Skip to main content

Signal Transduction Inhibitors

  • Chapter
Biologic Therapy of Leukemia

Part of the book series: Contemporary Hematology ((CH))

  • 79 Accesses

Abstract

The development of the first successful leukemia treatments owed much more to empiric observation than rational drug design in an era when the biology of leukemia was poorly understood. Although cytotoxic chemotherapeutic drugs have played and continue to play an essential role in cancer management, their relative lack of specificity, numerous toxicities, and frequency of resistance have limited this approach. Recent efforts have focused on identifying the biologic basis of leukemia, expecting that agents that more precisely target leukemia can be developed to maximize responses while minimizing toxicity. This approach requires the identification of appropriate targets, and the necessary tools to undertake this process have only recently become available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nowell PC, Hungerford DA. A minute chromosome in human chronic granulocytic leukemia. Science 1960; 132: 1497–1501.

    Google Scholar 

  2. Rowley JD. The role of chromosome translocations in leukemogenesis. Semin Hematol 1999; 36: 59–72.

    PubMed  CAS  Google Scholar 

  3. Tsujimoto Y, Finger LR, Yunis J, Nowell PC, Croce CM. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 1984; 226: 1097–1099.

    Article  PubMed  CAS  Google Scholar 

  4. Reed JC, Tsujimoto Y, Epstein SF, et al. Regulation of bc1–2 gene expression in lymphoid cell lines containing normal #18 or t(14;18) chromosomes. Oncogene Res 1989; 4: 271–282.

    PubMed  CAS  Google Scholar 

  5. Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC, Croce CM. Human c-myc one gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci U S A 1982; 79: 7824–7827.

    Article  PubMed  CAS  Google Scholar 

  6. Adams JM, Gerondakis S, Webb E, Corcoran LM, Cory S. Cellular myc oncogene is altered by chromosome translocation to an immunoglobulin locus in murine plasmacytomas and is rearranged similarly in human Burkitt lymphomas. Proc Natl Acad Sci U S A 1983; 80: 1982–1986.

    Article  PubMed  CAS  Google Scholar 

  7. Bosch F, Jares P, Campo E, et al. PRAD-1/cyclin D1 gene overexpression in chronic lymphoproliferative disorders: a highly specific marker of mantle cell lymphoma. Blood 1994; 84: 2726–2732.

    PubMed  CAS  Google Scholar 

  8. Guidez F, Ivins S, Zhu J, Soderstrom M, Waxman S, Zelent A. Reduced retinoic acid-sensitivities of nuclear receptor corepressor binding to PML- and PLZF-RARalpha underlie molecular patl’iogenesis and treatment of acute promyelocytic leukemia. Blood 1998; 91: 2634–2642.

    PubMed  CAS  Google Scholar 

  9. Collins SJ. Acute promyelocytic leukemia: relieving repression induces remission. Blood 1998; 91: 2631–2633.

    PubMed  CAS  Google Scholar 

  10. Lin RJ, Nagy L, Inoue S, Shao W, Miller WH Jr., Evans RM. Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 1998; 391: 811–814.

    Article  PubMed  CAS  Google Scholar 

  11. He LZ, Guidez F, Tribioli C, et al. Distinct interactions of PML-RARalpha and PLZF-RARalpha with co-repressors determine differential responses to RA in APL. Nat Genet 1998; 18: 126–135.

    Article  PubMed  CAS  Google Scholar 

  12. Yoshida H, Kitamura K, Tanaka K, et al. Accelerated degradation of PML-retinoic acid receptor alpha (PML-RARa) oncoprotein by all-trans-retinoic acid in acute promyelocytic leukemia: possible role of the proteasome pathway. Cancer Res 1996; 56: 2945–2948.

    PubMed  CAS  Google Scholar 

  13. Huang ME, Ye YC, Chen SR, et al. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 1988; 72: 567–572.

    PubMed  CAS  Google Scholar 

  14. Liu P, Tarle SA, Hajra A, et al. Fusion between transcription factor CBF beta/PEBP2 beta and a myosin heavy chain in acute myeloid leukemia. Science 1993; 261: 1041–1044.

    Article  PubMed  CAS  Google Scholar 

  15. Langabeer SE, Walker H, Rogers JR, et al. Incidence of AML1/ETO fusion transcripts in patients entered into the MRC AML trials. MRC Adult Leukaemia Working Party. Br J Haematol 1997; 99: 925–928.

    Article  PubMed  CAS  Google Scholar 

  16. Downing JR, Higuchi M, Lenny N, Yeoh AE. Alterations of the AML1 transcription factor in human leukemia. Semin Cell Dey Biol 2000; 11: 347–360.

    Article  CAS  Google Scholar 

  17. Wang J, Hoshino T, Redner RL, Kajigaya S, Liu JM. ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human NCoR/mSin3/HDAC 1 complex. Proc Natl Acad Sci USA 1998; 95: 10860–10865.

    Article  PubMed  CAS  Google Scholar 

  18. Lutterbach B, Hou Y, Durst KL, Hiebert SW. The inv(16) encodes an acute myeloid leukemia 1 transcriptional corepressor. Pmc Natl Acad Sci USA 1999; 96: 12822–12827.

    Article  CAS  Google Scholar 

  19. Langabeer SE, Walker H, Gale RE, et al. Frequency of CBF beta/MYH11 fusion transcripts in patients entered into the U.K. MRC AML trials. The MRC Adult Leukaemia Working Party. Br J Haematol 1997; 96: 736–739.

    Article  PubMed  CAS  Google Scholar 

  20. Guidez F, Petrie K, Ford AM, et al. Recruitment of the nuclear receptor corepressor N-CoR by the TEL moiety of the childhood leukemia-associated TEL-AML1 oncoprotein. Blood 2000; 96: 2557–2561.

    PubMed  CAS  Google Scholar 

  21. Rowley JD. Letter: a new consistent chromosomal abnormality in chronic myelogenous leukemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973; 243: 290–293.

    Article  PubMed  CAS  Google Scholar 

  22. Shtivelman E, Lifshitz B, Gale RP, Canaani E. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature 1985; 315: 550–554.

    Article  PubMed  CAS  Google Scholar 

  23. Lugo TG, Pendergast AM, Muller AJ, Witte ON. Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 1990; 247: 1079–1082.

    Article  PubMed  CAS  Google Scholar 

  24. Golub TR, Barker GF, Lovett M, Gilliland DG. Fusion of PDGF receptor beta to a novel etslike gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 1994; 77: 307–316.

    Article  PubMed  CAS  Google Scholar 

  25. Morris SW, Kirstein MN, Valentine MB, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 1994; 263: 1281–1284.

    Article  PubMed  CAS  Google Scholar 

  26. Nakao M, Yokota S, Iwai T, et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia 1996; 10: 1911–1918.

    PubMed  CAS  Google Scholar 

  27. Rombouts WJ, Blokland I, Lowenberg B, Ploemacher RE. Biological characteristics and prognosis of adult acute myeloid leukemia with internal tandem duplications in the Flt3 gene. Leukemia 2000; 14: 675–683.

    Article  PubMed  CAS  Google Scholar 

  28. Abu-Duhier FM, Goodeve AC, Wilson GA, et al. FLT3 internal tandem duplication mutations in adult acute myeloid leukaemia define a high-risk group. Br J Haematol 2000; 111: 190–195.

    Article  PubMed  CAS  Google Scholar 

  29. Meshinchi S, Woods WG, Stirewalt DL, et al. Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia. Blood 2001; 97: 89–94.

    Article  PubMed  CAS  Google Scholar 

  30. Yamamoto Y, Kiyoi H, Nakano Y, et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 2001; 97: 2434–2439.

    Article  PubMed  CAS  Google Scholar 

  31. Gari M, Goodeve A, Wilson G, et al. c-kit proto-oncogene exon 8 in-frame deletion plus insertion mutations in acute myeloid leukaemia. Br J Haematol 1999; 105: 894–900.

    Article  PubMed  CAS  Google Scholar 

  32. Beghini A, Peterlongo P, Ripamonti CB, et al. C-kit mutations in core binding factor leukemias. Blood 2000; 95: 726–727.

    PubMed  CAS  Google Scholar 

  33. Daley GQ, Van Etten RA, Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 1990; 247: 824–830.

    Article  PubMed  CAS  Google Scholar 

  34. Heisterkamp N, Jenster G, ten Hoeve J, Zovich D, Pattengale PK, Groffen J. Acute leukaemia in bcr/abl transgenic mice. Nature 1990; 344: 251–253.

    Article  PubMed  CAS  Google Scholar 

  35. Kuefer MU, Look AT, Pulford K, et al. Retrovirus-mediated gene transfer of NPM-ALK causes lymphoid malignancy in mice. Blood 1997; 90: 2901–2910.

    PubMed  CAS  Google Scholar 

  36. Mizuki M, Fenski R, Halfter H, et al. Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STATS pathways. Blood 2000; 96: 3907–3914.

    PubMed  CAS  Google Scholar 

  37. Merghoub T, Gurrieri C, Piazza F, Pandolfi PP. Modeling acute promyelocytic leukemia in the mouse: new insights in the pathogenesis of human leukemias. Blood Cells Mol Dis 2001; 27: 231–248.

    Article  PubMed  CAS  Google Scholar 

  38. Okuda T, Cai Z, Yang S, et al. Expression of a knocked-in AML1-ETO leukemia gene inhibits the establishment of normal definitive hematopoiesis and directly generates dysplastic hematopoietic progenitors. Blood 1998; 91: 3134–3143.

    PubMed  CAS  Google Scholar 

  39. Rhoades KL, Hetherington CJ, Harakawa N, et al. Analysis of the role of AML1-ETO in leukemogenesis, using an inducible transgenic mouse model. Blood 2000; 96: 2108–2115.

    PubMed  CAS  Google Scholar 

  40. Higuchi M, O’Brien D, Lenny N, Yang S, Cai Z, Downing JR. Expression of AML1-ETO immortalizes myeloid progenitors and cooperates with secondary mutations to induce granulocytic sarcoma/acute myeloid leukemia. Blood 2000; 96: 222a.

    Google Scholar 

  41. Castilla LH, Garrett L, Adya N, et al. The fusion gene Cb113-MYH11 blocks myeloid differentiation and predisposes mice to acute myelomonocytic leukaemia. Nat Genet 1999; 23: 144–146.

    Article  PubMed  CAS  Google Scholar 

  42. Adams JM, Harris AW, Pinkert CA, et al. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 1985; 318: 533–538.

    Article  PubMed  CAS  Google Scholar 

  43. Ramqvist T, Magnusson KP, Wang Y, Szekely L, Klein G, Wiman KG. Wild-type p53 induces apoptosis in a Burkitt lymphoma (BL) line that carries mutant p53. Oncogene 1993; 8: 1495–1500.

    PubMed  CAS  Google Scholar 

  44. Milner AE, Grand lu, Waters CM, Gregory CD. Apoptosis in Burkitt lymphoma cells is driven by c-myc. Oncogene 1993; 8: 3385–3391.

    PubMed  CAS  Google Scholar 

  45. Gavioli R, Frisan T, Vertuani S, Bornkamm GW, Masucci MG. c-myc overexpression activates alternative pathways for intracellular proteolysis in lymphoma cells. Nat Cell Biol 2001; 3: 283–288.

    Article  PubMed  CAS  Google Scholar 

  46. O’Dwyer ME, Druker BJ. Chronic myelogenous leukaemia-new therapeutic principles. J Intern Med 2001; 250: 3–9.

    Article  PubMed  Google Scholar 

  47. Silver RT, Woolf SH, Hehlmann R, et al. An evidence-based analysis of the effect of busulfan, hydroxyurea, interferon, and allogeneic bone marrow transplantation in treating the chronic phase of chronic myeloid leukemia: developed for the American Society of Hematology. Blood 1999; 94: 1517–1536.

    PubMed  CAS  Google Scholar 

  48. Chronic Myeloid Leukemia Trialists’ Collaborative Group. Interferon alfa versus chemotherapy for chronic myeloid leukemia: a meta-analysis of seven randomized trials. J Natl Cancer Inst 1997; 89: 1616–1620.

    Article  Google Scholar 

  49. Guilhot F, Chastang C, Michallet M, et al. Interferon alfa-2b combined with cytarabine versus interferon alone in chronic myelogenous leukemia. French Chronic Myeloid Leukemia Study Group. N Engl J Med 1997; 337: 223–229.

    Article  PubMed  CAS  Google Scholar 

  50. Deininger MW, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia. Blood 2000; 96: 3343–3356.

    PubMed  CAS  Google Scholar 

  51. Tybulewicz VL, Crawford CE, Jackson PK, Bronson RT, Mulligan RC. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell 1991; 65: 1153–1163.

    Article  PubMed  CAS  Google Scholar 

  52. Yaish P, Gazit A, Gilon C, Levitzki A. Blocking of EGF-dependent cell proliferation by EGF receptor kinase inhibitors. Science 1988; 242: 933–935.

    Article  PubMed  CAS  Google Scholar 

  53. Druker BJ, Lydon NB. Lessons learned from the development of an abl tyrosine kinase inhibitor for chronic myelogenous leukemia. J Clin Invest 2000; 105: 3–7.

    Article  PubMed  CAS  Google Scholar 

  54. Druker BJ, Tamura S, Buchdunger E, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 1996; 2: 561–566.

    Article  PubMed  CAS  Google Scholar 

  55. Deininger MW, Goldman JM, Lydon N, Melo JV. The tyrosine kinase inhibitor CGP57148B selectively inhibits the growth of BCR-ABL-positive cells. Blood 1997; 90: 3691–3698.

    PubMed  CAS  Google Scholar 

  56. Kasper B, Fruehauf S, Schiedlmeier B, Buchdunger E, Ho AD, Zeller WJ. Favorable therapeutic index of a p210(BCR-ABL)-specific tyrosine kinase inhibitor; activity on lineage-committed and primitive chronic myelogenous leukemia progenitors. Cancer Chemother Pharmacol 1999; 4451: 433–438.

    Article  Google Scholar 

  57. Carroll M, Ohno-Jones S, Tamura S, et al. CGP 57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR-ABL, TEL-ABL, and TEL-PDGFR fusion proteins. Blood 1997; 90: 4947–4952.

    PubMed  CAS  Google Scholar 

  58. Beran M, Cao X, Estrov Z, et al. Selective inhibition of cell proliferation and BCR-ABL phosphorylation in acute lymphoblastic leukemia cells expressing Mr 190,000 BCR-ABL protein by a tyrosine kinase inhibitor (CGP-57148). Clin Cancer Res 1998; 4: 1661–1672.

    PubMed  CAS  Google Scholar 

  59. le Coutre P, Mologni L, Cleris L, et al. In vivo eradication of human BCR/ABL-positive leukemia cells with an ABL kinase inhibitor. J Natl Cancer Inst 1999; 91: 163–168.

    Article  PubMed  Google Scholar 

  60. Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001; 344: 1031–1037.

    Article  PubMed  CAS  Google Scholar 

  61. Druker BJ, Sawyers CL, Kantarjian H, et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 2001; 344: 1038–1042.

    Article  PubMed  CAS  Google Scholar 

  62. Peng B, Hayes M, Druker BJ, et al. Clinical pharmacokinetics and pharmacodynamics of ST1571 in a phase I trial in chronic myelogenous leukemia (CML) patients [abstract 3468]. Proc Am Assoc Cancer Res 2000; 41.

    Google Scholar 

  63. Kantarjian H, Sawyers C, Hochhaus A, et al. Gleevec (imatinib mesylate) induced hematologic and cytogenetic responses confirmed and expanded in patient’s with chronic myeloid leukemia (CML)-a phase II study update. Blood 2001; 98: 845a.

    Google Scholar 

  64. Talpaz M, Silver RT, Druker B, et al. Gleevec (formerly ST1571): an active drug in patients with Ph+ chronic myeloid leukemia in accelerated phase-updated results of a phase II study. Blood 2001; 96: 845a.

    Google Scholar 

  65. Sawyers C, Hochhaus A, Feldman E, et al. Gleevec/Glivic (imatinib mesylate, 511571) in patients with chronic myeloid leukemia (CML) in myeloid blast crisis: updated results of a phase II study. Blood 2001; 98: 845a.

    Google Scholar 

  66. Karamlou K, Lucas L, Druker B. Identification of molecular endpoints as a guide for clinical decision making in ST1571-treated chronic myelogenous leukemia patients. Blood 2000; 96: 98a.

    Google Scholar 

  67. Mahon FX, Deininger MW, Schultheis B, et al. Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance. Blood 2000; 96: 1070–1079.

    PubMed  CAS  Google Scholar 

  68. le Coutre P, Tassi E, Varella-Garcia M, et al. Induction of resistance to the Abelson inhibitor ST1571 in human leukemic cells through gene amplification. Blood 2000; 95: 1758–1766.

    PubMed  Google Scholar 

  69. Weisberg E, Griffin JD. Mechanism of resistance to the ABL tyrosine kinase inhibitor ST1571 in BCR/ABL-transformed hematopoietic cell lines. Blood 2000; 95: 3498–3505.

    PubMed  CAS  Google Scholar 

  70. Gambacorti-Passerini C, Barni R, le Coutre P, et al. Role of alphal acid glycoprotein in the in vivo resistance of human BCR-ABL(+) leukemic cells to the abl inhibitor ST1571. J Natl Cancer Inst 2000; 92: 1641–1650.

    Article  PubMed  CAS  Google Scholar 

  71. Gorre ME, Mohammed M, Ellwood K, et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 2001; 293: 876–880.

    Article  PubMed  CAS  Google Scholar 

  72. Schindler T, Bornmann W, Pellicena P, Miller WT, Clarkson B, Kuriyan J. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 2000; 289: 1938–1942.

    Article  PubMed  CAS  Google Scholar 

  73. Hochhaus A, Kreil S, Corbin A, et al. Roots of clinical resistance to STI-571 cancer therapy. Science 2001; 293: 2163.

    Google Scholar 

  74. Barthe C, Cony-Makhoul P, Melo JV, Mahon JR. Roots of clinical resistance to S1I-571 cancer therapy. Science 2001; 293: 2163.

    Google Scholar 

  75. Thiesing JT, Ohno-Jones S, Kolibaba KS, Druker BJ. Efficacy of STI571, an abl tyrosine kinase inhibitor, in conjunction with other antileukemic agents against bcr-abl-positive cells. Blood 2000; 96: 3195–3199.

    PubMed  CAS  Google Scholar 

  76. Fang G, Kim CN, Perkins CL, et al. CGP57148B (STI-571) induces differentiation and apoptosis and sensitizes Bcr-Abl-positive human leukemia cells to apoptosis due to antileukemic drugs. Blood 2000; 96: 2246–2253.

    PubMed  CAS  Google Scholar 

  77. Hirota S, Isozaki K, Moriyama Y, et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 1998; 279: 577–580.

    Article  PubMed  CAS  Google Scholar 

  78. Lux ML, Rubin BP, Biase TL, et al. KIT extracellular and kinase domain mutations in gastrointestinal stromal tumors. Am J Pathol 2000; 156: 791–795.

    Article  PubMed  CAS  Google Scholar 

  79. Blanke CD, von Mehren M, Joensuu H, et al. Evaluation of the safety and efficacy of an oral molecularly-targeted therapy, ST1571, in patients with unresectable or metastatic gastrointestinal stromal tumors (GISTS) expressing c-KIT (CD117). ProcAm Soc Clin Oncol 2001;20:la.

    Google Scholar 

  80. Van Oosterom AT, Judson I, Verweij J, et al. STI571, an active drug in metastatic gastrointestinal stromal tumors (GIST), an EORTC Phase I study. ProcAm Soc Clin Oncol 2001;20:la.

    Google Scholar 

  81. Heinrich MC, Wait CL, Yee KWH, Griffith DJ. STI571 inhibits the kinase activity of wild type and juxtamembrane c-kit mutants but not the exon 17 D816V mutation associated with mastocytosis. Blood 2000; 96: 173b.

    Google Scholar 

  82. Apperley JF, Schultheis B, Chase A, et al. Chronic myeloproliferative diseases with t(5;12) and a PDGFRB fusion gene: complete cytogenetic remissions on STI571. Blood 2001; 98: 726a.

    Google Scholar 

  83. Kilic T, Alberta JA, Zdunek PR, et al. Intracranial inhibition of platelet-derived growth factor-mediated glioblastoma cell growth by an orally active kinase inhibitor of the 2-phenylaminopyrimidine class. Cancer Res 2000; 60: 5143–5150.

    PubMed  CAS  Google Scholar 

  84. Kolibaba KS, Druker BJ. Protein tyrosine kinases and cancer. Biochimica Biophysica Acta 1997; 1333: F217–248.

    CAS  Google Scholar 

  85. Ostman A, Heldin CH. Involvement of platelet-derived growth factor in disease: development of specific antagonists. Adv Cancer Res 2001; 80: 1–38.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

O’Dwyer, M.E., Druker, B.J. (2003). Signal Transduction Inhibitors. In: Kalaycio, M. (eds) Biologic Therapy of Leukemia. Contemporary Hematology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-383-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-383-5_9

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9777-9

  • Online ISBN: 978-1-59259-383-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics