Skip to main content

Polymorphisms Related to Acute Coronary Syndromes and Heart Failure

Potential Targets for Pharmacogenomics

  • Chapter
Cardiac Markers

Part of the book series: Pathology and Laboratory Medicine ((PLM))

  • 176 Accesses

Abstract

The pathophysiology of many if not most human diseases is a combination of environmental and genetic risk factors. The balance between environment vs genetics can vary from diseases that are entirely environmentally influenced, such as in viral infections, to nearly 100% penetrance by genetic predisposition, such as Huntington’s disease. In the area of coronary artery disease (CAD), the traditional notion is that environmental factors play the most important part in disease occurrence and progression. Cardiovascular risk factors such as smoking, obesity, diet, and the lack of exercise are environmental in nature and can be modified to reduce risk. However, the National Cholesterol Education Program (NCEP) has identified family history of premature heart disease (first-degree male relative <45 yr, female <55 yr) as a major risk factor (1). NCEP has also identified the presence of diabetes, which has a definite genetic component, as a CAD risk factor. This chapter summarizes the large volume of relatively recent work devoted toward finding genetic polymorphisms that are linked to a higher incidence of acute coronary syndromes (ACS). The markers that have been examined are directed toward mutations in pathways that are implicated in the pathophysiology of ACS, that is, thrombosis, platelet dysfunction, and lipid and other biochemical metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of the Third Report of the) Expert Panel on Detection, Evaluation, National Cholesterol Education Program (NCEP and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001; 285: 2486–2497.

    Google Scholar 

  2. Pepe G, Rickards O, Vanegas OC, . Prevalence of Factor V Leiden mutation in non-European populations. Thromb Haemost 1997; 77: 329–331.

    PubMed  CAS  Google Scholar 

  3. Ridker PM, Hennekens CH, Lindpaintner K, Stampfer MJ, Eiseberg PR, Miletich JP. Mutation in the gene coding for coagulation factor V and the risk of myocardial infarction, stroke, and venous thrombosis in apparently healthy men. N Engl J Med 1995; 332: 912–917.

    Article  PubMed  CAS  Google Scholar 

  4. Bauer KA. The thrombophilias: well-defined risk factors with uncertain therapeutic implications (review). Ann Intern Med 2001; 135: 367–373.

    Article  PubMed  CAS  Google Scholar 

  5. Ridker PM, Hennekens CH, Miletich JP. G20210A mutation in prothrombin gene and risk of myocardial infarction, stroke, and venous thrombosis in a large cohort of US men. Circulation 2000; 99: 999–1004.

    Article  Google Scholar 

  6. Wu AHB, Tsongalis GJ. Correlation of selected single nucleotide polymorphisms of coagulation factors to risk for cardiovascular disease. Am J Cardiol 2001; 87: 1361–1366.

    Article  PubMed  CAS  Google Scholar 

  7. Martinelli I, Bucciarelli P, Margaglione M, DeStefano V, Castaman G, Pier Mannuccio M. The risk of venous thromboembolism in family members with mutations in the genes of factor V or prothrombin or both. Br J Haematol 2000; 111: 1223–1229.

    Article  PubMed  CAS  Google Scholar 

  8. Meade TW, Mellows S, Brozovic M, . Haemostatic function and ischaemic heart disease: principal results of the Northwick Park Heart Study. Lancet 1986; 2: 533–537.

    Article  PubMed  CAS  Google Scholar 

  9. Girelli D, Russo C, Ferraresi P, . Polymorphisms in the Factor VII gene and the risk of myocardial infarction in patients with coronary artery disease. N Engl J Med 2000; 343: 774–780.

    Article  PubMed  CAS  Google Scholar 

  10. Fellowes AP, Brennan SO, George PM. Identification and characterization of five new fibrinogen gene polymorphisms. Ann NY Acad Sci 2001; 936: 536–541.

    Article  PubMed  CAS  Google Scholar 

  11. Green FR. Fibrinogen polymorphisms and atherothrombotic disease. Ann NY Acad Sci 2001; 936: 549–559.

    Article  PubMed  CAS  Google Scholar 

  12. Doggen CJM, Bertina RM, Cats VM, Rosendaal FR. Fibrinogen polymorphisms are not associated with the risk of myocardial infarction. Br J Haematol 2000; 110: 935–938.

    Article  PubMed  CAS  Google Scholar 

  13. Ridker PM, Vaughan DE, Stampfer MJ, Manson JE, Hennekens CH. Endogenous tissue-type plasminogen activator and risk of myocardial infarction. Lancet 1993; 341: 1165–1168.

    Article  PubMed  CAS  Google Scholar 

  14. Juhan-Vague I, Pyke SD, Alessi MC, Jespersen J, Haverkate F, Thompson SG. Fibrinolytic factors and the risk of myocardial infarction or sudden death in patients with angina pectoris. ECAT Study Group. European Concerted Action on Thrombosis and Disabilities. Circulation 1996; 94: 2057–2063.

    Article  PubMed  Google Scholar 

  15. Ye S, Green FR, Scarabin PY, . The 4G/5G genetic polymorphism in the promoter of the plasminogen activator-1 (PAI-1) gene is associated with differences in plasma PAI-1 activity but not with risk of myocardial infarction in the ECTIM study. Thromb Haemost 1995; 74: 837–841.

    PubMed  CAS  Google Scholar 

  16. Iacoviello L, Burzotta F, Di Castelnuovo A, . The 4G/5G polymorphism of PAI-1 promoter gene and the risk of myocardial infarction:a meta analysis. Thromb Haemost 1998; 80: 1029–1030.

    PubMed  CAS  Google Scholar 

  17. Ossei-Gerning N, Mansfield MW, Stickland MH, Wilson IJ, Grant P. Plasminogen activator inhibitor-1 promoter 4G/5G genotype and plasma levels in relation to a history of myocardial infarction in patients characterized by coronary angiography. Arterioscl Thromb Vasc Biol 1997; 17: 33–37.

    Article  PubMed  CAS  Google Scholar 

  18. Mizuno K, Satomura K, Miyamoto A, . Angioscopic evaluation of coronary-artery thrombi in acute coronary syndromes. N Engl J Med 1992; 326: 287–291.

    Article  PubMed  CAS  Google Scholar 

  19. George JN. Platelets. Lancet 2000; 355: 1531–1541.

    Article  PubMed  CAS  Google Scholar 

  20. Weiss EJ, Bray PF, Tayback M, . A polymorphism of a platelet glycoprotein receptor as an inherited risk factor for coronary thrombosis. N Engl J Med 1996; 334: 1090–1094.

    Article  PubMed  CAS  Google Scholar 

  21. Ridker PM, Hennekens CH, Schmitz C, Stampfer MJ, Lindpaintner K. PIAVA2 polymorphism of platelet glycoprotein IIIa and risks of myocardial infarction, stroke, and venous thrombosis. Lancet 1997; 349: 385–388.

    Article  PubMed  CAS  Google Scholar 

  22. Laule M, Cascorbi I, Stangl V, . Al/A2 polymorphism of glycoprotein IIIa and association with excess procedural risk for coronary catheter interventions:a case-controlled study. Lancet 1999; 353: 708–712.

    Article  PubMed  CAS  Google Scholar 

  23. Kastrati A, Koch W, Gawaz M, . PIA polymorphism of glycoprotein IIIa and risk of adverse events after coronary stent placement. J Am Coll Cardiol 2000; 36: 84–89.

    Article  PubMed  CAS  Google Scholar 

  24. Bottiger C, Kastrati A, Koch W, . Polymorphism of platelet glycoprotein IIb and risk of thrombosis and restenosis after coronary stent placement. Am J Cardiol 1999; 84: 987991.

    Google Scholar 

  25. Kunicki TJ, Kritzig M, Annis DS, Nugent DJ. Hereditary variation in platelet integrin a2ß1 density is associated with two silent polymorphism in the a2 gene coding sequence. Blood 1997; 89: 1939–1943.

    PubMed  CAS  Google Scholar 

  26. Santoso S, Kunicki TJ, Kroll H, Haberbosch W, Gardemann A. Association of the platelet glycoprotein Ia C807 T gene polymorphism with nonfatal myocardial infarction in younger patients. Blood 1000; 93: 2449–2453.

    Google Scholar 

  27. Von Beckerath N, Koch W, Mehilli J, Bottiger C, Schomig A, Kasatrati A. Glycoprotein Ia gene C807T polymorphism and risk for major adverse cardiac events within the first 30 days after coronary artery stenting. Blood 2000; 95: 3297–3301.

    Google Scholar 

  28. Kroll H, Gardemann A, Fechter A, Haberbosch W, Santoso S. The impact of the glycoprotein Ia collagen receptor subunit A1648G gene polymorphism on coronary artery disease and acute myocardial infarction. Thromb Haemost 2000; 83: 392–396.

    PubMed  CAS  Google Scholar 

  29. Kandzari DE, Goldschmidt-Clermont PJ. Platelet polymorphisms and ischemic heart disease: moving beyond traditional risk factors. J Am Coll Cardiol 2001; 38: 1028–1032.

    Article  PubMed  CAS  Google Scholar 

  30. Corral J, Gonzalez-Conejero R, Lozano ML, Rivera J, Vicente V. New alleles of the platelet glycoprotein Iba gene. Br J Haematol 1998; 103: 997–1003.

    Article  PubMed  CAS  Google Scholar 

  31. Mikkelsson J, Perola M, Penttila A, Karhunen PJ. Platelet glycoprotein Iba HPA-2 Met/ VNTR B haplotype as a genetic predictor of myocardial infarction and sudden cardiac death. Circulation 2001; 104: 876–880.

    Article  PubMed  CAS  Google Scholar 

  32. Meisel C, Afshar-Kharghan V, Cascorbi I, . Role of Kozak sequence polymorphism of platelet glycoprotein Iba as a risk factor for coronary artery disease and catheter interventions. J Am Coll Cardiol 2001; 38: 1023–1027.

    Article  PubMed  CAS  Google Scholar 

  33. Croft SA, Samani NJ, Teare MD, . Novel platelet membrane glycoprotein VI dimnorphism is a risk factor for myocardial infarction. Circulation 2001; 104: 1459–1463.

    Article  PubMed  CAS  Google Scholar 

  34. Gerdes C, Gerdes LU, Hansen PS, Faergeman O. Polymorphisms in the lipoprotein lipase gene and their associations with plasma lipid concentrations in 40-year old Danish men. Circulation 1995; 92: 1765–1769.

    Article  PubMed  CAS  Google Scholar 

  35. Larson I, Hoffmann MM, Ordovas JM, Schaefer EJ, Marz W, Kreuzer J. The lipoprotein lipase HindIII polymorphism:association with total cholesterol and LDL-cholesterol, but not with HDL and triglycerides in 342 females. Clin Chem 1999; 45: 963–968.

    PubMed  CAS  Google Scholar 

  36. Wang XT, McCredie Rm, Wilcken DEL. Common DNA polymorphisms at the lipoprotein lipase gene:association with severity of coronary artery disease and diabetes. Circulation 1996; 93: 1339–1345.

    Article  PubMed  CAS  Google Scholar 

  37. Gambino R, Scaglione L, Alemanno N, Pagano G, Cassader M. Human lipoprotein lipase Hindlll polymorphism in young patients with myocardial infarction. Metabolism 1999; 48: 1157–1161.

    Article  PubMed  CAS  Google Scholar 

  38. Anderson JL, King GJ, Bair TL, . Association of lipoprotein gene polymorphisms with coronary artery disease. J Am Coll Cardiol 1999; 33: 1013–1020.

    Article  PubMed  CAS  Google Scholar 

  39. Sawano M, Watanabe Y, Ohmura H, . Potentially protective effects of the Ser 447-ter mutation of the lipoprotein lipase gene against the development of coronary artery disease in Japanese subjects via a beneficial lipid profile. Jpn Circ J 2001; 65: 310–314.

    Article  PubMed  CAS  Google Scholar 

  40. Raslova K, Smolkova B, Vohnout B, Gasparovic J, Frohlich JJ. Risk factors for athersclerosis in survivors of myocardial infarction and their spouses: comparison to controls without personal and family history of atherosclerosis. Metabolism 2001; 50: 24–29.

    Article  PubMed  CAS  Google Scholar 

  41. Wittrup HH, Tybjaerg-Hansen A, Abildgaard S, Steffensen R, Schnohr P, Nordestgaard BG. A common substitution (Asn291 Ser) in lipoprotein lipase is associated with increased risk of ischemic heart disease. J Clin Invest 1997; 99: 1606–1613.

    Article  PubMed  CAS  Google Scholar 

  42. Higgins GA, Large CH, Rupniak HT, Barnes JC. Apolipoprotein E and Alzheimer’s disease:a review of recent studies. Pharmacol Biochem Behav 1997; 56: 675–685.

    Article  CAS  Google Scholar 

  43. Corbo RM, Vilardo T, Ruggeri M, Gemma AT, Scacchi R. Apolipoprotein E genotype and plasma levels in coronary artery disease. A case-control study in the Italian population. Clin Biochem 1999; 32: 217–222.

    Article  PubMed  CAS  Google Scholar 

  44. Wilson PW, Schaefer EJ, Larson MG, Ordovas JM. Apolipoprotein E alleles and risk of coronary disease. A meta-analysis. Arterioscl Thromb Vasc Biol 1996; 16: 1250–1255.

    Article  PubMed  CAS  Google Scholar 

  45. Frikke-Schmidt R, Tybjaerg-Hansen A, Steffensen R, Jensen G, Nordestgaard BG. Apolipoprotein E genotype: epsilon32 women are protected while epsilon43 and epsilon44 men are susceptible to ischemic heart disease. J Am Coll Cardiol 2000; 35: 1192–1199.

    CAS  Google Scholar 

  46. Lambert IC, Brousseau T, Defosse V, . Independent association of an APOE gene promoter polymorphism with increased risk of myocardial infarction and decrease APOE plasma concentrations-the ECTIM study. Human Mol Genet 2000; 9: 57–61.

    Article  CAS  Google Scholar 

  47. Boushey CJ, Beresford SA, Omen GS, Motulsky AG. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. JAMA 1995; 274: 1049–1057.

    Google Scholar 

  48. Dunn J, Title LM, Bata I, . Relation of a common mutation in methylenetetrahydrofolate reductase to plasma homocysteine and early onset coronary artery disease. Clin Biochem 1998; 31: 95–100.

    Article  PubMed  CAS  Google Scholar 

  49. Shuh JR, Bleh DJ, Frierdich GE, McMahon EG, Blaine EH. Differential effects of reninangiogensin system blockade on atherogenesis in cholesterol-fed rabbits. J Clin Invest 1993; 981: 1453–1458.

    Article  Google Scholar 

  50. Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 1990; 86: 1343–1346.

    Article  PubMed  CAS  Google Scholar 

  51. Cambien F, Poirier O, Lecerf L, . Deletion polymorphism in the gene for angiotensin-convcrting enzyme is a potential risk factor for myocardial infarction. Nature 1992; 359: 641–643.

    Article  PubMed  CAS  Google Scholar 

  52. Samani NJ, Thompson JR, O’Toole L, Channer K, Woods KL. A meta-analysis of the association of the deletion allele of the angiotensin-converting enzyme gene with myocardial infarction. Circulation 1996; 94: 708–712.

    Article  PubMed  CAS  Google Scholar 

  53. Shanmugan V, Sell KW, Saha BK. Mistyping ACE heterozygotes. PCR Methods Appl 1993; 3: 120–121.

    Article  Google Scholar 

  54. Rice GI, Foy CA, Grant PJ. Angiotensin converting enzyme and angiotensin II type 1-receptor gene polymorisms and risk of ischaemic heart disease. Cardiovasc Res 1999; 41: 746–753.

    Article  PubMed  CAS  Google Scholar 

  55. Zee RYL, Fernandez-Ortiz A, Macaya C, Pintor E, Lindpaintner K, Fernandez-Cruz A. ACE D/I polymorphism and incidence of post-PTCA restenosis:a prospective, angiography-based evaluation. Hypertension 2001; 37: 851–855.

    Article  PubMed  CAS  Google Scholar 

  56. Amant C, Bauters C, Bodart JC, . D allele of the angiotensin I-converting enzyme is a major risk factor for resetenosis after coronary stenting. Circulation 1997; 96: 56–60.

    Article  PubMed  CAS  Google Scholar 

  57. Meurice T, Bauters C, Hermant X, . Effect of ACE inhibitors on angiographic restenosis after coronary stenting (PARIS):a randomised, double-blind, placebo-controlled trial. Lancet 2001; 357: 1321–1324.

    Article  PubMed  CAS  Google Scholar 

  58. Koch W, Kastrati A, Mehilli J, Bottiger C, von Beckerath N, Schomig A. Insertion/deletion polymorphis of the angiotensin I-converting enzyme gene is not associated with restenosis after coronary stent placement. Circulation 2000; 102: 197–202.

    Article  PubMed  CAS  Google Scholar 

  59. Candy GP, Skudicky D, Mueller UK, . Association of left ventricular systolic performance and cavity size with angiotensin-converting enzyme genotype in idiopathic dilated cardiopathy. Am J Cardiol 1999; 83: 740–744.

    Article  PubMed  CAS  Google Scholar 

  60. McNamara DM, Holubkov R, Janosko K, . Pharmacogenetic interactions between ßblocker therapy and the angiotensin-converting enzyme deletion polymorphism in patients with congestive heart failure. Circulation 2001; 103: 1644–1648.

    Article  PubMed  CAS  Google Scholar 

  61. Montgomery HE, Keeling PJ, Goldman JH, Humphries SE, Talmud PJ, McKenna WJ. Lack of association between the insertion/deletion polymorphism of the angiotensin-converting enzyme gene and idiopathic dilated cardiomyopathy. J Am Coll Cardiol 1995; 25: 1627–1631.

    Article  PubMed  CAS  Google Scholar 

  62. Spruth E, Zurbrugg HR, Warnecke C, . Expresion of ACE mRNA in the human atrial myocardium is not dependent on left ventricular function, ACE inhibitor therapy, or the ACE I/D genotype. J Mol Med 1999; 77: 804–810.

    Article  PubMed  CAS  Google Scholar 

  63. Tiret L, Bonnardeaux A, Poirier O, . Synergistic effects of angiotensin-converting enzyme and angiotensin-II type 1 receptor gene polymorphisms on risk of myocardial infarction. Lancet 1994; 344: 910–913.

    Article  PubMed  CAS  Google Scholar 

  64. Batalla A, Alvarez R, Reguero JR, . Synergistic effect between apolipoprotein E and angiotensinogen gene polymorphisms in the risk for early myocardial infarction. Clin Chem 2000; 46: 1910–1915.

    CAS  Google Scholar 

  65. Hilgers KF, Langenfeld MRW, Schlaich M, Veelken R, Schmieder RE. 1166 A/C polymorphism of the angiotensin II type 1 receptor gene and the response to short-term infusion of angiotensin II. Circulation 1999; 100: 1394–1399.

    Google Scholar 

  66. Podlowski S, Wenzel K, Luther HP, . 131-adrenoceptor gene variations:a role in idiopathic dilated cardiomyopathy? J Mol Med 2000; 78: 87–93.

    Article  PubMed  CAS  Google Scholar 

  67. Tesson F, Charron P, Peuchmaurd M, . Characterization of unique genetic variant in the 01-adrenoceptor gene and evaluation of its role in idiopathic dilated cardiomyopathy. J Mol Cell Cardiol 1999; 31: 1025–1032.

    Article  PubMed  CAS  Google Scholar 

  68. Borjesson M, Magnusson Y, Hjalmarson A, Andersson B. A novel polymorphism in the gene coding for the betas-adrenergic receptor associated with survival in patients with heart failure. Eur Heart J 2000; 21: 1853–1858.

    Article  PubMed  CAS  Google Scholar 

  69. Brodde 0E, Rainer B, Tellkamp R, Radke J, Stefan D, Insel PA. Blunted cardiac responses to receptor activation in subjects with Thr164Ile 32-adrenoceptors. Circulation 2001; 103: 1048–1050.

    Google Scholar 

  70. Liggett SB, Wagoner LE, Craft LL, . The I1e164 02-adrenergic receptor polymorphism adversely affects the outcome of congestive heart failure. J Clin Invest 1998; 102: 1534–1539.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wu, A.H.B. (2003). Polymorphisms Related to Acute Coronary Syndromes and Heart Failure. In: Wu, A.H.B. (eds) Cardiac Markers. Pathology and Laboratory Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-385-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-385-9_28

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-319-0

  • Online ISBN: 978-1-59259-385-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics