Skip to main content

Apoptosis in Ischemic Disease

  • Chapter
Book cover Essentials of Apoptosis

Abstract

Ischemia defines a condition of lack of blood supply to tissues. It takes place in vivo under situations of cardiac malfunction, shock, or vascular defects such as constriction and obstruction of blood vessels. Ischemic injury is the key determinant of tissue pathology in devastating diseases such as myocardial infarction, acute renal failure, and stroke in the brain. Ischemic diseases are also the leading cause of morbidity in industrial countries (1,2). Previously, cell death during ischemia has been described as a chaotic autolytic process, or “necrosis.” Indeed, impressive cell death in the necrotic form is usually found in ischemic tissues. However, recent studies have revealed apoptosis during ischemia of organs including brain, heart, liver, and kidneys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Center for Disease Control and Prevention (1993) Cardiovascular disease surveillance: ischemic heart disease 1980–1989. Centers for Disease Control and Prevention, Washington, D.C.

    Google Scholar 

  2. Center for Disease Control and Prevention (1994). Cardiovascular disease surveillance: stroke 1980–1989. Centers for Disease Control and Prevention, Washington, D.C.

    Google Scholar 

  3. Lipton, P. (1999) Ischemic cell death in brain neurons. Physiol. Rev. 79, 1431–1568.

    PubMed  CAS  Google Scholar 

  4. Jennings, R. B. and Reimer, K. A. (1991) The cell biology of acute myocardial ischemia. Annu. Rev. Med. 42, 225–246.

    Article  PubMed  CAS  Google Scholar 

  5. Weinberg, J. M. (1991) The cell biology of ischemic renal injury. Kidney Int. 39, 476–500.

    Article  PubMed  CAS  Google Scholar 

  6. Pierce, G. N. and Czubryt, M. P. (1995) The contribution of ionic imbalance to ischemia/reperfusion-induced injury. J. Mol. Cell Cardiol. 27, 53–63.

    Article  PubMed  CAS  Google Scholar 

  7. Berridge, M. J., Lipp, P., and Bootman, M. D. (2000) The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 11–21.

    Article  PubMed  CAS  Google Scholar 

  8. Venkatachalam, M. A. and Weinberg, J. M. (1993) Structural effects of intracellular amino acids during ATP depletion, In: Surviving Hypoxia ( Hochachka, P. W., Lutz, P. L., Sick, T., Rosenthal, M., and van denThillart, G., eds.), CRC Press, Boca Raton, pp. 473–494.

    Google Scholar 

  9. Dong, Z., Patel, Y., Saikumar, P., Weinberg, J. M., and Venkatachalam, M. A. (1998) Development of porous defects in plasma membranes of adenosine triphosphate-depleted Madin-Darby canine kidney cells and its inhibition by glycine. Lab. Invest. 78, 657–668.

    PubMed  CAS  Google Scholar 

  10. Droge, W. (2002) Free radicals in the physiological control of cell function. Physiol. Rev. 82, 47–95.

    PubMed  CAS  Google Scholar 

  11. Ferrari, R., Agnoletti, L., Comini, L., Gaia, G., Bachetti, T., Cargnoni, A., et al. (1998) Oxidative stress during myocardial ischaemia and heart failure. Eur. Heart J. 19, B2-B 11.

    Google Scholar 

  12. Yu, B. P. (1994) Cellular defenses against damage from reactive oxygen species. Physiol. Rev. 74, 139–162.

    PubMed  CAS  Google Scholar 

  13. Dirnagl, U., Iadecola, C., and Moskowitz, M. A. (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 22, 391–397.

    Article  PubMed  CAS  Google Scholar 

  14. Mehta, J. L. and Li, D. Y. (1999) Inflammation in ischemic heart disease: response to tissue injury or a pathogenetic villain? Cardiovasc. Res. 43, 291–299.

    Article  PubMed  CAS  Google Scholar 

  15. Saikumar, P., Dong, Z., Patel, Y., Hall, K., Hopfer, U., Weinberg, J. M., and Venkatachalam, M. A. (1998) Role of hypoxia-induced Bax translocation and cytochrome c release in reoxygenation injury. Oncogene 17, 3401–3415.

    Article  PubMed  CAS  Google Scholar 

  16. Feldenberg, L. R., Thevananther, S., del Rio, M., de Leon, M., and Devarajan, P. (1999) Partial ATP depletion induces Fas-and caspase-mediated apoptosis in MDCK cells. Am. J. Physiol. 276, F837 - F846.

    PubMed  CAS  Google Scholar 

  17. McConkey, D. J. and Orrenius, S. (1997) The role of calcium in the regulation of apoptosis. Biochem. Biophys. Res. Commun. 239, 357–366.

    Article  PubMed  CAS  Google Scholar 

  18. Love, S. (1999) Oxidative stress in brain ischemia. Brain Pathol. 9, 119–131.

    Article  PubMed  CAS  Google Scholar 

  19. Maulik, N., Yoshida, T., and Das, D. K. (1998) Oxidative stress developed during the reperfusion of ischemic myocardium induces apoptosis. Free Radic. Biol. Med. 24, 869–875.

    Article  PubMed  CAS  Google Scholar 

  20. Darzynkiewicz, Z., Bedner, E., and Traganos, F. (2001) Difficulties and pitfalls in analysis of apoptosis. Methods Cell Biol. 63, 527–546.

    Article  PubMed  CAS  Google Scholar 

  21. Valavanis, C., Naber, S., and Schwartz, L. M. (2001) In situ detection of dying cells in normal and pathological tissues. Methods Cell Biol. 66, 393–415.

    Article  PubMed  CAS  Google Scholar 

  22. Savill, J. and Fadok, V. (2000) Corpse clearance defines the meaning of cell death. Nature 407, 784–788.

    Article  PubMed  CAS  Google Scholar 

  23. Kelly, K. J., Plotkin, Z., and Dagher, P. C. (2001) Guanosine supplementation reduces apoptosis and protects renal function in the setting of ischemic injury. J. Clin. Invest. 108, 1291–1298.

    PubMed  CAS  Google Scholar 

  24. Yaoita, H., Ogawa, K., Maehara, K., and Maruyama, Y. (2000) Apoptosis in relevant clinical situations: contribution of apoptosis in myocardial infarction. Cardiovasc. Res. 45, 630–641.

    Article  PubMed  CAS  Google Scholar 

  25. Clavien, P. A., Rudiger, H. A., Selzner, M., Jaeschke, H., Gujral, J. S., Bucci, T. J., and Farhood, A. (2001) Mechanism of hepatocyte death after ischemia: apoptosis versus necrosis. Hepatology 33, 1555–1557.

    Article  PubMed  CAS  Google Scholar 

  26. Arends, M. J. and Wyllie, A. H. (1991) Apoptosis: mechanisms and roles in pathology. Int. Rev. Exp. Pathol. 32, 223–254.

    PubMed  CAS  Google Scholar 

  27. Schumer, M., Colombel, M. C., Sawczuk, I. S., Gobe, G., Connor, J., O’Toole, K. M., et al. (1992) Morphologic, biochemical, and molecular evidence of apoptosis during the reperfusion phase after brief periods of renal ischemia. Am. J. Pathol. 140, 831–838.

    PubMed  CAS  Google Scholar 

  28. Gottlieb, R. A., Burleson, K. O., Kloner, R. A., Babior, B. M., and Engler, R. L. (1994) Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J. Clin. Invest. 94, 1621–1628.

    Article  PubMed  CAS  Google Scholar 

  29. Cao, G., Pei, W., Lan, J., Stetler, R. A., Luo, Y., Nagayama, T., et al. (2001) Caspase-activated DNase/DNA fragmentation factor 40 mediates apoptotic DNA fragmentation in transient cerebral ischemia and in neuronal cultures. J. Neurosci. 21, 4678–4690.

    PubMed  CAS  Google Scholar 

  30. Thornberry, N. A. and Lazebnik, Y. (1998) Caspases: enemies within. Science 281, 1312–1316.

    Article  PubMed  CAS  Google Scholar 

  31. Namura, S., Zhu, J., Fink, K., Endres, M., Srinivasan, A., Tomaselli, K. J., et al. (1998) Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J. Neurosci. 18, 3659–3668.

    PubMed  CAS  Google Scholar 

  32. Holly, T. A., Drincic, A., Byun, Y., Nakamura, S., Harris, K., Klocke, F. J., and Cryns, V. L. (1999) Caspase inhibition reduces myocyte cell death induced by myocardial ischemia and reperfusion in vivo. J. Mol. Cell Cardiol. 31, 1709–1715.

    Article  PubMed  CAS  Google Scholar 

  33. Soeda, J., Miyagawa, S., Sano, K., Masumoto, J., Taniguchi, S., and Kawasaki, S. (2001) Cytochrome c release into cytosol with subsequent caspase activation during warm ischemia in rat liver. Am. J. Physiol. Gastrointest. Liver Physiol. 281, G1115 - G1123.

    PubMed  CAS  Google Scholar 

  34. Black, S. C., Huang, J. Q., Rezaiefar, P., Radinovic, S., Eberhart, A., Nicholson, D. W., and Rodger, I. W. (1998) Co-localization of the cysteine protease caspase-3 with apoptotic myocytes after in vivo myocardial ischemia and reperfusion in the rat. J. Mol. Cell Cardiol. 30, 733–742.

    Article  PubMed  CAS  Google Scholar 

  35. Love, S., Barber, R., Srinivasan, A., and Wilcock, G. K. (2000) Activation of caspase-3 in permanent and transient brain ischaemia in man. Neuroreport 11, 2495–2499.

    Article  PubMed  CAS  Google Scholar 

  36. Condorelli, G., Roncarati, R., Ross, J., Jr., Pisani, A., Stassi, G., Todaro, M., et al. (2001) Heart-targeted overexpression of caspase3 in mice increases infarct size and depresses cardiac function. Proc. Natl. Acad. Sci. USA 98, 9977–9982.

    Article  PubMed  CAS  Google Scholar 

  37. Velier, J. J., Ellison, J. A., Kikly, K. K., Spera, P. A., Barone, F. C., and Feuerstein, G. Z. (1999) Caspase-8 and caspase-3 are expressed by different populations of cortical neurons undergoing delayed cell death after focal stroke in the rat. J. Neurosci. 19, 5932–5941.

    PubMed  CAS  Google Scholar 

  38. Asahi, M., Hoshimaru, M., Uemura, Y., Tokime, T., Kojima, M., Ohtsuka, T., et al. (1997) Expression of interleukin1 beta converting enzyme gene family and bcl-2 gene family in the rat brain following permanent occlusion of the middle cerebral artery. J. Cereb. Blood Flow Metab. 17, 11–18.

    Article  PubMed  CAS  Google Scholar 

  39. Kaushal, G. P., Singh, A. B., and Shah, S. V. (1998) Identification of gene family of caspases in rat kidney and altered expression in ischemia-reperfusion injury. Am. J. Physiol. 274, F587 - F595.

    PubMed  CAS  Google Scholar 

  40. Jiang, L., Huang, Y., Yuasa, T., Hunyor, S., and dos Remedios, C. G. (1999) Elevated DNase activity and caspase expression in association with apoptosis in failing ischemic sheep left ventricles. Electrophoresis 20, 2046–2052.

    Article  PubMed  CAS  Google Scholar 

  41. Jin, K., Graham, S. H., Mao, X., Nagayama, T., Simon, R. P., and Greenberg, D. A. (2001) Fas (CD95) may mediate delayed cell death in hippocampal CA1 sector after global cerebral ischemia. J. Cereb. Blood Flow Metab. 21, 1411–1421.

    Article  PubMed  CAS  Google Scholar 

  42. Jeremias, I., Kupatt, C., Martin -Vill alba, A., Habazettl, H., Schenkel, J., Boekstegers, P., and Debatin, K. M. (2000) Involvement of CD95/Apo1/Fas in cell death after myocardial ischemia. Circulation 102, 915–920.

    Article  PubMed  CAS  Google Scholar 

  43. Nogae, S., Miyazaki, M., Kobayashi, N., Saito, T., Abe, K., Saito, H., et al. (1998) Induction of apoptosis in ischemiareperfusion model of mouse kidney: possible involvement of Fas. J. Am. Soc. Nephrol. 9, 620–631.

    PubMed  CAS  Google Scholar 

  44. Rudiger, H. A. and Clavien, P. A. (2002) Tumor necrosis factor alpha, but not Fas, mediates hepatocellular apoptosis in the murine ischemic liver. Gastroenterology 122, 202–210.

    Article  PubMed  CAS  Google Scholar 

  45. Dong, Z., Venkatachalam, M. A., Wang, J., Patel, Y., Saikumar, P., Semenza, G. L., et al. (2001) Up-regulation of apoptosis inhibitory protein IAP-2 by hypoxia. Hif-1-independent mechanisms. J. Biol. Chem. 276, 18702–18709.

    Article  PubMed  CAS  Google Scholar 

  46. Xu, D. G., Crocker, S. J., Doucet, J. P., St-Jean, M., Tamai, K., Hakim, A. M., et al. (1997) Elevation of neuronal expression of NAIP reduces ischemic damage in the rat hippocampus. Nat. Med. 3, 997–1004.

    Article  PubMed  CAS  Google Scholar 

  47. Isenmann, S., Stoll, G., Schroeter, M., Krajewski, S., Reed, J. C., and Bahr, M. (1998) Differential regulation of Bax, Bcl-2, and Bcl-X proteins in focal cortical ischemia in the rat. Brain Pathol. 8, 49–62

    Article  PubMed  CAS  Google Scholar 

  48. Misao, J., Hayakawa, Y., Ohno, M., Kato, S., Fujiwara, T., and Fujiwara, H. (1996) Expression of bcl-2 protein, an inhibitor of apoptosis, and Bax, an accelerator of apoptosis, in ventricular myocytes of human hearts with myocardial infarction. Circulation 94, 1506–1512.

    Article  PubMed  CAS  Google Scholar 

  49. Latif, N., Khan, M. A., Birks, E., O’Farrell, A., Westbrook, J., Dunn, M. J., and Yacoub, M. H. (2000) Upregulation of the Bcl-2 family of proteins in end stage heart failure. J. Am. Coll. Cardiol. 35, 1769–1777.

    Article  PubMed  CAS  Google Scholar 

  50. Graham, S. H. and Chen, J. (2001) Programmed cell death in cerebral ischemia. J. Cereb. Blood Flow Metab. 21, 99–109.

    Article  PubMed  CAS  Google Scholar 

  51. Hara, H., Friedlander, R. M., Gagliardini, V., Ayata, C., Fink, K., Huang, Z., Shimizet al. (1997) Inhibition of interleukin 1beta converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage. Proc. Natl. Acad. Sci. USA 94, 2007–2012.

    Article  PubMed  CAS  Google Scholar 

  52. Cheng, Y., Deshmukh, M., D’Costa, A., Demaro, J. A., Gidday, J. M., Shah, A., et al. (1998) Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury. J. Clin. Invest. 101, 1992–1999.

    Article  PubMed  CAS  Google Scholar 

  53. Yakovlev, A. G., Knoblach, S. M., Fan, L., Fox, G. B., Goodnight, R., and Faden, A. I. (1997) Activation of CPP32-like caspases contributes to neuronal apoptosis and neurological dysfunction after traumatic brain injury. J. Neurosci. 17, 7415–7424.

    PubMed  CAS  Google Scholar 

  54. Cursio, R., Gugenheim, J., Ricci, J. E., Crenesse, D., Rostagno, P., Maulon, L., et al. (1999) A caspase inhibitor fully protects rats against lethal normothermic liver ischemia by inhibition of liver apoptosis. FASEB J. 13, 253–261.

    PubMed  CAS  Google Scholar 

  55. Yadav, S. S., Sindram, D., Perry, D. K., and Clavien, P. A. (1999) Ischemic preconditioning protects the mouse liver by inhibition of apoptosis through a caspase-dependent pathway. Hepatology 30, 1223–1231.

    Article  PubMed  CAS  Google Scholar 

  56. Piot, C. A., Martini, J. F., Bui, S. K., and Wolfe, C. L. (1999) Ischemic preconditioning attenuates ischemia/reperfusioninduced activation of caspases and subsequent cleavage of poly(ADP-ribose) polymerase in rat hearts in vivo. Cardiovasc. Res. 44, 536–542.

    Article  PubMed  CAS  Google Scholar 

  57. Ay, I., Sugimori, H., and Finklestein, S. P. (2001) Intravenous basic fibroblast growth factor (bFGF) decreases DNA fragmentation and prevents downregulation of Bcl-2 expression in the ischemic brain following middle cerebral artery occlusion in rats. Brain Res. Mol. Brain Res. 87, 71–80.

    Article  PubMed  CAS  Google Scholar 

  58. Sadohara, T., Sugahara, K., Urashima, Y., Terasaki, H., and Lyama, K. (2001) Keratinocyte growth factor prevents ischemia-induced delayed neuronal death in the hippocampal CA1 field of the gerbil brain. Neuroreport 12, 71–76.

    Article  PubMed  CAS  Google Scholar 

  59. Yamamura, T., Otani, H., Nakao, Y., Hattori, R., Osako, M., and Imamura, H. (2001) IGF-I differentially regulates BclXL and Bax and confers myocardial protection in the rat heart. Am. J. Physiol. Heart Circ. Physiol. 280, 1191–1200.

    Google Scholar 

  60. Nakamura, T., Mizuno, S., Matsumoto, K., Sawa, Y., and Matsuda, H. (2000) Myocardial protection from ischemia/ reperfusion injury by endogenous and exogenous HGF. J. Clin. Invest. 106, 1511–1519.

    Article  PubMed  CAS  Google Scholar 

  61. Martinou, J. C., Dubois-Dauphin, M., Staple, J. K., Rodriguez, I., Frankowski, H., Missotten, M., et al. (1994) Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron 13, 1017–1030.

    Article  PubMed  CAS  Google Scholar 

  62. Kitagawa, K., Matsumoto, M., Tsujimoto, Y., Ohtsuki, T., Kuwabara, K., Matsushita, K., et al. (1998) Amelioration of hippocampal neuronal damage after global ischemia by neuronal overexpression of BCL-2 in transgenic mice. Stroke 29, 2616–2621.

    Article  PubMed  CAS  Google Scholar 

  63. Hata, R., Gillardon, F., Michaelidis, T. M., and Hossmann, K. A. (1999) Targeted disruption of the bcl-2 gene in mice exacerbates focal ischemic brain injury. Metab. Brain Dis. 14, 117–124.

    Article  PubMed  CAS  Google Scholar 

  64. Chen, Z., Chua, C. C., Ho, Y. S., Hamdy, R. C., and Chua, B. H. (2001) Overexpression of Bcl-2 attenuates apoptosis and protects against myocardial I/R injury in transgenic mice. Am. J. Physiol. Heart Circ. Physiol. 280, H2313 - H2320.

    PubMed  CAS  Google Scholar 

  65. Selzner, M., Rudiger, H. A., Selzner, N., Thomas, D. W., Sindram, D., and Clavien, P. A. (2002) Transgenic mice overexpressing human Bcl-2 are resistant to hepatic ischemia and reperfusion. J. Hepatol. 36, 218–225.

    Article  PubMed  CAS  Google Scholar 

  66. Parsadanian, A. S., Cheng, Y., Keller-Peck, C. R., Holtzman, D. M., and Snider, W. D. (1998) Bcl-xL is an antiapoptotic regulator for postnatal CNS neurons. J. Neurosci. 18, 1009–1019.

    PubMed  CAS  Google Scholar 

  67. Gibson, M. E., Han, B. H., Choi, J., Knudson, C. M., Korsmeyer, S. J., Parsadanian, M., and Holtzman, D. M. (2001) BAX contributes to apoptotic-like death following neonatal hypoxia-ischemia: evidence for distinct apoptosis pathways. Mol. Med. 7, 644–655.

    PubMed  CAS  Google Scholar 

  68. Plesnila, N., Zinkel, S., Le, D. A., Amin-Hanjani, S., Wu, Y., Qiu, J., et al. (2001) BID mediates neuronal cell death after oxygen/glucose deprivation and focal cerebral ischemia. Proc. Natl. Acad. Sci. USA 98, 15318–15323.

    Article  PubMed  CAS  Google Scholar 

  69. Schielke, G. P., Yang, G. Y., Shivers, B. D., and Betz, A. L. (1998) Reduced ischemic brain injury in interleukin-1 beta converting enzyme-deficient mice. J. Cereb. Blood Flow Metab. 18, 180–185.

    Article  PubMed  CAS  Google Scholar 

  70. Liu, X. H., Kwon, D., Schielke, G. P., Yang, G. Y., Silverstein, F. S., and Barks, J. D. (1999) Mice deficient in interleukin-1 converting enzyme are resistant to neonatal hypoxic-ischemic brain damage. J. Cereb. Blood Flow Metab. 19, 1099–1108.

    Article  PubMed  CAS  Google Scholar 

  71. Friedlander, R. M., Gagliardini, V., Hara, H., Fink, K. B., Li, W., MacDonald, G., et al. (1997) Expression of a dominant negative mutant of interleukin-1 beta converting enzyme in transgenic mice prevents neuronal cell death induced by trophic factor withdrawal and ischemic brain injury. J. Exp. Med. 185, 933–940.

    Article  PubMed  CAS  Google Scholar 

  72. Xu, D., Bureau, Y., McIntyre, D. C., Nicholson, D. W., Liston, P., Zhu, Y., et al. (1999) Attenuation of ischemiainduced cellular and behavioral deficits by X chromosome-linked inhibitor of apoptosis protein overexpression in the rat hippocampus. J. Neurosci. 19, 5026–5033.

    PubMed  CAS  Google Scholar 

  73. Shibata, M., Hisahara, S., Hara, H., Yamawaki, T., Fukuuchi, Y., Yuan, J., et al. (2000) Caspases determine the vulnerability of oligodendrocytes in the ischemic brain. J. Clin. Invest. 106, 643–653.

    Article  PubMed  CAS  Google Scholar 

  74. Rosenbaum, D. M., Gupta, G., D’Amore, J., Singh, M., Weidenheim, K., Zhang, H., and Kessler, J. A. (2000) Fas (CD95/APO-1) plays a role in the pathophysiology of focal cerebral ischemia. J. Neurosci. Res. 61, 686–692.

    Article  PubMed  CAS  Google Scholar 

  75. Green, D. R. (1998) Apoptotic pathways: the roads to ruin. Cell 94, 695–698.

    Article  PubMed  CAS  Google Scholar 

  76. Green, D. R. and Reed, J. C. (1998) Mitochondria and apoptosis. Science 281, 1309–1312.

    Article  PubMed  CAS  Google Scholar 

  77. Ashkenazi, A. and Dixit, V. M. (1998) Death receptors: signaling and modulation. Science 281, 1305–1308.

    Article  PubMed  CAS  Google Scholar 

  78. Piper, H. M., Noll, T., and Siegmund, B. (1994) Mitochondrial function in the oxygen depleted and reoxygenated myocardial cell. Cardiovasc. Res. 28, 1–15.

    Article  PubMed  CAS  Google Scholar 

  79. Ouyang, Y. B., Tan, Y., Comb, M., Liu, C. L., Martone, M. E., Siesjo, B. K., and Hu, B. R. (1999) Survival-and death-promoting events after transient cerebral ischemia: phosphorylation of Akt, release of cytochrome c and activation of caspase-like proteases. J. Cereb. Blood Flow Metab. 19, 1126–1135.

    Article  PubMed  CAS  Google Scholar 

  80. Borutaite, V., Budriunaite, A., Morkuniene, R., and Brown, G. C. (2001) Release of mitochondrial cytochrome c and activation of cytosolic caspases induced by myocardial ischaemia. Biochim. Biophys. Acta 37, 101–109.

    Google Scholar 

  81. Sugawara, T., Noshita, N., Lewen, A., Gasche, Y., Ferrand-Drake, M., Fujimura, M., et al. (2002) Overexpression of copper/zinc superoxide dismutase in transgenic rats protects vulnerable neurons against ischemic damage by blocking the mitochondrial pathway of caspase activation. J. Neurosci. 22, 209–217.

    PubMed  CAS  Google Scholar 

  82. Mikhailov, V., Mikhailova, M., Pulkrabek, D. J., Dong, Z., Venkatachalam, M. A., and Saikumar, P. (2001) Bcl-2 prevents Bax oligomerization in the mitochondrial outer membrane. J. Biol. Chem. 276, 18361–18374.

    Article  PubMed  CAS  Google Scholar 

  83. Cao, G., Minami, M., Pei, W., Yan, C., Chen, D., O’Horo, C., Graham, S. H., and Chen, J. (2001) Intracellular Bax translocation after transient cerebral ischemia: implications for a role of the mitochondrial apoptotic signaling pathway in ischemic neuronal death. J. Cereb. Blood Flow Metab. 21, 321–333.

    Article  PubMed  CAS  Google Scholar 

  84. Levine, A. J. (1997) p53, the cellular gatekeeper for growth and division. Cell 88, 323–331.

    Google Scholar 

  85. Li, Y., Chopp, M., Zhang, Z. G., Zaloga, C., Niewenhuis, L., and Gautam, S. (1994) p53-immunoreactive protein and p53 mRNA expression after transient middle cerebral artery occlusion in rats. Stroke 25, 849–855; discussion 855–866.

    Article  Google Scholar 

  86. Tomasevic, G., Shamloo, M., Israeli, D., and Wieloch, T. (1999) Activation of p53 and its target genes p21(WAF1/ Cip1) and PAG608/Wig-1 in ischemic preconditioning. Brain Res. Mol. Brain Res. 70, 304–313.

    Article  PubMed  CAS  Google Scholar 

  87. Culmsee, C., Zhu, X., Yu, Q. S., Chan, S. L., Camandola, S., Guo, Z., et al. (2001) A synthetic inhibitor of p53 protects neurons against death induced by ischemic and excitotoxic insults, and amyloid beta-peptide. J. Neurochem. 77, 220–228.

    Article  PubMed  CAS  Google Scholar 

  88. Crumrine, R. C., Thomas, A. L., and Morgan, P. F. (1994) Attenuation of p53 expression protects against focal ischemic damage in transgenic mice. J. Cereb. Blood Flow Metab. 14, 887–891.

    Article  PubMed  CAS  Google Scholar 

  89. Bialik, S., Geenen, D. L., Sasson, I. E., Cheng, R., Horner, J. W., Evans, S. M., Lord, E. M., et al. (1997) Myocyte apoptosis during acute myocardial infarction in the mouse localizes to hypoxic regions but occurs independently of p53. J. Clin. Invest. 100, 1363–1372.

    Article  PubMed  CAS  Google Scholar 

  90. Thornborrow, E. C., Patel, S., Mastropietro, A. E., Schwartzfarb, E. M., and Manfredi, J. J. (2002) A conserved intronic response element mediates direct p53-dependent transcriptional activation of both the human and murine bax genes. Oncogene 21, 990–999.

    Article  PubMed  CAS  Google Scholar 

  91. Fortin, A., Cregan, S. P., MacLaurin, J. G., Kushwaha, N., Hickman, E. S., Thompson, C. S., et al. (2001) APAF1 is a key transcriptional target for p53 in the regulation of neuronal cell death. J. Cell Biol. 155, 207–216.

    Article  PubMed  CAS  Google Scholar 

  92. McCurrach, M. E., Connor, T. M., Knudson, C. M., Korsmeyer, S. J., and Lowe, S. W. (1997) bax-deficiency promotes drug resistance and oncogenic transformation by attenuating p53-dependent apoptosis. Proc. Natl. Acad. Sci. USA 94, 2345–2349.

    Google Scholar 

  93. Yin, C., Knudson, C. M., Korsmeyer, S. J., and Van Dyke, T. (1997) Bax suppresses tumorigenesis and stimulates apoptosis in vivo. Nature 385, 637–640.

    Article  PubMed  CAS  Google Scholar 

  94. Bennett, M., Macdonald, K., Chan, S. W., Luzio, J. P., Simari, R., and Weissberg, P. (1998) Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis. Science 282, 290–293.

    Article  PubMed  CAS  Google Scholar 

  95. Marchenko, N. D., Zaika, A., and Moll, U. M. (2000) Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J. Biol. Chem. 275, 16202–16212.

    Article  PubMed  CAS  Google Scholar 

  96. Ding, H. F., Lin, Y. L., McGill, G., Juo, P., Zhu, H., Blenis, J., Yuan, J., and Fisher, D. E. (2000) Essential role for caspase-8 in transcription-independent apoptosis triggered by p53. J. Biol. Chem. 275, 38905–38911.

    Article  PubMed  CAS  Google Scholar 

  97. Olivetti, G., Quaini, F., Sala, R., Lagrasta, C., Corradi, D., Bonacina, E., et al. (1996) Acute myocardial infarction in humans is associated with activation of programmed myocyte cell death in the surviving portion of the heart. J. Mol. Cell Cardiol. 28, 2005–2016.

    Article  PubMed  CAS  Google Scholar 

  98. Saraste, A., Pulkki, K., Kallajoki, M., Henriksen, K., Parvinen, M., and Voipio-Pulkki, L. M. (1997) Apoptosis in human acute myocardial infarction. Circulation 95, 320–323.

    Article  PubMed  CAS  Google Scholar 

  99. Nicotera, P., Leist, M., and Ferrando-May, E. (1998) Intracellular ATP, a switch in the decision between apoptosis and necrosis. Toxicol. Lett. 103, 139–142.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dong, Z., Venkatachalam, M.A. (2003). Apoptosis in Ischemic Disease. In: Yin, XM., Dong, Z. (eds) Essentials of Apoptosis. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-361-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-361-3_15

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5172-7

  • Online ISBN: 978-1-59259-361-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics