Skip to main content

Part of the book series: Contemporary Endocrinology ((COE))

  • 136 Accesses

Abstract

Aldosterone, the most important mineralocorticoid in humans, is produced in the zona glomerulosa of the adrenal cortex. It acts on the principal cells of the distal convoluted tubule of the kidney, intestine, and salivary gland to stimulate sodium absorption and potassium excretion. The adrenocortical steroidogenic cells of the zona glomerulosa are unique in that they express aldosterone synthase (18-hydroxylase) activity, which converts corticosterone to aldosterone. On the other hand, these cells lack 17α-hydroxylase activity, which is present in the cortisol-producing zona fasciculata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tan SY, Burton M. Hyporeninemic hypoaldosteronism. An overlooked cause of hyperkalemia. Arch Intern Med 1981; 141: 30–33.

    Article  PubMed  CAS  Google Scholar 

  2. Schambelan M, Stockigt JR, Biglieri EG. Isolated hypoaldosteronism in adults: a renin-deficiency syndrome. N Engl J Med 1972; 287: 573.

    Article  PubMed  CAS  Google Scholar 

  3. DeFronzo RA, Bia M, Smith D. Clinical disorders of hyperkalemia. Annu Rev Med 1982; 33: 521–554.

    Article  PubMed  CAS  Google Scholar 

  4. Gordon RD. Syndrome of hypertension and hyperkalemia with normal glomerular filtration rate. Hypertension 1986; 8: 93.

    Article  PubMed  CAS  Google Scholar 

  5. Mansfield TA, Simon DB, Farfel Z, Bia M, Tucci JR, Lebel M, et al. Multilocus linkage of familial hyperkalaemia and hypertension, pseudohypoaldosteronism type II, to chromosomes 1q31–42 and 7p11-q21. Nat Genet 1997; 16 (2): 202–205.

    Article  PubMed  CAS  Google Scholar 

  6. Schambelan M, et al. Mineralocorticoid-resistant renal hyperkalemia without salt-wasting (type II pseudohypoaldosteronism): Role of increased renal chloride reabsorption. Kidney Int 1981; 19: 716.

    Article  PubMed  CAS  Google Scholar 

  7. Oelkers W. Adrenal insufficiency. N Engl J Med 1996; 335: 1206–1212.

    Article  PubMed  CAS  Google Scholar 

  8. Guy RJ, Turberg Y, Davidson RN, et al. Mineralocorticoid deficiency in HIV infection. Br Med J 1989; 298: 496–497.

    Article  CAS  Google Scholar 

  9. Dahlberg PJ, Goellner MH, Pehling GB. Adrenal insufficiency secondary to adrenal hemorrhage. Two case reports and a review of cases confirmed by computed tomography. Arch Intern Med 1990; 150: 905–909.

    Article  PubMed  CAS  Google Scholar 

  10. Agmon D, Green J, Platau E, et al. Isolated adrenal mineralocorticoid deficiency due to amyloidosis associated with familial Mediterranean fever. Am J Med Sci 1984; 288: 40–43.

    Article  PubMed  CAS  Google Scholar 

  11. Zipser RD, Davenport MW, Martin KL, et al. Hyperreninemic hypoaldosteronism in the critically ill: a new entity. J Clin Endocrinol Metab 1981; 53: 867–873.

    Article  PubMed  CAS  Google Scholar 

  12. Biglieri EG, Schambelan M, Slaton Jr. PE. Effect of adrenocorticotropin on desoxycorticosterone, corticosterone and aldosterone excretion. J Clin Endocrinol Metab 1969; 29: 1091.

    Article  Google Scholar 

  13. Kraiem Z, Rosenthal T, Rotzak R, et al. Angiotensin II and K challenge followed by prolonged ACTH administration in normal subjects. ACTA Endocrinol (Copenh) 1979; 91: 657.

    CAS  Google Scholar 

  14. Slater JDH, Tuffley RE, Williams ES, et al. Control of aldosterone secretion during acclimatization to hypoxia in man. Clin Sci 1969; 37: 237.

    Google Scholar 

  15. Nomoto S, Massa G, Mitani F, et al. CMO I deficiency caused by a point mutation in exon 8 of the human CYP11B2 gene encoding steroid 18-hydroxylase (P450C18). Biochem Biophys Res Commun 1997;234(2:)382–385.

    Google Scholar 

  16. Mitsuuchi Y, Kawamoto T, Miyahara K, et al. Congenitally defective aldosterone biosynthesis in humans: inactivation of the P-450C 18 gene (CYP 11 B2) due to nucleotide deletion in CMO I deficient patients. Biochem Biophys Res Commun 1993;190:(3)864–869.

    Google Scholar 

  17. Peter M, Fawaz L, Drop SLS, et al. A prismatic case. Hereditary defect in biosynthesis of aldosterone: aldosterone synthase deficiency 1964–1997. J Clin Endocrinol Metab 1997; 82 (11): 3525–3528.

    Article  PubMed  CAS  Google Scholar 

  18. Mitsuuchi Y, Kawamoto T, Naiki Y, et al. Congenitally defective aldosterone biosynthesis in humans• the involvement of point mutations of the P-450C18 gene (CYP11B2) in CMO II deficient patients. Biochem Biophys Res Commun 1992; 182 (2): 974–979.

    Article  PubMed  CAS  Google Scholar 

  19. Peter M, Sippel WG. Congenital hypoaldosteronism: the Visser-Cost-Syndrome revisited. Pediatr Res 1996; 39: 554–560.

    Article  PubMed  CAS  Google Scholar 

  20. Yong AB, Montalto J, Pitt J, et al. Corticosterone methyl oxidase type II (CMO II) deficiency: biochemical approach to diagnosis. Clin Biochem 1994;27:(6)491–494.

    Google Scholar 

  21. Cheek DB, Perry JW. A salt-wasting syndrome in infancy. Arch Dis Child 1958; 33: 252.

    Article  PubMed  CAS  Google Scholar 

  22. Chang SS, Grunder S, Hanukoglu A, et al. Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1. Nat Genet 1996;12:(3)248–253.

    Google Scholar 

  23. Oberfield SE, et al. Pseudohypoaldosteronism: multiple target organ unresponsiveness to mineralocorticoid hormones. J Clin Endocrinol Metab 1979; 48: 228.

    Article  PubMed  CAS  Google Scholar 

  24. Saruta T, Kaplan NM. Adrenocortical steroidogenesis: the effects of prostaglandins. J Clin Invest 1972; 51: 2246.

    Google Scholar 

  25. Franco-Saenz R, et al. Prostaglandins and renin production: a review. Prostaglandins 1980; 20: 1131.

    Article  PubMed  CAS  Google Scholar 

  26. Holdaas H, Dibona GF, Kiil F. Effect of low-level renal nerve stimulation on renin release from non-filtering kidneys. Am J Physiol 1981; 241: F156 - F161.

    PubMed  CAS  Google Scholar 

  27. Gross R, Hackenberg HM, Hackenthal E, et al. Interaction between perfusion pressure and sympathetic nerves in renin release by carotid baroreflex in conscious dogs. J Physiol 1981; 313: 237–250.

    PubMed  CAS  Google Scholar 

  28. Oster JR, Singer I, Fishman LM. Heparin-induced hypoaldosteronism and hyperkalemia. Am J Med 1995; 98 (6): 575–586.

    Article  PubMed  CAS  Google Scholar 

  29. Aull L, Chao H, Coy K. Heparin-induced hyperkalemia. DICP 1990; 24: 244–246.

    PubMed  CAS  Google Scholar 

  30. Levesque H, Verdier S, Cailleux N, et al. Low molecular weight heparins and hypoaldosteronism. Br Med J 1990; 300: 1437–1438.

    Article  CAS  Google Scholar 

  31. Sequeira SJ, McKenna Ti. Chlorbutal, a new inhibitor of aldosterone biosynthesis identified during examination of heparin effect on aldosterone production. J Clin Endocrinol Metab 1986; 63 (6): 780–784.

    Article  PubMed  CAS  Google Scholar 

  32. Azukizawa S, Iwasaki I, Kigoshi T, et al. Effects of heparin treatments in vivo and in vitro on adrenal angiotensin II receptors and angiotensin II-induced aldosterone production in rats. ACTA Endocrinol (Copenh) 1988; 119 (3): 367–372.

    CAS  Google Scholar 

  33. Velazquez H, Perazella MA, Wright FS, et al. Renal mechanism of trimethoprim-induced hyperkalemia. Ann Intern Med 1993; 119 (4): 296–301.

    PubMed  CAS  Google Scholar 

  34. Clark BA, Brown RS. Potassium homeostasis and hyperkalemic syndromes. Endocrinol Clin N Am 1995; 24 (3): 573–591.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dluhy, R.G. (2003). Mineralocorticoid Deficiency Syndromes. In: Meikle, A.W. (eds) Endocrine Replacement Therapy in Clinical Practice. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-375-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-375-0_17

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-416-6

  • Online ISBN: 978-1-59259-375-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics