Skip to main content

Part of the book series: Contemporary Endocrinology ((COE))

  • 120 Accesses

Abstract

Currently, available female methods of contraception include the combined estrogen-progesterone oral contraceptive pill, progestin-only pills, 3-monthly depomedroxyprogesterone acetate (DMPA) injections, levonorgestrel (LNG)-containing implants (Norplant), copper intrauterine devices, vaginal rings, female condoms, tubal ligation, menses inducers (mifepristone [RU486] and misoprostol [prostaglandin E1]), and emergency contraception using estrogens. Other less effective methods include natural family planning, lactation amenorrhea, and vaginal spermicides. Recent pharmaceutical developments and introductions of new or improved methods include ultra-lowdose estrogen-progestin combination pills, emergency contraception with oral tablets containing LNG or mifepristone alone, combination of estradiol cypionate and DMPA monthly injections, low-dose LNG-releasing intrauterine devices, transdermal skin patches delivering low-dose estrogens plus progestins, single implant systems delivering etonorgestrel, and nesterone (a progestin) vaginal rings. These new methods will provide an even wider choice of contraceptive methods for women. Other female methods under preclinical or early clinical development include the following: immunocontraception using antisperm antibodies, anti-zona-pellucida antibodies, or anti-hCG vaccine; new injectable progesterone esters; and new vaginal spermicides with antiviral activities that will provide dual protection (against pregnancy and sexually transmitted infections). In contrast, the currently male-controlled methods are limited to coitus interruptus, male condoms, and vasectomy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Trussel J, Kost K. Contraceptive failure in the United States: a critical review of literature. Studies Fam Plan 1987; 18: 237–283.

    Article  Google Scholar 

  2. Liu X, Li S. Vasal sterilization in China. Contraception 1993; 48: 255–265.

    Article  CAS  PubMed  Google Scholar 

  3. National Coordinating Group on Male Antifertility Agents. Gossypol: a new antifertility agent for males. Chinese Med J 1978; 4: 417–428.

    Google Scholar 

  4. Meng GD, Zhu JC, Chen ZW, et al. Recovery to normal sperm production following cessation of gossypol treatment: A two center study in China. Int J Androl 1988; 11: 1–11.

    Article  CAS  PubMed  Google Scholar 

  5. Cooper TG. Epididymal approaches to male contraception. In: Robaire B, Chemes H, Morales CR, eds. Andrology in the 21st Century. Medimond, Montreal, 2001, pp. 499–509.

    Google Scholar 

  6. Qian SZ. Tripterygium Wilfordii: a Chinese herb effective in male fertility regulation. Contraception 1987; 36: 247–263.

    Article  Google Scholar 

  7. Qian SZ, Xu Y, Zhang JW. Recent progress in research on tripterygium: a male antifertility plant. Contraception 1995; 51: 121–129.

    Article  Google Scholar 

  8. Lue YH, Sinha-Hikim AP, et al. Triptolide: a potential male contraceptive. J Androl 1998; 19: 479–486.

    CAS  PubMed  Google Scholar 

  9. Huynh PN, Sinha Hikim AP, Wang C, et al. Long-term effects of triptolide on spermatogenesis, epididymal sperm function and fertility in male rats. J Androl 2000; 21: 689–699.

    CAS  PubMed  Google Scholar 

  10. Cummings DE, Bremner WJ. Prospects for new hormonal male contraceptives. Endocrinol and Metabol Clin N Am 1994: 22: 893–922.

    Google Scholar 

  11. Wang C, Swerdloff RS, Waites GMH. Male contraception: 1993 and beyond. In: Van Look PFA, Perez-Palacio, eds. Contraceptive Research and Development 1984 to 1994, Oxford University Press, Delhi, 1994, pp. 121–134.

    Google Scholar 

  12. Wang C, Swerdloff RSS. Male contraception in the 21st century. In: C Wang, ed, Male Reproductive Function. Kluwer Academic Publishers, Norwell, MA, 1999, pp. 303–319.

    Chapter  Google Scholar 

  13. Nieschlag E, Behre, HM. Testosterone and male contraception. In: Nieschlag E, Behre HM, eds. Testosterone Action, Deficiency and Substitution. Springer-Verlag, Berlin, 1998, pp. 513–528.

    Chapter  Google Scholar 

  14. Clermont Y. The cycle of seminiferous epithelium in man. Am J Anat 1963; 112: 35–51.

    Article  CAS  PubMed  Google Scholar 

  15. Matsumoto AM, Paulsen CA, Bremner WJ. Stimulation of sperm production by human luteinizing hormone in gonadotropin-suppressed normal men. J Clin Endocrinol Metab 1984; 59: 882–885.

    Article  CAS  PubMed  Google Scholar 

  16. Matsumoto AM, Karpas AE, Bremner WJ. Chronic human chorionic gonadotropin administration in normal men: evidence that follicle stimulating hormone is necessary for maintenance of quantitatively normal spermatogenesis in man. J Clin Endocrinol Metab 1986; 62: 1184–1192.

    Article  CAS  PubMed  Google Scholar 

  17. Kumar TR, Wang Y, Lu N, Matzuk MM. Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nat Genet 1997; 15: 201–204.

    Article  CAS  PubMed  Google Scholar 

  18. Tapanainen JA, Ailtomaki K, Min J, et al. Men homozygous for an inactivating mutation of the follicle-stimulating hormone (FSH) receptor gene present variable suppression of spermatogenesis and fertility. Nat Genet 1997; 15: 205, 206.

    Google Scholar 

  19. Cunningham GR, Silverman VE, Kohler DO. Clinical evaluation of testosterone enanthate for induction and maintenance of reversible azoospermia in man. In: Patanelli DJ, ed. Hormonal Control of Male Fertility. US DHEW, Bethesda, MD, 1978, pp. 71–92.

    Google Scholar 

  20. Mauss J, Borsch G, Bormacher K, et al. Seminal fluid analyses, serum FSH, LH and testosterone in seven males before, during and after 250 mg testosterone enanthate weekly over 21 weeks. In: Patanelli DJ, ed. Hormonal Control of Male Fertility. US DHEW, Bethesda, MD, 1978, pp. 93–122.

    Google Scholar 

  21. Paulsen CA, Bremner WJ, Leonard JM. Male Contraception: Clinical Trials. In: Mishell DR Jr, ed. Raven Press, New York, 1982, pp. 157–170.

    Google Scholar 

  22. Swerdloff RS, Palacios A, McClure RD, et al. Clinical evaluation of testosterone enanthate in the reversible suppression of spermatogenesis in the human male: efficacy, mechanism of action, and adverse effects. In: Patanelli DJ, ed. Hormonal Control of Male Fertility. US DHEW, Bethesda, MD, 1978, pp. 41–70.

    Google Scholar 

  23. Patanelli DJ, ed. Hormonal Control of Male Fertility. US DHEW, Bethesda, MD, 1978.

    Google Scholar 

  24. World Health Organization Task Force on Methods for the Regulation of Male Fertility. Contraceptive efficacy of testosterone-induced azoospermia in normal men. Lancet 1990; 336: 955–959.

    Google Scholar 

  25. Johnson L, Barnard JJ, Rodriguez L, et al. Ethnic difference in testicular structure and spermatogenic potential may predispose testes of Asian men to a heightened sensitivity to steroidal contraceptives. J Androl 1998; 19: 348–357.

    CAS  PubMed  Google Scholar 

  26. Sinha-Hikim A, Wang C, Lue YH, et al. Spontaneous germ cell apoptosis in human: evidence for ethnic differences in the susceptability of germ cells to programmed cell death. J Clin Endocrinol Metab 1998; 83: 152–156.

    Article  Google Scholar 

  27. Wang C, Berman NG, Veldhuis JD, Der T, McDonald V, Steiner B, Swerdloff RS. Graded testosterone infusions distinguish gonadotropin negative feedback responsiveness in Asian and White men-a Clinical Research Center Study. J Clin Endocrinol Metab 1998; 83: 870–876.

    Article  CAS  PubMed  Google Scholar 

  28. World Health Organization Task Force on Methods for the Regulation of Male Fertility. Contraceptive efficacy of testosterone-induced azoospermia and oligozoospermia in normal men. Fertil Steril 1996; 65: 821–829.

    Google Scholar 

  29. Handelsman DJ, Conway AJ, Boylan LM. Suppression of human spermatogenesis by testosterone implants in man. J Clin Endocrinol Metab 1992; 75: 1326–1332.

    Article  CAS  PubMed  Google Scholar 

  30. Bhasin S, Swerdloff RS, Steiner B, et al. A biodegradable testosterone microcapsule formulation provides uniform eugonadal levels of testosterone for 10 to 11 weeks in hypogonadal men. J Clin Endocrinol Metab 1992; 74: 75–83.

    Article  CAS  PubMed  Google Scholar 

  31. Behre HM, Nieschlag E. Testosterone buciclate (20 Act-1) in hypogonadal men: pharmacokinetics and pharmacodynamics of the new long-acting androgen ester. J Clin Endocrinol Metab 1992; 75: 12.

    Google Scholar 

  32. Behre HM, Baus S, Kliesch S, et al. Potential of testosterone buciclate for male contraception: endocrine differences betwen responders and non-responders. J Clin Endocrinol Metab 1995; 80: 2394–2403.

    Article  CAS  PubMed  Google Scholar 

  33. Buchter D, von Eckardstein S, von Eckardstein A, et al. Clinical trial of transdermal testosterone and oral levonorgestrel for male contraception. J Clin Endocrinol Metab 1999; 84: 1244–1249.

    Article  CAS  PubMed  Google Scholar 

  34. Gaw Gonzalo IT, Swerdloff RS, Nelson A, et al. Levonorgestrel implants (Norplant II) for male contraception clinical trials combination with transdermal and injectable testosterone. J Clin Endocrinol Metab 2002; 87: 3562–3572.

    Article  Google Scholar 

  35. Swerdloff RS, Wang C, Cunningham G, et al., and the Testosterone Gel Study Group. Long term pharmacokinetics of transdermal testosterone gel in hypogonadal men. J Clin Endocrinol Metab 2000; 85: 4500–4510.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang GY, Gu YO, Wang XH, et al. Pharmacokinetic study of injectable testosterone undecanoate in hypogonadal men. J Androl 1998; 19: 761–768

    CAS  PubMed  Google Scholar 

  37. Behre HM, Abshagen K, Oettel M, et al. Intramuscular injection of testosterone undecanoate for the treatment of male hypogonadism: phase I studies. Euro J Endocrinol 1999; 140: 414–419.

    Article  CAS  Google Scholar 

  38. Nieschlag E, Buchter D, von Eckardstein S, et al. Repeated intramuscular injections of testosterone undecanoate for substitution therapy of hypogonadal men. Clin Endocrinol 1999; 51: 757–763.

    Article  CAS  Google Scholar 

  39. Zhang G-Y, Gu Y-Q, Wang X-H, et al. A clinical trial of injectable testosterone undecanoate as a potential male contraceptive in normal Chinese men. J Clin Endocrinol Metab 1999; 84: 3642–3647.

    Article  CAS  PubMed  Google Scholar 

  40. Kamischke A, Ploger D, Venherm S, et al. Intramuscular testosterone undecanoate with or without oral levonorgestrel: a randomized placebo-controlled feasibility study for male contraception. Clin Endocrinol 2000; 53: 43–52.

    Article  CAS  Google Scholar 

  41. Wu FCW, Farley TMM, Peregoudov A, et al., World Health Organization Task Force on Methods for the Regulation of Male Fertility. Effects of testosterone enanthate in normal men: experience from a multicenter contraceptive efficacy study. Fertil Steril 1996; 65: 626–636.

    CAS  PubMed  Google Scholar 

  42. Freidl KE, Jones RE, Hannan CJ, et al. The administration of pharmacological doses of testosterone or 19-nortestosterone to normal men is not associated with increased insulin secretion or impaired glucose tolerance. J Clin Endocrinol Metab 1989; 68: 971.

    Article  Google Scholar 

  43. Bagatell CJ, Herman JR, Matsumoto AM, et al. Metabolic and behavioral effects of high-dose, exogenous testosterone in healthy men. J Clin Endocrinol Metab 1994; 79: 561–567.

    Article  CAS  PubMed  Google Scholar 

  44. Barrett-Connor E. Lower endogenous androgen levels and dyslipidemia in men with non-insulin dependent diabetes mellitus. Ann Int Med 1992; 117: 807–811.

    CAS  PubMed  Google Scholar 

  45. Simon D, Charles M-A, Nahoul K, et al. Association between plasma total testosterone and cardiovascular risk factors in healthy adult men: the Telecom Study. J Clin Endocrinol Metab 1997; 82: 682–685.

    Article  CAS  PubMed  Google Scholar 

  46. Meikle AW, Smith JA. Epidemiology of prostate cancer. Urol Clin N Am 1990; 17: 709–718.

    CAS  Google Scholar 

  47. McConnell JD (1991). Epidemiology, etiology, pathophysiology, and diagnosis of benign prostatic hyperplasia. In: Walsh K, Retik AB,Vaughan ED,Wein AJ, eds. Campbell’ s Urology, 7th ed. Saunders, Philadelphia, 1991, pp. 1429–1452.

    Google Scholar 

  48. Behre HM, Bohmeyer J, Nieschlag E. Prostate volume in testosterone-treated and untreated hypogonadal men in comparison to age-matched normal controls. Clin Endo 1994; 40: 341–349.

    Article  CAS  Google Scholar 

  49. Meikle AW, Arver S, Dobs AS, et al. Prostate size in hypogonadal men treated with a nonscrotal permeation-enhanced testosterone transdermal system. Urology 1997; 49: 191–196.

    Article  CAS  PubMed  Google Scholar 

  50. McConnell JD. Physiologic basis of endocrine therapy for prostatic cancer. Urol Clin N Am 1991; 19: 1–13.

    Google Scholar 

  51. Pienta KJ. Etiology, epidemiology and prevention of carcinoma of the prostate. In: Walsh PC, Retik AB,Vaughan ED, Wein M, ed. Campbell’s Urology, 7th ed. Saunders, Philadelphia, 1997, pp. 2489–2496.

    Google Scholar 

  52. Kumar N, Didolkar AK, Monder C, et al. The biological activity of 7 a-methyl-19-nortestosterone is not amplified in male reproductive tract as is that of testosterone. Endocrinology 1992; 130: 3677–3683.

    Article  CAS  PubMed  Google Scholar 

  53. Cummings DE, Kumar N, Bandin CW, et al. Prostate-sparing effects in primates of the potent androgen 7a-methyl-19nortestosterone: a potential alternative to testosterone for androgen replacement and male contraception. J Clin Endocrinol Metab 1998; 83: 4212–4219.

    Article  CAS  PubMed  Google Scholar 

  54. Anderson RA, Martin CW, Kung AWC, et al. 7a-Methyl-19-Nortestosterone maintains sexual behavior and mood in hypogonadal men. J Clin Endocrinol Metab 1999; 84: 3556–3562.

    Article  CAS  PubMed  Google Scholar 

  55. Noe G, Suvisaari J, Martin C, et al. Gonadotrophin and testosterone suppression by 7a-methyl-19nortestosterone acetate administered by subdermal implant to healthy men. Hum Reprod 1999; 14: 2200–2206.

    Article  CAS  PubMed  Google Scholar 

  56. Schearer SB, Alvarez-Sanchez F, Anselmo J, et al. Hormonal contraception for men. Int J Androl 1978; 2: 680–712.

    Article  Google Scholar 

  57. Knuth UA, Nieschlag E. Endocrine approaches to male fertility control. Clin Endocrinol Metab 1987; 1: 113–131.

    CAS  Google Scholar 

  58. World Health Organization Task Force on Methods for the Regulation of Male Fertility. Comparison of two androgens plus depo-medroxyprogesterone acetate for suppression to azoospermia in Indonesian men. Fertil Steril 1993; 60: 1062–1068.

    Google Scholar 

  59. Handelsman DJ, Conway AJ, Howe CJ, et al. Establishing the minimum effective dose and additive effects of depot progestin in suppression of human spermatogenesis by a testosterone depot. J Clin Endocrinol Metab 1996; 81: 4113–4121.

    Article  CAS  PubMed  Google Scholar 

  60. Kamischke A, Diebacker J, Nieschlag E. Potential of norethisterone enanthate for male contraception: pharmacokinetics and suppression of pituitary and gonadal function. Clin Endocrinol 2000; 53: 351–358.

    Article  CAS  Google Scholar 

  61. Kamischke A, Venherm S, Ploger D, et al. Intramuscular testosterone undecanoate and norethisterone enanthate in a clinical trial for male contraception. J Clin Endocrinol Metab 2000; 86: 303–309.

    Article  Google Scholar 

  62. Bebb RA, Anawalt BD, Christiansen RB, et al. Combined administration of levonorgestrel and testosterone induces more rapid and effective suppression of spermatogenesis than testosterone alone: a promising male contraceptive approach. J Clin Endocrinol Metab 1996; 81: 757–762.

    Article  CAS  PubMed  Google Scholar 

  63. Anawalt BD, Bebb RA, Bremner WJ, et al. A lower dosage levonorgestrel and testosterone combinaiton effectively suppresses spermatogenesis and circulating gonadotropin levels with fewer metabolic effects than higher dosage combinations. J Androl 1999; 20: 407–414.

    CAS  PubMed  Google Scholar 

  64. Wu FCW, Balasubramanian R, Mulders TMT, et al. Oral progestogen combined with testosterone as a potential male contraceptive: additive effects between desogestrel and testosterone enanthate in suppression of spermatogenesis, pituitary-testicular axis, and lipid metabolism. J Clin Endocrinol Metab 1999; 84: 112–122.

    Google Scholar 

  65. Anawalt BD, Herbst KL, Matsumoto AM, et al. Desogestrel plus testosterone effectively suppresses spermatogenesis but also causes modest weight gain and high-density lipoprotein suppression. Fertil Steril 2000; 74: 707–714.

    Article  CAS  PubMed  Google Scholar 

  66. Martin CW, Riley SC, Everington D, et al. Dose-finding study of oral desogestrel with testosterone pellets for suppression of the pituitary-testicular axis in normal men. Human Reprod 2000; 15: 1515–1524.

    Article  CAS  Google Scholar 

  67. Wang C, Yeung KC. Use of low-dosage cyprosterone acetate as a male contraceptive. Contraception 1980; 21: 245–272.

    Article  CAS  PubMed  Google Scholar 

  68. Roy S. Experience in the development of hormonal contraceptive for the male. In: Asch RD, ed. Recent Advances in Human Reproduction.Fondazione per gli Studi Sulla Riproduzione Umana, Rome, 1985, pp. 95–104.

    Google Scholar 

  69. Meriggiola MC, Bremner WJ, Paulsen CA, et al. A combined regimen of cyproterone acetate and testosterone enanthate as a potentially highly effective male contraceptive. J Clin Endocrinol Metab 1996; 81: 3018–3023.

    Article  CAS  PubMed  Google Scholar 

  70. Meriggiola MC, Bremner WJ, Costantino A, et al. An oral regimen of cyproterone acetate and testosterone undecanoate for spermatogenic suppression in men. Fertil Steril 1997; 68: 844–850.

    Article  CAS  PubMed  Google Scholar 

  71. Merrigiola MC, Bremner WJ, Costantino A, et al. Low dose cyprotereone acetate and testosterone enmanthate for contraception in men. Hum Reprod 1998; 13: 1225–1229.

    Article  Google Scholar 

  72. Ewing L. Effects of testosterone and estradiol, silastic implants, on spermatogenesis in rats and monkeys. In: Patanelli DJ, ed. Hormonal Control of Male Fertility. US DHEW, Bethesda, MD, 1978, pp. 173–194.

    Google Scholar 

  73. Handelsman DJ, Wishart S, Conway AJ. Oestradiol enhances testosterone-induced suppression of human spermatogenesis. Hum Reprod 2000; 15: 672–679.

    Article  CAS  PubMed  Google Scholar 

  74. Bhasin S, Heber D, Steiner BS, et al. Hormonal effects of gonadotropin-releasing hormone (GnRH) agonist and androgen. J Clin Endocrinol Metab 1985; 60: 998–1003.

    Article  CAS  PubMed  Google Scholar 

  75. Bhasin S, Steiner B, Swerdloff R. Does constant infusion of gonadotropin-releasing hormone agonist lead to greater suppression of gonadal function in man thanits intermittent administration? Fertil Steril 1985; 44: 96–101.

    CAS  PubMed  Google Scholar 

  76. Pavlou SN, Interlandi JW, Wakefield G, et al. Heterogeneity of sperm density profiles following 16-week therapy with continuous infusion of high-dose LHRH analog plus testosterone. J Androl 1986; 7: 228–233.

    CAS  PubMed  Google Scholar 

  77. Bouchard P, Garcia E. Influence of testosterone substitution on sperm suppression by LHRH agonists. Horm Res 1987; 28: 175–180.

    Article  CAS  PubMed  Google Scholar 

  78. Behre HM, Nashan D, Hubert W, et al. Depot gonadotropin-releasing hormone agonist blunts the androgen-induced suppression of spermatogenesis in a clinical trial of male contraception. J Clin Endocrinol Metab 1992; 74: 84–90.

    Article  CAS  PubMed  Google Scholar 

  79. Heber D, Swerdloff RS. Male contraception: synergism of gonadotropin-releasing hormone analog and testosterone in suppressing gonadotropin. Science 1980; 209: 936–938.

    Article  CAS  PubMed  Google Scholar 

  80. Bhasin S, Heber D, Steiner B, et al. Hormonal effects of GnRH agonist in the human male: II. Testosterone enhances gonadotrophin suppression induced by GnRH agonist. Clin Endocrinol 1984; 20: 119–128.

    Article  CAS  Google Scholar 

  81. Pavlou SN, Wakefield GB, Island DP, et al. Suppression of pituitary-gonadal function by a potent new luteinizing hormone-releasing hormone antagonist in normal men. J Clin Endocrinol Metab 1987; 64: 931–936.

    Article  CAS  PubMed  Google Scholar 

  82. Tom L, Bhasin S, Salameh W, et al. Induction of azoospermia in normal men with combined Nal-Glu gonadotropin-releasing hormone antagonist and testosterone enanthate. J Clin Endocrinol Metab 1992; 75: 476–483.

    Article  CAS  PubMed  Google Scholar 

  83. Bagatell CJ, Matsumoto AM, Christensen RB, et al. Comparison of a gonadotropin releasing-hormone antagonist plus testosterone (T) versus T alone as potential male contraceptive regimens. J Clin Endocrinol Metab 1993; 77: 427–432.

    Article  CAS  PubMed  Google Scholar 

  84. Behre HM, Klein B, Steinmeyer E, et al. Effective suppression of luteinizing hormone and testosterone by single doses of the new gonadotropin-releasing hormone antagonist cetrorelix (SB-75) in normal men. J Clin Endocrinol Metab 1992; 75: 393–398.

    Article  CAS  PubMed  Google Scholar 

  85. Behre HM, Kliesch S, Puhse G, et al. High loading and low maintenance doses of a gonadotropinreleasing antagonist effectively suppress serum luteinizing hormone, follicle-stimulating hormone, and testosterone in normal men. J Clin Endocrinol Metab 1997; 82: 1403–1408.

    Article  CAS  PubMed  Google Scholar 

  86. Swerdloff RS, Bagatell CJ, Wang C, et al. Suppression of spermatogenesis in man induced by Nal-Glu gonadotropin releasing hormone antagonist and testosterone enanthate is maintained by testosterone enanthate alone. J Clin Endocrinol Metab 1998; 83: 749–2757.

    Article  Google Scholar 

  87. Behre HM, Kliesch S, Lemcke B, et al. Suppression of spermatogenesis to azoospermia by combined administration of GnRH antagonist and 19-nortestosterone cannot be maintained by this nonaromatizable androgen alone. Hum Reprod 2001; 16: 2570–2577.

    Article  CAS  PubMed  Google Scholar 

  88. Murty GSRC, Rani CSS, Moudgal NR, et al. Effect of passive immunization with specific antiserum to FSH on the spermatogenic process and fertility of male bonnet monkeys (macaca radiata). J Reprod Fertil 1979; 26: 147–154.

    Google Scholar 

  89. Nieschlag E. Reasons for abandoning immunization against FSH as an approach to fertility regulation. In Zatuchini GI, Goldsmith A, Spieler JM, Sciana JJ, eds. Male Contraception: Advances and Future Prospects. Harper & Row, Philadelphia, 1985, pp. 395–399.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wang, C., Swerdloff, R.S. (2003). Hormonal Male Contraception. In: Meikle, A.W. (eds) Endocrine Replacement Therapy in Clinical Practice. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-375-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-375-0_23

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-416-6

  • Online ISBN: 978-1-59259-375-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics