Skip to main content

Thrombosis in Acute Coronary Syndromes and Coronary Interventions

  • Chapter
  • 110 Accesses

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

Acute coronary syndromes (ACS), including unstable angina, non-ST elevation myocardial infarction, and ST-elevation myocardial infarction, are the most commonly encountered clinical scenarios faced by clinical cardiologists today, accounting for over 650,000 hospitalizations annually (1). The pathophysiology of ACS is now well described, beginning with disruption of an atheromatous plaque, with subsequent platelet aggregation and thrombus formation. The resulting clinical syndromes vary and depend on multiple related factors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hillis WS. The continuing debate: conservative or interventional therapy for unstable coronary artery disease. Am J Cardiol 1997;80:51E–54E.

    Article  PubMed  CAS  Google Scholar 

  2. Herrick JB. Clinical features of sudden obstruction of the coronary arteries. JAMA 1912;59:2015–2020.

    Article  Google Scholar 

  3. Levine SA, Brown CL. Coronary thrombosis: its various clinical features. Medicine 1929;8:245–418.

    Article  Google Scholar 

  4. Parkinson J, Bedford DE. Cardial infarction and coronary thrombosis. Lancet 1928;14:195–239.

    Google Scholar 

  5. Sampson JJ, Eliaser M. The diagnosis of impending acute coronary artery occlusion. Am Heart J 1937; 13:676–686.

    Article  Google Scholar 

  6. Feil H. Preliminary pain in coronary thrombosis. Am J Med Sci 1937;193:42–48.

    Article  Google Scholar 

  7. Howell WH. Heparin, an anticoagulant. Am J Physiol 1922;63:434–435.

    Google Scholar 

  8. Best CH. Heparin and thrombosis. Harvey Lectures 1940;Nov: 66–90.

    Google Scholar 

  9. Wright IS. Experience with anticoagulants. Circulation 1959;19:110–113.

    Article  PubMed  CAS  Google Scholar 

  10. Cairns JA. The acute coronary ischemic syndromes—the central role of thrombosis. Can J Cardiol 1996; 12:901–907.

    PubMed  CAS  Google Scholar 

  11. Wright IS, Marple CD, Beck DF. Report of the committee for the evaluation of anticoagulants in the treatment of coronary thrombosis with myocardial infarction. Am Heart J 1948;36:801–815.

    Article  PubMed  CAS  Google Scholar 

  12. Craven LL. Acetylsalicylic acid, possible preventive of coronary thrombosis. Ann West Med Surg 1950; 4:95.

    PubMed  CAS  Google Scholar 

  13. Craven LL. Experiences with aspirin in the nonspecific prophylaxis of coronary thrombosis. Miss V Med J 1953;75:38–44.

    CAS  Google Scholar 

  14. Mueller RL, Scheidt S. History of drugs for thrombotic disease. Discovery, development, and directions for the future. Circulation 1994;89:432–449.

    Article  PubMed  CAS  Google Scholar 

  15. Sherry S. The origin of thrombolytic therapy. J Am Coll Cardiol 1989;14:1085–2092.

    Article  PubMed  CAS  Google Scholar 

  16. Gifford RH, Feinstein AR. A critique of methodology in studies of anticoagulant therapy for acute myocardial infarction. N Engl J Med 1969;280:351–357.

    Article  PubMed  CAS  Google Scholar 

  17. DeWood MA. Prevalence of total coronary occlusion during the early hours of transmural myocardial infarction. N Engl J Med 1980;303:897–901.

    Article  PubMed  CAS  Google Scholar 

  18. Davies MJ, Thomas A. Thrombosis and acute coronary artery lesions in sudden cardiac ischemic death. N Engl J Med 1984;310:1137–1140.

    Article  PubMed  CAS  Google Scholar 

  19. Moise A, Theroux P, Taeymans Y, et al. Unstable angina and progression of coronary atherosclerosis. N ELngl J Med 1983;309:685–689.

    Article  CAS  Google Scholar 

  20. Ambrose JA, Winters SL, Stern A, et al. Angiographic morphology and the pathogenesis of unstable angina pectoris. J Am Coll Cardiol 1985;5:609–616.

    Article  PubMed  CAS  Google Scholar 

  21. Falk E. Why do plaques rupture? Circulation 1992;86:111–30–111–42.

    PubMed  CAS  Google Scholar 

  22. Moncada S. Differential formation of prostacyclin by layers of the arterial wall: an explanation for the antithrombotic properties of vascular endothelium. Thromb Res 1977;11:323.

    Article  PubMed  CAS  Google Scholar 

  23. Braunwald E. Heart Disease, 5th ed. WB Saunders, Philadelphia, 1997, p. 1108.

    Google Scholar 

  24. Furchgott RF. Role of endothelium in responsiveness of vascular smooth muscle. Circ Res 1983;53:557.

    Article  PubMed  CAS  Google Scholar 

  25. Yanagisawa M. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988;332:411.

    Article  PubMed  CAS  Google Scholar 

  26. Jaffe EA, Hoyer LW, Nahcman RL. Synthesis of antihemophilic factor antigen by cultured human endothelial cells. J Clin Invest 1973;52:2757.

    Article  PubMed  CAS  Google Scholar 

  27. Steinberg D. Lipoproteins and atherosclerosis: a look back and a look ahead. Arteriosclerosis 1983;3:283.

    Article  PubMed  CAS  Google Scholar 

  28. Stary HC, Chandler AB, Dinsmore RE, et al. A definition of advanced types of atherosclerotic lesions and a histopathological classification of atherosclerosis: a report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 1995;92:1355–1374.

    Article  PubMed  CAS  Google Scholar 

  29. Fuster V, Badimon JJ, Chesebro JH, Fallon JT. Plaque rupture, thrombosis, and therapeutic implications. Haemostasis 1996;26(Suppl 4):269–284.

    PubMed  Google Scholar 

  30. Fuster V. Mechanisms leading to myocardial infarction: insights from studies of vascular biology. Lewis A. Conner Memorial Lecture. Circulation 1994;90:2126–2146.

    Article  PubMed  CAS  Google Scholar 

  31. Ambrose JA, Tannenbaum M, Alexpoulos D, et al. Angiographic progression of coronary artery disease and the development of myocardial infarction. J Am Coll Cardiol 1988;12:56–62.

    Article  PubMed  CAS  Google Scholar 

  32. Little WC, Constantinescu M, Applegate RJ, et al. Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease. Circulation 1982;78:1157–1166.

    Article  Google Scholar 

  33. Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation 1995;92:657–671.

    Article  PubMed  CAS  Google Scholar 

  34. Shah PK. Pathophysiology of plaque rupture and the concept of plaque stabilization. Cardiol Clin 1996; 14:17–29.

    Article  PubMed  CAS  Google Scholar 

  35. Shah PK. New insights into the pathogenesis and prevention of acute coronary syndromes. Am J Cardiol 1997;79:17–23.

    Article  PubMed  CAS  Google Scholar 

  36. Lundberg B. Chemical composition and physical state of lipid deposits in atherosclerosis. Atherosclerosis 1985;56:93–110.

    Article  PubMed  CAS  Google Scholar 

  37. Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation 1996;92:657–671.

    Article  Google Scholar 

  38. Davies MJ, Richardson PD, Woolf N, Katz DR, Mann J. Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Br Heart J 1993;69: 377–381.

    Article  PubMed  CAS  Google Scholar 

  39. Loree HM, Tobias BJ, Gibson LJ, Kamm RD, Small DM, Lee RT. Mechanical properties of midel atherosclerotic lesions lipid pools. Arterioscler Thromb 1994;14:230–234.

    Article  PubMed  CAS  Google Scholar 

  40. Richardson RD, Davies MJ, Born GVR. Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet 1989;2:941–944.

    Article  PubMed  CAS  Google Scholar 

  41. Crea F, Biasucci LM. Role of inflammation in the pathogenesis of unstable coronary artery disease. Am J Cardiol 1997;80:10E-16E.

    Article  PubMed  CAS  Google Scholar 

  42. Libby P. Molecular basis of the acute coronary syndromes. Circulation 1995;91:2844–2850.

    Article  PubMed  CAS  Google Scholar 

  43. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993;362:801–808.

    Article  PubMed  CAS  Google Scholar 

  44. Ross R. Atherosclerosis-an inflammatory disease. N Engl J Med 1999;340:115–126.

    Article  PubMed  CAS  Google Scholar 

  45. Blake GJ, Ridker PM. Novel clinical markers of vascular wall inflammation. Circ Res 2001;89:763–771.

    Article  PubMed  CAS  Google Scholar 

  46. Davies MJ, Gordon JL, Gearing AJ, et al. The expression of the adhesion molecules ICAM-1, VCAM-1, PECAM, and E-selectin in human atherosclerosis. J Pathol 1993;171:223–229.

    Article  PubMed  CAS  Google Scholar 

  47. Adams DH, Shaw S. Leucocyte-endothelial interactions and regulation of leucocyte migration. Lancet 1994;343:831–836.

    Article  PubMed  CAS  Google Scholar 

  48. Bevilacqua MP, Gimbrone MA, Jr. Inducible endothelial functions in inflammation and coagulation. Semin Thromb Hemost 1987;13:425–433.

    Article  PubMed  CAS  Google Scholar 

  49. Sakai A, Kume N, Nishi E, Tanoue K, Miyasaka M, Kita T. P-selectin and vascular cell adhesion molecule-1 are focally expressed in aortas of hypercholesterolemic rabbits before intimal accumulation of macrophages and T lymphocytes. Arterioscler Thromb Vasc Biol 1997;17:310–316.

    Article  PubMed  CAS  Google Scholar 

  50. Pasceri V, Willerson JT, Yeh ET. Direct proinflammatory effect of C-reactive protein on human endothelial cells. Circulation 2000;102:2165–2168.

    Article  PubMed  CAS  Google Scholar 

  51. Torzewski M, Rist C, Mortensen RF, et al. C-reactive protein in the arterial intima: role of C-reactive protein receptor-dependent monocyte recruitment in atherogenesis. Arterioscler Thromb Vasc Biol 2000; 20:2094–2099.

    Article  PubMed  CAS  Google Scholar 

  52. Blake GJ, Ridker PM. Novel clinical markers of vascular wall inflammation. Circ Res 2001;89:763–771.

    Article  PubMed  CAS  Google Scholar 

  53. Falk E, Fernandez-Ortiz A. Role of thrombosis in atherosclerosis and its complications. Am J Cardiol 1995;75:5B-11B.

    Article  CAS  Google Scholar 

  54. Fiore LD, Deykin D. Mechanisms of hemostasis and arterial thrombosis. Cardiol Clin 1994;12:399–409.

    PubMed  CAS  Google Scholar 

  55. Weiss HJ, Turitto VT, Baumgartner HR. Effect of shear rate on platelet interaction with subendothelium in citrated and native blood. J Lab Clin Med 1978;92:750–756.

    PubMed  CAS  Google Scholar 

  56. Weiss HJ, Turitto VT, Baumgartner HR. Effect of shear rate on platelet interaction with subendothelium in citrated and native blood. J Lab Clin Med 1978;92:750–756.

    PubMed  CAS  Google Scholar 

  57. Lefkovits J, Plow EF, Topol EJ. Platelet glycoprotein IIb/IIIA receptors in cardiovascular medicine. N Engl J Med 1995;23:1553–1559.

    Google Scholar 

  58. Kroll MH, Harris TS, Moake JL, Handin RI, Shafer AI. von Willebrand factor binding to platelet GpIB initiates signals for platelet activation. J Clin Invest 1991;88:1568–1573.

    Article  PubMed  CAS  Google Scholar 

  59. Pepper DS. Macromolecules released from platelet storage organelles. Thromb Haemost 1980;42: 1667–1670.

    PubMed  CAS  Google Scholar 

  60. Hynes RO, Integrins. A family of cell surface receptors. Cell 1987;48:549–554.

    Article  PubMed  CAS  Google Scholar 

  61. Lefkovits J, Plow EF, Topol EJ. Platelet glycoprotein IIB-IIA receptors in cardiovascular medicine. N Engl J Med 1995;332:1553–1559.

    Article  PubMed  CAS  Google Scholar 

  62. Ruggeri ZM, De Marco L, Gatti L, Bader R, Montgomery RR. Platelets have more than one binding site for von Willebrand factor. J Clin Invest 1983:72:1–12.

    Article  PubMed  CAS  Google Scholar 

  63. Phillips DR, Charo IF, Parise LV, Fitzgerald LA. The platelet membrane glycoprotein IIB-IIIA complex. Blood 1988;71:831–843.

    PubMed  CAS  Google Scholar 

  64. Topol EJ. Platelet glycoprotein IIB-IIIA receptor antagonists in coronary artery disease. Eur Heart J 1996; 17:9–18.

    PubMed  Google Scholar 

  65. Klocziwiak M, Timmons S, Hawiger J. Recognition site for the platelet receptor is present on the 15-residue carboxy terminal fragment of the gamma chain of human fibrinogen and is not involved in the fibrin polymerization reaction Thromb Res 1983;29:249–255.

    Article  Google Scholar 

  66. Weisel JW, Nagaswami C, Vilair G, Bennett JS. Examination of the platelet membrane glycoprotein IIB-IIIA complex its interaction with fibrinogen and other ligands by electron microscopy. J Biol Chem 1992; 267:16,637–16,643.

    CAS  Google Scholar 

  67. D’Souza SE, Ginsberg MH, Matsueda GR, Plow EF. A discrete sequence in a platelet integrin is involved in ligand recognition. Nature 1991;350:66–68.

    Article  PubMed  Google Scholar 

  68. Shattil SJ, Hoxie JA, Cunningham M. Changes in the platelet membrane glycoprotein IIB-IIIA complex during platelet activation. J Biol Chem 1985;260:11,107–11,111.

    CAS  Google Scholar 

  69. Wilcox JN, Smith KM, Schwartz SM, Gordon D. Localization of tissue factor in the normal vessel wall and in the atherosclerotic plaque. Proc Natl Acad Sci USA 1989;86:2839–2843.

    Article  PubMed  CAS  Google Scholar 

  70. Ofosu FA, Sie P, Modi GJ, et al. The inhibition of thrombin-dependent positive feedback reactions is critical to the expression of the anticoagulant effect of heparin. Biochem J 1987;243:579.

    PubMed  CAS  Google Scholar 

  71. Lindahl AK, Wildgoose P, Lumsden AS, et al. Active site-inhibited factor Vila blocks tissue factor activity and prevents arterial thrombus formation in baboons (Abstr.) Circulation 1993;88:2240.

    Google Scholar 

  72. Pieters J, Lindhout T. The limited importance of factor Xa inhibition of the anticoagulant property of heparin in thromboplastin activated plasma. Blood 1988;72:2048–2054.

    PubMed  CAS  Google Scholar 

  73. Rosenberg RD, Damus PS. The purification and mechanism of action of human antithrombin-heparin cofactor. J Biol Chem 1973;248:579–583.

    Google Scholar 

  74. Ruschitzka FT, Noll G, Luscher TF. The endothelium in coronary artery disease [Review]. Cardiology 1997;88:3.

    Article  PubMed  CAS  Google Scholar 

  75. Kristensen SD, Ravn HB, Flak E. Insights into the pathophysiology of unstable coronary artery disease. Am J Cardiol 1997;80:79.

    Article  Google Scholar 

  76. Alexander JH, Harrington RA. Antiplatelet and antithrombin therapies in the acute coronary syndromes. Curr Opin Cardiol 1997;12:427–434.

    PubMed  CAS  Google Scholar 

  77. Rock G, Wells P. New concepts in coagulation. Crit Rev Clin Lab Sci 1997;34:475–481.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tolleson, T.R., Harrington, R.A. (2003). Thrombosis in Acute Coronary Syndromes and Coronary Interventions. In: Lincoff, A.M. (eds) Platelet Glycoprotein IIb/IIIa Inhibitors in Cardiovascular Disease. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-376-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-376-7_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-408-1

  • Online ISBN: 978-1-59259-376-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics