will first describe mechanisms by which hormones exert their effects in the CNS, including organizational and activational effects. Next, we will examine the relationship of androgens and cognition in humans, including endogenous levels and studies examining hormone manipulation in healthy young and older populations. Finally, we will examine the relationship between androgens and cognition as expressed through endocrine disorders that result in excessive or insufficient hormone levels. This chapter will feature cognition rather than mood, emotion, or other aspects of human behavior. Readers may refer to other chapters in this volume or Rubinow and Schmidt (1996) for a review of the relationship between androgens and mood or behavior (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown-Sequard CE. The effects produced on man by subcutaneous injections of a liquid obtained from the testicles of animals. Lancet 1889;2:105.

    Article  Google Scholar 

  2. Rubinow DR, Schmidt P. Androgens, brain, and behavior. Am J Psychiatry 1996; 153:974.

    PubMed  CAS  Google Scholar 

  3. Janne OA, Palvimo JJ, Kallio P, Mehto M. Androgen receptor and mechanism of androgen action. Ann Med 1993;25:83.

    Article  PubMed  CAS  Google Scholar 

  4. Lieberherr M, Grosse B. Androgens increase intracellular calcium concentration and inositol 1,4,5-trisphosphate and diacylglycerol formation via a pertussis toxin-sensitive G-protein. J Biol Chem 1994;269:7217.

    PubMed  CAS  Google Scholar 

  5. Benten WP, Lieberherr M, Sekeris CE, Wunderlich F. Testosterone induces Ca2+ influx via non-genomic surface receptors in activated T cells. FEBS Lett 1997;407:211.

    Article  PubMed  CAS  Google Scholar 

  6. Benten WP, Lieberherr M, Stamm O, et al. Testosterone signaling through internalizable surface receptors in androgen receptor-free macrophages. Mol Biol Cell 1999; 10:3113.

    Article  PubMed  CAS  Google Scholar 

  7. Benten WP, Lieberherr M, Giese G, et al. Functional testosterone receptors in plasma membranes of T cells. FASEB J 1999;13:123.

    PubMed  CAS  Google Scholar 

  8. Dawson JLM, Cheung YM, Lau RTS. Developmental effects of neonatal skills in the white rat. Biol Psycol 1975;3:213.

    Article  CAS  Google Scholar 

  9. Joseph R, Hess S, Birecree E. Effects of hormone manipulations and exploration on sex differences in maze learning. Behav Biol 1978;24:364.

    Article  PubMed  CAS  Google Scholar 

  10. Roof RL. Neonatal exogenous testosterone modifies sex difference in radial arm and Morris water maze performance in prepubescent and adult rats. Behav Brain Res 1993;53:1.

    Article  PubMed  CAS  Google Scholar 

  11. Stefanova N, Ovtscharoff W. Sexual dimorphism of the bed nucleus of the stria terminalis and the amygdala. Adv Anat Embryol Cell Biol 2000;158:1.

    Article  Google Scholar 

  12. de Fougerolles Nunn E, Greenstein B, Khamashta M, Hughes GR. Evidence for sexual dimorphism of estrogen receptors in hypothalamus and thymus of neonatal and immature Wistar rats. Int J Immunopharmacol 1999;21:869.

    Article  PubMed  Google Scholar 

  13. Kirn J, Lombroso PJ. Development of the cerebral cortex: XL Sexual dimorphism in the brain. J Am Acad Child Adolesc Psychiatry 1998;37:1228.

    Article  PubMed  CAS  Google Scholar 

  14. Gorski RA. Sexual dimorphisms of the brain. J Anim Sci 1985;61:38.

    PubMed  Google Scholar 

  15. Nunez JL, Juraska JM. The size of the splenium of the rat corpus callosum: influence of hormones, sex ratio, and neonatal cryoanesthesia. Dev Psychobiol 1998;33:295.

    Article  PubMed  CAS  Google Scholar 

  16. Roof RL. The dentate gyrus is sexually dimorphic in prepubescent rats: testosterone plays a significant role. Brain Res 1993;610:148.

    Article  PubMed  CAS  Google Scholar 

  17. Hamburger-Bar R, Rigter H. Peripheral and central androgenic stimulation of sexual behaviour of castrated male rats. Acta Endocrinol (Copenh) 1977;84:813.

    CAS  Google Scholar 

  18. McQueen JK, Wilson H, Sumner BEH, Fink G. Serotonin transporter (SERT) mRNA and binding site densities in male rat brain affected by sex steroids. Brain Res Mol Brain Res 1999; 63:241.

    Article  PubMed  CAS  Google Scholar 

  19. Fink, G, Sumner, B, Rosie, R, et al. Androgen actions on central serotonin neurotransmission: relevance for mood, mental state and memory. Behav Brain Res 1999;105:53.

    Article  PubMed  CAS  Google Scholar 

  20. Sumner BE, Fink G. Testosterone as well as estrogen increases serotonin2A receptor mRNA and binding site densities in the male rat brain. Brain Res Mol Brain Res 1998;59:205.

    Article  PubMed  CAS  Google Scholar 

  21. Flood JF, Fair SA, Kaiser FE, et al. Age-related decrease of plasma testosterone in samp8 mice: replacement improves age-related impairment of learning and memory. Physiol Behav 1995;57:669.

    Article  PubMed  CAS  Google Scholar 

  22. Grino PB, Griffin JE, Wilson JD. Testosterone at high concentrations interacts with the human androgen receptor similarly to dihydrotestosterone. Endocrinology 1990;126:1165.

    Article  PubMed  CAS  Google Scholar 

  23. Lu S, Simon NG, Wang Y, Hu, S. Neural androgen receptor regulation: effects of androgen and antiandrogen. J Neurobiol 1999;41:505.

    Article  PubMed  CAS  Google Scholar 

  24. Roselli CE, Resko JA. Androgens regulate brain aromatase activity in adult male rats through a receptor mechanism. Endocrinology 1984;114:2183.

    Article  PubMed  CAS  Google Scholar 

  25. Resko JA, Pereyra-Martinez AC, Stadelman HL, Roselli CE. Region-specific regulation of cytochrome P450 aromatase messenger ribonucleic acid by androgen in brains of male rhesus monkeys. Biol Reprod 2000;62:1818.

    Article  PubMed  CAS  Google Scholar 

  26. Lynch CS, Story AJ. Dihydrotestosterone and estrogen regulation of rat brain androgen-receptor immunoreactivity. Physiol Behav 2000;69:445.

    Article  PubMed  CAS  Google Scholar 

  27. Schmidt BM, Gerdes D, Feuring M, et al. Rapid, nongenomic steroid actions: a new age? Front Neuroendocrinol 2000;21:57.

    Article  PubMed  CAS  Google Scholar 

  28. Roselli CE, Chambers K. Sex differences in male-typical copulatory behaviors in response to androgen and estrogen treatment in rats. Neuroendocrinology 1999;69:290.

    Article  PubMed  CAS  Google Scholar 

  29. Kellogg CK, Lundin A. Brain androgen-inducible aromatase is critical for adolescent organization of environment-specific social interaction in male rats. Horm Behav 1999;35:155.

    Article  PubMed  CAS  Google Scholar 

  30. Gordon HW, Lee PA. A relationship between gonadotropins and visuospatial function. Neuro-psychologia 1986;24:563.

    CAS  Google Scholar 

  31. McKeever WF, Deyo RA. Testosterone, dihydrotestosterone, and spatial task performances of males. Bull Psychonom Soc 1990;28:305.

    CAS  Google Scholar 

  32. Christiansen K, Kussmann R. Androgen levels and components of aggressive behaviour in men. Horm Behav 1987;21:170.

    Article  PubMed  CAS  Google Scholar 

  33. Errico AL, Parsons OA, Kling OR, King AC. Investigation of the role of sex hormones in alcoholics’ visuospatial deficits. Neuropsychologia 1992;30:417.

    Article  PubMed  CAS  Google Scholar 

  34. Tan U. The relationship between serum testosterone level and visuomotor learning in right handed young men. Int J Neurosci 1991;56:19.

    Article  PubMed  CAS  Google Scholar 

  35. Christiansen K. Sex hormone related variations of cognitive performance in !Kung San hunter-gathers of Namibia. Neuropsychobiology 1993;27:97.

    Article  PubMed  CAS  Google Scholar 

  36. Kampen DL, Sherwin BB. Estradiol is related to visual memory in healthy young men. Behav Neurosci 1996;110:613.

    Article  PubMed  CAS  Google Scholar 

  37. McKeever WF, Rich DA, Deyo RA, Conner RL. Androgens and spatial ability: failure to find a relationship between testosterone and ability measures. Bull Psychonom Soc 1987;25:438.

    Google Scholar 

  38. Moffat SD, Hampson E. A curvilinear relationship between testosterone and spatial cognition in humans: possible influence of hand preference. Psychoneuroendocrinology 1996;21:323.

    Article  PubMed  CAS  Google Scholar 

  39. Gouchie C, Kimura D. The relationship between testosterone levels and cognitive ability patterns. Psychoneuroendocrinology 1991; 16:323.

    Article  PubMed  CAS  Google Scholar 

  40. Shute VJ, Pellegrino JW, Hubert L, Reynolds RW. The relationship between androgen levels and human spatial abilities. Bull Psychonom Soc 1983;21:465.

    CAS  Google Scholar 

  41. Silverman JM, Keefe RSE, Mohs RC, Davis KL. A study of the reliability of the family history method in genetic studies of Alzheimer disease. Alzheimer Dis Assoc Disord 1989;3:218.

    PubMed  CAS  Google Scholar 

  42. Kimura D. Sex and Cognition, The MIT Press, Cambridge, MA 1999.

    Google Scholar 

  43. Vederhus L, Krekling S. Sex differences in visual spatial ability in 9-year-old children. Intelligence 1996;23:33.

    Article  Google Scholar 

  44. Johnson E-S, Meade A-C. Developmental patterns of spatial ability: an early sex difference. Child Dev 1987;58:725.

    Article  PubMed  CAS  Google Scholar 

  45. Vandenberg SG, Kuse AR. Mental rotations, a group test of three-dimensional spatial visualization. Percept Motor Skills 1978;47:599.

    Article  PubMed  CAS  Google Scholar 

  46. Collins DW, Kimura D. A large sex difference on a two-dimensional mental rotation task. Behav Neurosci 1997;111:845.

    Google Scholar 

  47. Larson P, Rizzo A-A, Buckwalter J-G, et al. Gender issues in the use of virtual environments. Cyber Psychol Behav 1999;2:113.

    Article  CAS  Google Scholar 

  48. McBurney D-H, Gaulin S-J-C, Devineni T, Adams C. Superior spatial memory of women: stronger evidence for the gathering. Evol Hum Behav 1997;18:165.

    Article  Google Scholar 

  49. Eals M, Silverman I. The hunter-gatherer theory of spatial sex differences: proximate factors. Ethol Sociobiol 1994; 15:95.

    Article  Google Scholar 

  50. Galea LA, Kimura D. Sex differences in route learning. Pers Individ Diff 1993; 14:53.

    Article  Google Scholar 

  51. Sandstrom NJ, Kaufman J, Huettel SA. Males and females use different distal cues in a virtual environment navigation task. Cogn Brain Res 1998;6:351.

    Article  CAS  Google Scholar 

  52. Moffat S-D, Hampson E, Hatzipantelis M. Navigation in a “virtual” maze: sex differences and correlation with. Evol Hum Behavior 1998; 19:73.

    Article  Google Scholar 

  53. Astur RS, Ortiz ML, Sutherland RJ. A characterization of performance by men and women in a virtual Morris water task: a large and reliable sex difference. Behav Brain Res 1998;93:185.

    Article  PubMed  CAS  Google Scholar 

  54. Maguire EA, Frackowiak RS, Frith CD. Recalling routes around London: activation of the right hippocampus in taxi drivers. J Neurosci 1997; 17:7103.

    PubMed  CAS  Google Scholar 

  55. Maguire EA, Frith CD, Burgess N, et al. Knowing where things are parahippocampal involvement in encoding object locations in virtual large-scale space. J Cogn Neurosci 1998; 10:61.

    Article  PubMed  CAS  Google Scholar 

  56. Epstein R, Kanwisher N. A cortical representation of the local visual environment. Nature 1998;392:598.

    Article  PubMed  CAS  Google Scholar 

  57. Aguirre GK, D’Esposito M. Environmental knowledge is subserved by separable dorsal/ventral neural areas. J Neurosci 1997; 17:2512.

    PubMed  CAS  Google Scholar 

  58. Aguirre GK, Zarahn E, D’Esposito M. An area within human ventral cortex sensitive to “building” stimuli: evidence and implications. Neuron 1998;21:373.

    Article  PubMed  CAS  Google Scholar 

  59. Wilson FA, Riches IP, Brown MW. Hippocampus and medial temporal cortex. Neuronal activity related to behavioral responses during the performance of many tasks by primates. Behav Brain Res 1990;40:7.

    Article  PubMed  CAS  Google Scholar 

  60. Shelton AL, Gabrieli JD. Neural correlates of encoding space from route and survey perspectives. J Neurosci 2002;22:2711.

    PubMed  CAS  Google Scholar 

  61. Gron G, Wunderlich AP, Spitzer M, et al. Brain activation during human navigation: gender-different neural networks as substrate of performance. Nat Neurosci 2000;3:404.

    Article  PubMed  CAS  Google Scholar 

  62. Van Goozen SHM, Cohen-Kettenis PT, Gooren LJG, et al. Activating effects of androgens on cognitive performance: causal evidence in a group of female-to-male transsexuals. Neuro-psychologia 1994;32:1153.

    Google Scholar 

  63. Slabbekoorn D, van Goozen SH, Megens J, et al. Activating effects of cross-sex hormones on cognitive functioning: a study of short-term and long-term hormone effects in transsexuals. Psychoneuroendocrinology 1999;24:423.

    Article  PubMed  CAS  Google Scholar 

  64. Miles C, Green R, Sanders G, Hines, M. Estrogen and memory in a transsexual population. Horm Behav 1998;34:199.

    Article  PubMed  CAS  Google Scholar 

  65. Postma A, Meyer G, Tuiten A, et al. Effects of testosterone administration on selective aspects of object- location memory in healthy young women. Psychoneuroendocrinology 2000;25:563.

    Article  PubMed  CAS  Google Scholar 

  66. Tenover JS, Matsumoto AM, Plymate SR, Bremner WJ. The effects of aging in normal men on bioavailable testosterone and leuteinizing hormone secretion: response to clomiphene citrate. J Clin Endocrinol Metab 1987;65:1118.

    Article  PubMed  CAS  Google Scholar 

  67. Tenover J. Effects of testosterone supplementation in the aging male. J Clin Endocrinol 1992;75:1092.

    Article  CAS  Google Scholar 

  68. Morley JE. Testosterone replacement and the physiologic aspects of aging in men. Mayo Clin Proc 2000;75(Suppl):S83.

    Article  PubMed  CAS  Google Scholar 

  69. Morley JE, Perry HM 3rd. Androgen deficiency in aging men: role of testosterone replacement therapy, [see comments]. J Lab Clin Med 2000;135:370.

    Article  PubMed  CAS  Google Scholar 

  70. Ravaglia G, Forti P, Maioli F, et al. Body composition, sex steroids, IGF-1, and bone mineral status in aging men. J Gerontol A: Biol Sci Med Sci 2000;55:M516.

    Article  CAS  Google Scholar 

  71. Matsumoto AM. “Andropause”—are reduced androgen levels in aging men physiologically important? (editorial; comment). West J Med 1993;159:618.

    PubMed  CAS  Google Scholar 

  72. Tenover JS. Androgen administration to aging men. Endocrinol Metab Clin N Am 1994;23:877.

    CAS  Google Scholar 

  73. Lund BC, Bever-Stille KA, Perry PJ. Testosterone and andropause: the feasibility of testosterone replacement therapy in elderly men. Pharmacotherapy 1999; 19:951.

    Article  PubMed  CAS  Google Scholar 

  74. Carani C, Qin K, Simoni M, et al. Effect of testosterone and estradiol in a man with aromatase deficiency. N Engl J Med 1997;337:91.

    Article  PubMed  CAS  Google Scholar 

  75. Morely JE, Kaiser F, Raum WJ, et al. Potentially predictive and manipulable blood serum correlates of aging in the healthy human male: progessive decreases in bioavailable testosterone, dehydro-epiandrosterone sulfate, and the ratio of insulin-like growth factor to 1 growth hormone. Proc Natl Acad Sci USA 1997;94:7537.

    Article  Google Scholar 

  76. Barrett-Connor E, Goodman-Gruen D, Patay B. Endogenous sex hormones and cognitive function in older men. J Clin Endocrinol Metab 1999;84:3681.

    Article  PubMed  CAS  Google Scholar 

  77. Sih R, Morley JE, Kaiser FE, et al. Testosterone replacement in older hypogonadal men: a 12 month randomized controlled trial. J Clin Endocrinol Metab 1997;82:1661.

    Article  PubMed  CAS  Google Scholar 

  78. Janowsky JS, Oviatt SK, Orwoll ES. Testosterone influences spatial cognition in older men. Behav Neurosci 1994; 108:325.

    Article  PubMed  CAS  Google Scholar 

  79. Janowsky JS, Chavez B, Orowoll E. Sex steroids modify working memory. J Cogn Neurosci 2000; 12:407.

    Article  PubMed  CAS  Google Scholar 

  80. Cherrier MM, Asthana S, Baker LD, et al. Testosterone supplementation improves spatial and verbal memory in healthy older men. Neurology 2001;57:80.

    Article  PubMed  CAS  Google Scholar 

  81. Orth DN, Kovacs WJ, Debold CR. The Adrenal cortex. In: Wilson JD, Foster DW, eds. Williams Textbook of Endocrinology, 8th ed. WB Saunders, Philadelphia, 1992 p. 489.

    Google Scholar 

  82. Nass R, Baker S, Speiser P, et al. Hormones and handedness: left-hand bias in female congenital adrenal hyperplasia patients. Neurology 1987;37:711.

    Article  PubMed  CAS  Google Scholar 

  83. Kelso WM, Nicholls MER, Warne GL. Effects of prenatal androgen exposure on cerebral lateralization in patients with congenital adrenal hyperplasia (CAH). Brain Cogn 1999;40:153.

    Google Scholar 

  84. Helleday J, Siwers B, Ritzen EM, Hugdahl K. Normal lateralization for handedness and ear advantage in a verbal dichotic listening task in women with congenital adrenal hyperplasia (CAH). Neuropsychologia 1994;32:875.

    Article  PubMed  CAS  Google Scholar 

  85. Sinforiani E, Livieri C, Mauri M, Bisio P. Cognitive and neuroradiological findings in congenital adrenal hyperplasia. Psychoneuroendocrinology 1994;19(1):55.

    Article  PubMed  CAS  Google Scholar 

  86. Nass R, Heier L, Moshang T, et al. Magnetic resonance imaging in the congenital adrenal hyperplasia population: increased frequency of white-matter abnormalities and temporal lobe atrophy. J Child Neurol 1997;12:181.

    Article  PubMed  CAS  Google Scholar 

  87. Plante E, Boliek C, Binkiewicz A, Erly WK. Elevated androgen, brain development and language/learning disabilities in children with congenital adrenal hyperplasia. Dev Med Child Neurol 1996;38:423.

    Article  PubMed  CAS  Google Scholar 

  88. Dittmann RW, Kappes MH, Kappes ME. Cognitive functioning in female patients with 21-hydroxylase deficiency. Eur Child Adolesc Psychiatry 1993;2:34.

    Article  PubMed  CAS  Google Scholar 

  89. Nass R, Baker S. Androgen effects on cognition: congenital adrenal hyperplasia. Psychoneuroendocrinology 1991;16:189.

    Article  PubMed  CAS  Google Scholar 

  90. Nass R, Baker S. Learning disabilities in children with congenital adrenal hyperplasia. J Child Neurol 1991;6:306.

    Article  PubMed  CAS  Google Scholar 

  91. Berenbaum SA, Korman K, Leveroni C. Early hormones and sex differences in cognitive abilities. Learning Individ Diff 1995;7:303.

    Article  Google Scholar 

  92. Helleday J, Bartfai A, Ritzen EM, Forsman M. General intelligence and cognitive profile in women with congenital adrenal hyperplasia (CAH). Psychoneuroendocrinology 1994; 19:343.

    Article  PubMed  CAS  Google Scholar 

  93. Resnick SM, Berenbaum SA, Gottesman II, Bouchard TJ. Early hormonal influences on cognitive functioning in congenital adrenal hyperplasia. Dev Psychology 1986;22:191.

    Article  Google Scholar 

  94. Kelso WM, Nicholls MER, Warne GL, Zacharin M. Cerebral lateralization and cognitive functioning in patients with congenital adrenal hyperplasia. Neuropsychology 2000; 14:370.

    Article  PubMed  CAS  Google Scholar 

  95. Hampson E, Rovet JF, Altmann D. Spatial reasoning in children with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Dev Neuropsychol 1998;14:299.

    Article  Google Scholar 

  96. Berenbaum SA, Resnick SM. Early androgen effects on aggression in children and adults with congenital adrenal hyperplasia. Psychoneuroendocrinology 1997;22:505.

    Article  PubMed  CAS  Google Scholar 

  97. Berenbaum SA, Snyder E. Early hormonal influences on childhood sex-typed activity and playmate preferences: implications for the development of sexual orientation. Dev Psychol 1995;31:31.

    Article  Google Scholar 

  98. Dittmann RW, Kappes MH, Kappes ME, Boerger D. Congenital adrenal hyperplasia: II. Gender-related behavior and attitudes in female salt-wasting and simple-virilizing patients. Psychoneuroendocrinology 1990; 15:421.

    Article  PubMed  CAS  Google Scholar 

  99. Dittmann RW, Kappes MH, Kappes ME, Boerger D. Congenital adrenal hyperplasia: I. Gender-related behavior and attitudes in female patients and sisters. Psychoneuroendocrinology 1990;15:401.

    Article  PubMed  CAS  Google Scholar 

  100. Berenbaum SA, Hines M. Early androgens are related to childhood sex-typed toy preferences. Psychol Sci 1992;3(3):203.

    Article  Google Scholar 

  101. Hines M, Kaufman FR. Androgen and the development of human sex-typical behavior: Rough-and-tumble play and sex of preferred playmates in children with congenital adrenal hyperplasia (CAH). Child Dev 1994;65:1042.

    Article  PubMed  CAS  Google Scholar 

  102. Zucker KJ, Bradley SJ, Oliver G, Blake J. Psychosexual development of women with congenital adrenal hyperplasia. Horm Behav 1996;30:300.

    Article  PubMed  CAS  Google Scholar 

  103. Dittmann RW, Kappes MH, Kappes ME, et al. Congenital adrenal hyperplasia I: Gender-related behaviors and attitudes in female patients and sisters. Psychoneuroendocrinology 1990; 15:401–420.

    Article  PubMed  CAS  Google Scholar 

  104. Oliveira LM, Seminara SB, Beranova M, et al. The importance of autosomal genes in Kallmann syndrome: Genotype-phenotype correlations and neuroendocrine characteristics. J Clin Endocrinol Metab 2001;86:1532.

    Article  PubMed  CAS  Google Scholar 

  105. Vogel TJ, Stemmler J, Heye B, et al. Kallman syndrome versus idiopathic hypogonadotropic hypogonadism at MR imaging. Radiology 1994; 191.53.

    Google Scholar 

  106. Beranova M, Oliveira LM, Bedecarrats GY, et al. Prevalence, phenotypic spectrum, and modes of inheritance of gonadotropin-releasing hormone receptor mutations in idiopathic hypogonadotropic hypogonadism. J Clin Endocrinol Metab 2001;86:1580.

    Article  PubMed  CAS  Google Scholar 

  107. Schwankhaus JD, Currie J, Jaffe M, et al. Neurologic findings in men with isolated hypogonadotropic hypogonadism. Neurology 1989;39:223.

    Article  PubMed  CAS  Google Scholar 

  108. Quintin R, Duke VM, De Zoysa PA, et al. The neuroradiology of Kallmann’s syndrome: a genotypic and phenotypic analysis. J Clin Endocrinol Metab 1996;81:3010.

    Article  Google Scholar 

  109. Hier DB, Crowley WF Jr. Spatial ability in androgen-deficient men. N Engl J Med 1982;306:1202.

    Article  PubMed  CAS  Google Scholar 

  110. Buchsbaum MS, Henkin RI. Perceptual abnormalities in patients with chromatin negative gonadal dysgenesis and hypogonadotropic hypogonadism. Int J Neurosci 1980;11:201.

    Article  PubMed  CAS  Google Scholar 

  111. Cappa, SF, Guariglia, C, Papagno, C, et al. Patterns of lateralization and performance levels for verbal and spatial tasks in congenital androgen deficiency. Behav Brain Res 1988;31:177.

    Article  PubMed  CAS  Google Scholar 

  112. Kertzman, C, Robinson, DL, Sherins, RJ, et al. Abnormalities in visual spatial attention in men with mirror movements associated with isolated hypogonadotropic hypogonadism. Neurology 1990;40:1057.

    Article  PubMed  CAS  Google Scholar 

  113. Alexander, GM, Swerdloff, RS, Wang, C, et al. Androgen-behavior correlations in hypogonadal men and eugonadal men. II. Cognitive abilities. Horm Behav 1998;33:85.

    Article  PubMed  CAS  Google Scholar 

  114. Cherrier, MM, Craft, S, Bremner, W, et al. Cognitive effects of exogenous testosterone administration in eugonadal and hypogonadal men. J Int Neuropsychol Soc 1998;4:16.

    Google Scholar 

  115. Wechsler, D. Weschler Adult Intelligence Scale—Revised, The Psychological Corporation, San Antonio, TX 1981.

    Google Scholar 

  116. Wechsler, D. Wechsler Memory Scale—Revised, The Psychological Corporation, San Antonio, TX 1987.

    Google Scholar 

  117. Malec JF, Ivnik RJ, Smith GE, et al. Visual Spatial Learning test: normative data and further validation. Psychol Assess 1992;4:433.

    Article  Google Scholar 

  118. Lezak MD. Neuropsychologcial Assessment, 3rd Edition. Oxford University Press, New York, 1995.

    Google Scholar 

  119. Amory JK, Anawalt BD, Paulsen CA, Bremner WJ. Klinefelter’s syndrome. Lancet 2000;356:333.

    Article  PubMed  CAS  Google Scholar 

  120. Smyth CM. Diagnosis and treatment of Klinefelter syndrome. Hosp Pract (Off Ed) 1999;34:111.

    Article  CAS  Google Scholar 

  121. Smyth CM, Bremner WJ. Klinefelter syndrome. Arch Intern Med 1998;158:1309.

    Article  PubMed  CAS  Google Scholar 

  122. Ratcliffe S. Long-term outcome in children of sex chromosome abnormalities. Arch Dis Child 1999;80:192.

    Article  PubMed  CAS  Google Scholar 

  123. Money J. Specific neuro-cognitive impairments associated with Turner (45,X) and Klinefelter (47,XXY) syndromes: a review. Soc Biol 1993;40:147.

    PubMed  CAS  Google Scholar 

  124. Mandoki MW, Sumner GS, Hoffman RP, Riconda DL. A review of Klinefelter’s syndrome in children and adolescents. J Am Acad Child Adolesc Psychiatry 1991;30:167.

    Article  PubMed  CAS  Google Scholar 

  125. Walzer S, Bashir AS, Silbert AR. Cognitive and behavioral factors in the learning disabilities of 47,XXY and 47,XYY boys. Birth Defects Orig Artie Ser 1990;26:45.

    CAS  Google Scholar 

  126. Patwardhan AJ, Eliez S, Bender B, et al. Brain morphology in Klinefelter syndrome: extra X chromosome and testosterone supplementation, [see comments]. Neurology 2000;54:2218.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cherrier, M.M., Craft, S. (2003). Androgens and Cognition. In: Bagatell, C.J., Bremner, W.J. (eds) Androgens in Health and Disease. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-388-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-388-0_15

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-314-5

  • Online ISBN: 978-1-59259-388-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics