Skip to main content

Clinical Evaluation, Risk Stratification, and Management of Congenital Long QT Syndrome

  • Chapter
Cardiac Repolarization

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 114 Accesses

Abstract

Once considered an extremely rare and lethal arrhythmogenic peculiarity, the congenital long QT syndrome (LQTS) is understood today as a primary cardiac channelopathy that is far more common but less commonly lethal than previously recognized. The molecular breakthroughs of the 1990s led by the research laboratories of Drs. Mark Keating, Jeff Towbin, Silvia Priori, and others revealed the fundamental underpinnings of LQTS. Now, hundreds of mutations scattered amongst five cardiac channel genes account for approx two—thirds of LQTS. Further, LQTS is a “Rosetta stone,” providing an important molecular model for ventricular arrhythmogenesis. Despite these tremendous advances, the bench—top discoveries have not yet translated to the patient’ s bedside in the form of a standard, routine molecular diagnostic test.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Romano CGG, Pongiglione R. Aritmie cardiache rare dell’ eta’ pediatrica. II. Accessi sincopali per fibrillazione ventricolare parossistica. Clin Peditr (Bologna) 1963;45:656–683.

    CAS  Google Scholar 

  2. Ward OC. A new famillial cardiac syndrome in children. J Irish Med Assoc 1964;54:103–106.

    CAS  Google Scholar 

  3. Ackerman MJ, Clapham DE. Ion channels—basic science and clinical disease. N Engl J Med 1997;336(22):1575–1586.

    Article  PubMed  CAS  Google Scholar 

  4. Ackerman MJ. The long QT syndrome: ion channel diseases of the heart. Mayo Clin Proc 1998;73(3): 250–269.

    Article  PubMed  CAS  Google Scholar 

  5. Keating MT, Sanguinetti MC. Molecular and cellular mechanisms of cardiac arrhythmias. Cell 2001;104(4):569–580.

    Article  PubMed  CAS  Google Scholar 

  6. Splawski I, Shen J, Timothy KW, et al. Spectrum of mutations in long—QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation 2000;102(10):1178–1185.

    Article  PubMed  CAS  Google Scholar 

  7. Marks AR, Priori S, Memmi M, Kontula K, Laitinen PJ. Involvement of the cardiac ryanodine receptor/ calcium release channel in catecholaminergic polymorphic ventricular tachycardia. J Cell Physiol 2002;190(1):1–6.

    Article  PubMed  CAS  Google Scholar 

  8. Plaster NM, Tawil R, Tristani-Firouzi M, et al. Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’ s syndrome. Cell 2001;105(4):511–519.

    Article  PubMed  CAS  Google Scholar 

  9. Jongsma HJ, Wilders R. Channelopathies: Kir2.1 mutations jeopardize many cell functions. Curr Biol 2001;11(18):R747–R750.

    Article  Google Scholar 

  10. Jervell A L-NF. Congenital deaf—mutism, functional heart disease with prolongation of the QT interval, and sudden death. Am Heart J 1957;54(59–68).

    Article  PubMed  CAS  Google Scholar 

  11. Moss AJ. Long QT Syndromes. Curr Treat Options Cardiovasc Med 2000;2(4):317–322.

    Article  PubMed  Google Scholar 

  12. Schwartz PJ. Clinical applicability of molecular biology: the case of the long QT syndrome. Curr Control Trials Cardiovasc Med 2000;1(2):88–91.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Locati EH, Zareba W, Moss AJ, et al. Age— and sex—related differences in clinical manifestations in patients with congenital long—QT syndrome: findings from the International LQTS Registry. Circulation 1998;97(22):2237–2244.

    Article  PubMed  CAS  Google Scholar 

  14. Schwartz PJ, Priori SG, Spazzolini C, et al. Genotype—phenotype correlation in the long—QT syndrome: gene—specific triggers for life—threatening arrhythmias. Circulation 2001;103(1):89–95.

    Article  PubMed  CAS  Google Scholar 

  15. Garson A, Jr, Dick M, 2nd, Fournier A, et al. The long QT syndrome in children. An international study of 287 patients. Circulation 1993;87(6):1866–1872.

    Article  PubMed  Google Scholar 

  16. Moss AJ, Robinson JL, Gessman L, et al. Comparison of clinical and genetic variables of cardiac events associated with loud noise versus swimming among subjects with the long QT syndrome. Am J Cardiol 1999;84(8):876–879.

    Article  PubMed  CAS  Google Scholar 

  17. Ackerman MJ, Porter CJ. Identification of a family with inherited long QT syndrome after a pediatric near—drowning. Pediatrics 1998;101(2):306–308.

    Article  PubMed  CAS  Google Scholar 

  18. Ackerman MJ, Schroeder JJ, Berry R, et al. A novel mutation in KVLQT1 is the molecular basis of inherited long QT syndrome in a near—drowning patient’s family. Pediatr Res 1998;44(2):148–153.

    Article  PubMed  CAS  Google Scholar 

  19. Ackerman MJ, Tester DJ, Porter CJ. Swimming, a gene—specific arrhythmogenic trigger for inherited long QT syndrome. Mayo Clin Proc 1999;74(11):1088–1094.

    Article  PubMed  CAS  Google Scholar 

  20. Ackerman MJ, Tester DJ, Porter CJ, Edwards WD. Molecular diagnosis of the inherited long—QT syndrome in a woman who died after near—drowning. N Engl J Med 1999;341(15):1121–1125.

    Article  PubMed  CAS  Google Scholar 

  21. Wilde AA, Jongbloed RJ, Doevendans PA, et al. Auditory stimuli as a trigger for arrhythmic events differentiate HERG—related (LQTS2) patients from KVLQT1—related patients (LQTS 1). J Am Coll Cardiol 1999;33(2):327–332.

    Article  PubMed  CAS  Google Scholar 

  22. Zareba W, Moss AJ, Schwartz PJ, et al. Influence of genotype on the clinical course of the long—QT syndrome. International Long—QT Syndrome Registry Research Group. N Engl J Med 1998;339(14): 960–965.

    Article  PubMed  CAS  Google Scholar 

  23. Bazett HC. An analysis of the time—relations of electrocardiograms. Heart 1920;7:353–370.

    Google Scholar 

  24. Garson A, Jr., Kertesz NJ, Towbin JA. Improved electrocardiographic identification of the long QT syndrome. J Am Coll Cardiol 2001;37(Suppl A):467A.

    Article  Google Scholar 

  25. Vincent GM, Timothy KW, Leppert M, Keating M. The spectrum of symptoms and QT intervals in carriers of the gene for the long—QT syndrome. N Engl J Med 1992;327(12):846–852.

    Article  PubMed  CAS  Google Scholar 

  26. Allan WC, Timothy K, Vincent GM, Palomaki GE, Neveux LM, Haddow JE. Long QT syndrome in children: the value of rate corrected QT interval and DNA analysis as screening tests in the general population. J Med Screen 2001;8(4):173–177.

    Article  PubMed  CAS  Google Scholar 

  27. Miller MD, Porter C, Ackerman MJ. Diagnostic accuracy of screening electrocardiograms in long QT syndrome I. Pediatrics 2001;108(1):8–12.

    Article  PubMed  CAS  Google Scholar 

  28. Moss AJ, Schwartz PJ, Crampton RS, Locati E, Carleen E. The long QT syndrome: a prospective international study. Circulation 1985;71(1):17–21.

    Article  PubMed  CAS  Google Scholar 

  29. Priori SG, Napolitano C, Schwartz PJ. Low penetrance in the long—QT syndrome: clinical impact. Circulation 1999;99(4):529–533.

    Article  PubMed  CAS  Google Scholar 

  30. Moss AJ, Schwartz PJ, Crampton RS, et al. The long QT syndrome. Prospective longitudinal study of 328 families. Circulation 1991;84(3):1136–1144.

    Article  PubMed  CAS  Google Scholar 

  31. Schwartz PJ, Malliani A. Electrical alternation of the T—wave: clinical and experimental evidence of its relationship with the sympathetic nervous system and with the long QT syndrome. Am Heart J 1975;89(1):45–50.

    Article  PubMed  CAS  Google Scholar 

  32. Moss AJ, Zareba W, Benhorin J, et al. ECG T—wave patterns in genetically distinct forms of the hereditary long QT syndrome. Circulation 1995;92(10):2929–2934.

    Article  PubMed  CAS  Google Scholar 

  33. Zhang L, Timothy KW, Vincent GM, et al. Spectrum of ST—T—wave patterns and repolarization parameters in congenital long—QT syndrome: ECG findings identify genotypes. Circulation 2000;102(23): 2849–2855.

    Article  PubMed  CAS  Google Scholar 

  34. Malfatto G, Beria G, Sala S, Bonazzi O, Schwartz PJ. Quantitative analysis of T wave abnormalities and their prognostic implications in the idiopathic long QT syndrome. J Am Coll Cardiol 1994;23(2): 296–301.

    Article  PubMed  CAS  Google Scholar 

  35. Lupoglazoff JM, Denjoy I, Berthet M, et al. Notched T waves on Holter recordings enhance detection of patients with LQT2 (HERG) mutations. Circulation 2001;103(8):1095–1101.

    Article  PubMed  CAS  Google Scholar 

  36. Zareba W, Moss AJ, le Cessie S, Hall WJ. T wave alternans in idiopathic long QT syndrome. J Am Coll Cardiol 1994;23(7):1541–1546.

    Article  PubMed  CAS  Google Scholar 

  37. Napolitano C, Priori SG, Schwartz PJ. Significance of QT dispersion in the long QT syndrome. Prog Cardiovasc Dis 2000;42(5):345–350.

    Article  PubMed  CAS  Google Scholar 

  38. Day CP, McComb JM, Campbell RW. QT dispersion: an indication of arrhythmia risk in patients with long QT intervals. Br Heart J 1990;63(6):342–344.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Priori SG, Napolitano C, Diehl L, Schwartz PJ. Dispersion of the QT interval. A marker of therapeutic efficacy in the idiopathic long QT syndrome. Circulation 1994;89(4):1681–1689.

    Article  PubMed  CAS  Google Scholar 

  40. Moennig G, Schulze-Bahr E, Wedekind H, et al. Clinical value of electrocardiographic parameters in genotyped individuals with familial long QT syndrome. Pacing Clin Electrophysiol 2001;24(4 Pt 1): 406–415.

    Article  PubMed  CAS  Google Scholar 

  41. Eggeling T, Osterhues HH, Hoeher M, Gabrielsen FG, Weismueller P, Hombach V. Value of Holter monitoring in patients with the long QT syndrome. Cardiology 1992;81(2–3):107–114.

    Article  Google Scholar 

  42. Merri M, Moss AJ, Benhorin J, Locati EH, Alberti M, Badilini F. Relation between ventricular repolarization duration and cardiac cycle length during 24—hour Holter recordings. Findings in normal patients and patients with long QT syndrome. Circulation 1992;85(5):1816–1821.

    Article  PubMed  CAS  Google Scholar 

  43. Vincent GM, Jaiswal D, Timothy KW. Effects of exercise on heart rate, QT, QTc and QT/QS2 in the Romano—Ward inherited long QT syndrome. Am J Cardiol 1991;68(5):498–503.

    Article  PubMed  CAS  Google Scholar 

  44. Swan H, Toivonen L, Viitasalo M. Rate adaptation of QT intervals during and after exercise in children with congenital long QT syndrome Eur Heart J 1998;19(3):508–513

    Article  PubMed  CAS  Google Scholar 

  45. Schwartz PJ, Priori SG, Locati EH, et al. Long QT syndrome patients with mutations of the SCN5A and HERG genes have differential responses to Na+ channel blockade and to increases in heart rate. Implications for gene—specific therapy. Circulation 1995;92(12):3381–3386.

    Article  PubMed  CAS  Google Scholar 

  46. Swan H, Viitasalo M, Piippo K, Laitinen P, Kontula K, Toivonen L. Sinus node function and ventricular repolarization during exercise stress test in long QT syndrome patients with KvLQT1 and HERG potassium channel defects. J Am Coll Cardiol 1999;34(3):823–829.

    Article  PubMed  CAS  Google Scholar 

  47. Kawade M, Ohe T, Kamiya T. Provocative testing and drug response in a patient with the long QT syndrome. Br Heart J 1995;74(1):67–70.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Sun ZH, Swan H, Viitasalo M, Toivonen L. Effects of epinephrine and phenylephrine on QT interval dispersion in congenital long QT syndrome. J Am Coll Cardiol 1998;31(6):1400–1405.

    Article  PubMed  CAS  Google Scholar 

  49. Shimizu W, Antzelevitch C. Differential effects of beta—adrenergic agonists and antagonists in LQT1, LQT2 and LQT3 models of the long QT syndrome. J Am Coll Cardiol 2000;35(3):778–786.

    Article  PubMed  CAS  Google Scholar 

  50. Tanabe Y, Inagaki M, Kurita T, et al. Sympathetic stimulation produces a greater increase in both transmural and spatial dispersion of repolarization in LQT1 than LQT2 forms of congenital long QT syndrome. J Am Coll Cardiol 2001;37(3):911–919.

    Article  PubMed  CAS  Google Scholar 

  51. Ackerman MJ, Khositseth A,Tester DJ, Hejlik J, Shen WK, Porter CJ. Epinephrine induced QT interval prolongation: a gene—specific paradoxical response in congenital long QT syndrome. Mayo Clin Proc 2002;77:413–421.

    PubMed  CAS  Google Scholar 

  52. Schwartz PJ. Idiopathic long QT syndrome: progress and questions. Am Heart J 1985;109(2):399–411.

    Article  PubMed  CAS  Google Scholar 

  53. Schwartz PJ, Moss AJ, Vincent GM, Crampton RS. Diagnostic criteria for the long QT syndrome. An update. Circulation 1993;88(2):782–784.

    Article  PubMed  CAS  Google Scholar 

  54. Priori SG, Aliot E, Blomstrom-Lundqvist C, et al. Task Force on Sudden Cardiac Death of the European Society of Cardiology. Eur Heart J 2001;22(16):1374–1450.

    Article  PubMed  CAS  Google Scholar 

  55. Rashba EJ, Zareba W, Moss AJ, et al. Influence of pregnancy on the risk for cardiac events in patients with hereditary long QT syndrome. LQTS Investigators. Circulation 1998;97(5):451–456.

    Article  PubMed  CAS  Google Scholar 

  56. Marks ML, Trippel DL, Keating MT. Long QT syndrome associated with syndactyly identified in females. Am J Cardiol 1995;76(10):744–745.

    Article  PubMed  CAS  Google Scholar 

  57. Moss AJ, Zareba W, Hall WJ, et al. Effectiveness and limitations of beta—blocker therapy in congenital long—QT syndrome. Circulation 2000;101(6):616–623.

    Article  PubMed  CAS  Google Scholar 

  58. Schwartz PJ, Zaza A, Locati E, Moss AJ. Stress and sudden death. The case of the long QT syndrome. Circulation 1991;83(4 Suppl):II71–II80.

    Google Scholar 

  59. Atiga WL, Calkins H, Lawrence JH, Tomaselli GF, Smith JM, Berger RD. Beat-to-beat repolarization lability identifies patients at risk for sudden cardiac death. J Cardiovasc Electrophysiol 1998;9(9): 899–908

    Article  PubMed  CAS  Google Scholar 

  60. Zareba W. New electrocardiographic indices of risk stratification. J Electrocardiol 2001;34:332.

    Article  Google Scholar 

  61. Steinbigler P, Haberl R, Nespithal K, Spiegl A, Schmucking I, Steinbeck G. T wave spectral variance: A new method to determine inhomogeneous repolarization by T wave beat—to—beat variability in patients prone to ventricular arrhythmias. J Electrocardiol 1998;30(Suppl): 137–144.

    Article  PubMed  Google Scholar 

  62. Bhandari AK, Shapiro WA, Morady F, Shen EN, Mason J, Scheinman MM. Electrophysiologic testing in patients with the long QT syndrome. Circulation 1985;71(1):63–71.

    Article  PubMed  CAS  Google Scholar 

  63. Hohnloser SH, Klingenheben T, Li YG, Zabel M, Peetermans J, Cohen RJ. T wave alternans as a predictor of recurrent ventricular tachyarrhythmias in ICD recipients: prospective comparison with conventional risk markers. J Cardiovasc Electrophysiol 1998;9(12):1258–1268.

    Article  PubMed  CAS  Google Scholar 

  64. Kaufman ES, Priori SG, Napolitano C, et al. Electrocardiographic prediction of abnormal genotype in congenital long QT syndrome: experience in 101 related family members. J Cardiovasc Electrophysiol 2001:12(4):455–461.

    Article  PubMed  CAS  Google Scholar 

  65. Nemec J, Ackerman MJ, Tester DJ, Hejlik J, Shen WK. Catecholamine—provoked microvoltage T wave alternans in genotyped long QT syndrome. Pacing Clin Electrophysiol 2003;in press.

    Google Scholar 

  66. Nemec J, Hejlik J, Shen WK, Ackerman MJ. Catecholamine—induced T wave lability in congenital long QT syndrome: a novel phenomenon associated with syncope and cardiac arrest. Mayo Clin Proc 2003; in press.

    Google Scholar 

  67. Priori SG, Maugeri FS, Schwartz PJ. The risk of sudden death as first cardiac event in asymptomatic patients with the long QT syndrome. (abstract). Circulation 1998;98 suppl I:777.

    Article  Google Scholar 

  68. Schwartz PJ. The long QT syndrome. Curr Probl Cardiol 1997;22(6):297–351.

    Article  PubMed  CAS  Google Scholar 

  69. Maron BJ, Isner JM, McKenna WJ. 26th Bethesda conference: recommendations for determining eligibility for competition in athletes with cardiovascular abnormalities. Task Force 3: hypertrophic cardiomyopathy, myocarditis and other myopericardial diseases and mitral valve prolapse. J Am Coll Cardiol 1994;24(4):880–885.

    Article  PubMed  CAS  Google Scholar 

  70. Eldar M, Griffin JC, Van Hare GF, et al. Combined use of beta—adrenergic blocking agents and long—term cardiac pacing for patients with the long QT syndrome. J Am Coll Cardiol 1992;20(4):830–837.

    Article  PubMed  CAS  Google Scholar 

  71. Dorostkar PC, Eldar M, Belhassen B, Scheinman MM. Long—term follow—up of patients with long—QT syndrome treated with beta—blockers and continuous pacing. Circulation 1999;100(24): 2431–2436.

    Article  PubMed  CAS  Google Scholar 

  72. Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED, Keating MT. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell 1995;80(5):795–803.

    Article  PubMed  CAS  Google Scholar 

  73. Shimizu W, Ohe T, Kurita T, et al. Effects of verapamil and propranolol on early afterdepolarizations and ventricular arrhythmias induced by epinephrine in congenital long QT syndrome. J Am Coll Cardiol 1995;26(5): 1299–1309.

    Article  PubMed  CAS  Google Scholar 

  74. Shimizu W, Antzelevitch C. Cellular basis for the ECG features of the LQT1 form of the long—QT syndrome: effects of beta—adrenergic agonists and antagonists and sodium channel blockers on transmural dispersion of repolarization and torsade de pointes. Circulation 1998;98(21):2314–2322.

    Article  PubMed  CAS  Google Scholar 

  75. Shimizu W, Kurita T, Matsuo K, et al. Improvement of repolarization abnormalities by a K+ channel opener in the LQT1 form of congenital long—QT syndrome. Circulation 1998;97(16):1581–1588.

    Article  PubMed  CAS  Google Scholar 

  76. Gronefeld G, Holtgen R, Hohnloser SH. Implantable cardioverter defibrillator therapy in a patient with the idiopathic long QT syndrome. Pacing Clin Electrophysiol 1996;19(8):1260–1263.

    Article  PubMed  CAS  Google Scholar 

  77. Groh WJ, Silka MJ, Oliver RP, Halperin BD, McAnulty JH, Kron J. Use of implantable cardioverterdefibrillators in the congenital long QT syndrome. Am J Cardiol 1996;78(6):703–706.

    Article  PubMed  CAS  Google Scholar 

  78. Gregoratos G, Cheitlin MD, Conill A, et al. ACC/AHA guidelines for implantation of cardiac pacemakers and antiarrhythmia devices: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Pacemaker Implantation). J Am Coll Cardiol 1998;31(5):1175–1209.

    Article  PubMed  CAS  Google Scholar 

  79. Viskin S, Fish R, Zeltser D, et al. Arrhythmias in the congenital long QT syndrome: how often is torsade de pointes pause dependent? Heart 2000;83(6):661–666.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  80. Schwartz PJ, Locati E. The idiopathic long QT syndrome: pathogenetic mechanisms and therapy. Eur Heart J 1985;6 Suppl D:103–114.

    Article  PubMed  Google Scholar 

  81. Moss AJ, McDonald J. Unilateral cervicothoracic sympathetic ganglionectomy for the treatment of long QT interval syndrome. N Engl J Med 1971;285(16):903–904.

    Article  PubMed  CAS  Google Scholar 

  82. Shimizu W, Antzelevitch C. Sodium channel block with mexiletine is effective in reducing dispersion of repolarization and preventing torsade des pointes in LQT2 and LQT3 models of the long—QT syndrome. Circulation 1997;96(6):2038–2047.

    Article  PubMed  CAS  Google Scholar 

  83. Compton SJ, Lux RL, Ramsey MR, et al. Genetically defined therapy of inherited long—QT syndrome. Correction of abnormal repolarization by potassium. Circulation 1996;94(5):1018–1122.

    Article  PubMed  CAS  Google Scholar 

  84. Shimizu W, Antzelevitch C. Effects of a K(+) channel opener to reduce transmural dispersion of repolarization and prevent torsade de pointes in LQT1, LQT2, and LQT3 models of the long—QT syndrome. Circulation 2000;102(6):706–712.

    Article  PubMed  CAS  Google Scholar 

  85. Ackerman MJ, Tester DJ, Driscoll DJ. Molecular autopsy of sudden unexplained death in the young. Am J Forensic Med Pathol 2001;22(2):105–111.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Khositseth, A., Ackerman, M.J. (2003). Clinical Evaluation, Risk Stratification, and Management of Congenital Long QT Syndrome. In: Gussak, I., Antzelevitch, C., Hammill, S.C., Shen, WK., Bjerregaard, P. (eds) Cardiac Repolarization. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-362-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-362-0_20

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-336-7

  • Online ISBN: 978-1-59259-362-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics