Skip to main content

Goitrogens in the Environment

  • Chapter
  • 286 Accesses

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

No less than 200 million members of the world’s human population have the thyroid enlargements known as goiters and associated disorders, resulting in a public health and socioeconomic problem of major proportions (1,2). It is clear that the greatest goitrogenic factor among the world’s population is iodine deficiency. Seventy-five percent of people with goiter live in less developed countries where iodine deficiency is prevalent. The role of iodine deficiency as an environmental determinant in the development of endemic goiter is firmly established. However, iodine deficiency does not always result in endemic goiter (3), and iodine supplementation does not always result in complete eradication and prevention of goiter (1,3–9). Even in the presence of extreme iodine deficiency there is an unequal geographic distribution of goiter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gaitan E, Nelson NC, Poole GV. Endemic goiter and endemic thyroid disorders. World J Surg 1991; 15:205–215.

    Article  PubMed  CAS  Google Scholar 

  2. Gaitan E., Dunn JT. Epidemiology of iodine deficiency. Trends Endocrinol Metab 1992;3:170–175.

    Article  PubMed  CAS  Google Scholar 

  3. Stanbury JB, Hetzel B, eds. Endemic Goiter and Endemic Cretinism. 1980, Wiley & Sons, New York.

    Google Scholar 

  4. Gaitan E, ed. Environmental Goitrogenesis. 1989, CRC Press, Boca Raton, FL.

    Google Scholar 

  5. Gaitan E, Island DP, Liddle GW. Identification of a naturally occurring goitrogen in water. Trans Assoc Am Physicians 1969;82:141–152.

    PubMed  CAS  Google Scholar 

  6. Gaitan E. Water-borne goitrogens and their role in the etiology of endemic goiter. World Rev Nutr Diet 1973;17:53–90.

    PubMed  CAS  Google Scholar 

  7. Gaitan E. Endemic goiter in western Colombia. Ecol Dis 1983;2:295–308.

    PubMed  CAS  Google Scholar 

  8. Gaitan E, Cooksey RC, Gaitan D, Lean J, Meydrech EF. Goiter and autoimmune thyroiditis in iodinesufficient areas, in Scherbaum WA and Bogner U, ed. Autoimmune Thyroiditis. 1991. Springer-Verlag, Berlin, New York, London, pp. 175–184.

    Chapter  Google Scholar 

  9. Gaitan E, Cooksey RC, Legan J, Lindsay RH, Ingbar SH, Medeiros-Neto G. Antithyroid effects in vivo and in vitro of babassu and mandioca: a staple food in goiter areas of Brazil. Eur J Endocrinol 1994;131:138–144.

    Article  PubMed  CAS  Google Scholar 

  10. Ermans AM, Mbulamko NB, Delange F, Ahluwalia R, eds. Role of Cassava in the Etiology of Endemic Goiter and Cretinism, IDRC-136e. Ottawa, Canada, International Development Research Centre, 1983.

    Google Scholar 

  11. Delange R, Ahluwalia R., eds. Cassava Toxicity and Thyroid: Research and Public Health Issues, IDRC-207e. Ottawa, Canada, International Development Research Center, 1983.

    Google Scholar 

  12. Delange F. Cassava and the thyroid. In: Gaitan E, Ed. Environmental Goitrogenesis. CRC Press, Boca Raton, FL, 1989, pp. 173–194.

    Google Scholar 

  13. Gaitan E, Lindsay RH, Reichert RD, et al. Antithyroid and goitrogenic effects of millet: role of C-glycosylflavones. J Clin Endocrinol Metab 1989;68:707–714.

    Article  PubMed  CAS  Google Scholar 

  14. Lindsay RH, Gaitan E, Cooksey RC. Pharmacokinetics and intrathyroidal effects of flavonoids. In: Gaitan E, ed. Environmental Goitrogenesis. CRC Press, Boca Raton, FL, 1989, pp. 43–56.

    Google Scholar 

  15. Gaitan E, Cooksey RC, Legan J, Lindsay RH. Antithyroid effects in vivo and in vitro of vitexin: a C-glucosylflavone in millet. J Clin Endocrinol Metab 1995;80:1144–1147.

    Article  PubMed  CAS  Google Scholar 

  16. Gaitan E, Lindsay RH, Cooksey RC. Millet and the thyroid. In: Gaitan E, ed. Environmental Goitrogenesis. CRC Press, Boca Raton, FL, 1989, pp. 195–204.

    Google Scholar 

  17. Gaitan E. Flavonoids and the thyroid. Nutrition 1996;12:127–129.

    Article  PubMed  CAS  Google Scholar 

  18. Sartelet H, Serghat S, Lobstein A, et al. Flavonoids extracted from fonio millet (Digitaria exilis) reveal potent antithyroid properties. Nutrition 1996;12:100–106.

    Article  PubMed  CAS  Google Scholar 

  19. Gaitan E. Goitrogens. Baillières Clin Endocrinol Metab 1988;2:683–702.

    Article  PubMed  CAS  Google Scholar 

  20. Gaitan E. Goitrogens in food and water. Annu Rev Nutr 1990;10:21–39.

    Article  PubMed  CAS  Google Scholar 

  21. Wenzel BE, Bottazo GF. Advances in thyroidology: cell and immunobiological aspects: thyroid cell growth. Acta Endocrinol 1987;281:215–304.

    Google Scholar 

  22. Dumont JE, Lamy F, Roger P, Maenhaut C. Physiological and pathological regulation of thyroid cell proliferation and differentiation by thyrotropin and other factors. Physiol Rev 1992;72:667–697.

    PubMed  CAS  Google Scholar 

  23. Dumont JE, Maenhaut C, Pirson I, Baptist M, Roger PP. Growth factors controlling the thyroid gland. Baillieres Clin Endocrinol Metab 1991;5:727–554.

    Article  PubMed  CAS  Google Scholar 

  24. Moreno-Reyes R, Boelaert M, El Badwi S, Eltom M, Vanderpas J. Endemic juvenile hypothyroidism in a severe endemic goitre area of Sudan. Clin Endocrinol (Oxf) 1993;38:19–24.

    Article  CAS  Google Scholar 

  25. Ermans AM, Bourdoux P. Antithyroid sulfurated compounds. In: Gaitan E, ed. Environmental Goitrogenesis. CRC Press, Boca Raton, FL., 1989, pp. 15–31.

    Google Scholar 

  26. Bodigheimer K, Novak F, Schoenborn W. Pharmacokinetics and Throtoxicity of the Sodium Nitroprusside Metabolite Thiocyanate. Dtsch Med Wochenschur 1979;104:939–943.

    Article  CAS  Google Scholar 

  27. Roti E, Gnudi A, Braverman LE. The placental transport, synthesis and metabolism of hormones and drugs which affect thyroid function. Endocr Rev 1983;4:131–149.

    Article  PubMed  CAS  Google Scholar 

  28. Walfish PG. Drug and environmentally induced neonatal hypothyroidism. In: Dussault JH, Walker P, eds. Congenital Hypothyroidism. Marcel Dekker, New York, 1983, pp. 303–316.

    Google Scholar 

  29. Chanoine JP, Toppet V, Bourdoux P, Spehl M, Delange F. Smoking during pregnancy: a significant cause of neonatal thyroid enlargement. Br J Obstet Gynaecol 1991;98:65–68.

    Article  PubMed  CAS  Google Scholar 

  30. Christensen SB, Ericsson UB, Janzon L, Tibblin S, Melander A. Influence of cigarette smoking on goiter formation, thyroglobulin, and thyroid hormone levels in women. J Clin Endocrinol Metab 1984;58:615–618.

    Article  PubMed  CAS  Google Scholar 

  31. Muller B, Zulewski H, Huber P, Ratcliffe JG, Staub JJ. Impaired action of thyroid hormone associated with smoking in women with hypothyroidism. N Engl J Med 1995;333:964–969.

    Article  PubMed  CAS  Google Scholar 

  32. Utiger RD. Cigarette smoking and the thyroid. N Engl J Med 1995;333:1001–1002.

    Article  PubMed  CAS  Google Scholar 

  33. Fukayama H, Nasu M, Murakami S, Sugawara M. Examination of antithyroid effects of smoking products in cultured thyroid follicles: only thiocyanate is a potent antithyroid agent. Acta Endocrinol (Copenh) 1992;127:520–525.

    CAS  Google Scholar 

  34. Bertelsen JB, Hegedus L. Cigarette smoking and the thyroid. Thyroid 1994;4:327–331.

    Article  PubMed  CAS  Google Scholar 

  35. Brix TH, Hansen PS, Kyvik KO, Hegedus L. Cigarette smoking and risk of clinically overt thyroid disease: a population-based twin case-control study. Arch Intern Med 2000;160:661–666.

    Article  PubMed  CAS  Google Scholar 

  36. Fukata S, Kuma K, Sugawara M. Relationship between cigarette smoking and hypothyroidism in patients with Hashimoto’s thyroiditis. J Endocrinol Invest 1996;19:607–612.

    PubMed  CAS  Google Scholar 

  37. Ericsson UB, Lindgarde F. Effects of cigarette smoking on thyroid function and the prevalence of goitre, thyrotoxicosis and autoimmune thyroiditis. J Intern Med 1991;229:67–71.

    Article  PubMed  CAS  Google Scholar 

  38. Gasparoni A, Autelli M, Ravagni-Probizer MF, et al. Effect of passive smoking on thyroid function in infants. Eur J Endocrinol 1998;138:379–382.

    Article  PubMed  CAS  Google Scholar 

  39. Utiger RD. Effects of smoking on thyroid function. Eur J Endocrinol 1998;138:368–369.

    Article  PubMed  CAS  Google Scholar 

  40. Gaitan E, Cooksey RC, Matthews D, Presson R. In vitro measurement of antithyroid compounds and environmental goitrogens. J Clin Endocrinol Metab 1983;56:767–773.

    Article  PubMed  CAS  Google Scholar 

  41. Gaitan E, Cooksey RC, Lindsay RH. Factors other than iodine deficiency in endemic goiter: goitrogens and protein calorie malnutrition. In: Viteri FE, ed. Towards the Eradication of Endemic Goiter, Cretinism and Iodine Deficiency. Pan American Health Organization, Washington, DC, 1986, pp. 28–45.

    Google Scholar 

  42. Delange F, Vigneri R, Trimarchi F, et al. Etiological factors of endemic goiter in north-eastern Sicily. J Endocrinol Invest 1978;1:137–142.

    PubMed  CAS  Google Scholar 

  43. Cliff J, Lundquist P, Rosling H, Sorbo B, Wide L. Thyroid function in a cassava-eating population affected by epidemic spastic paraparesis. Acta Endocrinol (Copenh) 1986;113:523–528.

    CAS  Google Scholar 

  44. Delange F, Vigerni R, Trimarchi F, Filetti S, et al. Nutritional factors involved int he goitrogenic action of cassava. In: Ahluwalia R, ed. Cassava Toxicity and the Thyroid: Research and Public Health Issues, IDRC-207e. International Development Research Centre, Ottowa, Canada, 1983, pp. 17–26.

    Google Scholar 

  45. Lindsay RH, Hill JB, Gaitan E, Cooksey RC, Jolley RL. Antithyroid effects of coal-derived pollutants. J Toxicol Environ Health 1992;37:467–481.

    Article  PubMed  CAS  Google Scholar 

  46. Longnecker MP, Gladen BC, Patterson DG Jr, Rogan WJ. Polychlorinated biphenyl (PCB) exposure in relation to thyroid hormone levels in neonates. Epidemiology,2000;11:249–254.

    Article  PubMed  CAS  Google Scholar 

  47. Hulse JH. Polyphenols in Cereals and Legumes. IDRC-145e, Ottawa, Canada, International Development Research Center, 1980.

    Google Scholar 

  48. Cody V, Middleton E Jr., Harborne JB. Plant Flavonoids in Biology and Medicine: Biochemical, Pharmacological and Structure-Activity Relationships. 1986, Alan R. Liss, New York.

    Google Scholar 

  49. Cody V, Middleton E Jr, Harborne JB, Beretz A. Plant Flavonoids in Biology and Medicine II: Biochemical, Cellular and Medicinal Properties. 1988, New York, Alan R. Liss.

    Google Scholar 

  50. Cody V. Physical and conformational properties of flavonoids. In: Gaitan E, ed. Environmental Goitrogenesis. CRC Press, Boca Raton, FL, 1989, pp. 35–42.

    Google Scholar 

  51. Cody V, Koehrle J, Hesch RD. Structure-activity relationships of flavonoids as inhibitors of iodothyronine deiodinase. In: Gaitan E, ed. Environmental Goitrogenesis. CRC Press, Boca Raton, FL, 1989, pp. 57–69.

    Google Scholar 

  52. Isozaki O, Emoto N, Miyakawa M, Sato Y. Heat shock protein (humic substances P) regulation of iodide uptake in rat FRTL-5 thyroid cells. Thyroid 1993;3:T-78.

    Article  Google Scholar 

  53. Tezelman S, Siperstein A, Duh QY, Clark OH. Crosstalk between epidermal growth factor thyrotropin induced desensitization of adenylate cyclase in human neoplastic thyroid cells. Thyroid 1993;3:T-79.

    Google Scholar 

  54. Osman AK, Fatah AA. Factors other than iodine deficiency contributing to the endemicity of goitre in Darfur Province (Sudan). J Hum Nutr 1981;35:302–309.

    PubMed  CAS  Google Scholar 

  55. Eltom M, Salih MA, Bostrom H, Dahlberg PA. Differences in aetiology and thyroid function in endemic goitre between rural and urban areas of the Darfur region of the Sudan. Acta Endocrinol (Copenh) 1985;108:356–360.

    CAS  Google Scholar 

  56. Konde M, Ingenbleek Y, Daffe M, Sylla B, Barry O, Diallo S. Goitrous endemic in Guinea. Lancet 1994;344:1675–1678.

    Article  PubMed  CAS  Google Scholar 

  57. Gaitan E. Intervention policy in endemic goitre areas. Thyroidology 1990;2:113–119.

    PubMed  CAS  Google Scholar 

  58. McCarrison R. The goitrogenic action of soya-bean and ground nuts. Indian J Med Res 1934;21: 179–181.

    Google Scholar 

  59. Shepard DH, Pyne GE, Kirschvink JF, McLean M. Soybean goiter: report of three cases. N Engl J Med 1960;262:1099–1103.

    Article  Google Scholar 

  60. Pinchera A, MacGillivray MH, Crawford JD, Freeman AG. Thyroid refractoriness in an athyreotic cretin fed soybean formula. N Engl J Med 1965;273:83–87.

    Article  PubMed  CAS  Google Scholar 

  61. Fitzpatrick M. Soy formulas and the effects of isoflavones on the thyroid. NZ Med J 2000;113:24–26.

    CAS  Google Scholar 

  62. Divi RL, Chang HC, Doerge DR. Anti-thyroid isoflavones from soybean: isolation, characterization, and mechanisms of action. Biochem Pharmacol 1997;54:1087–1096.

    Article  PubMed  CAS  Google Scholar 

  63. Coward L, Kirk M, Albin N, Barnes S. Analysis of plasma isoflavones by reversed-phase HPLC-multiple reaction ion monitoring-mass spectrometry. Clin Chim Acta 1996;247:121–142.

    Article  PubMed  CAS  Google Scholar 

  64. Pitt WW, Jolley RL, and Jones G. Characterization of organics in aqueous effluents of coal conversion plants. Environ Int 1979;2:167–171.

    Article  CAS  Google Scholar 

  65. Klibanov AM, Tu T, Scott KP. Peroxidase-catalyzed removal of phenols from coal conversion waste waters. Science 1983;221:259–261.

    Article  PubMed  CAS  Google Scholar 

  66. Moskowitz PD, Morris SC, Fischer H, Thode HC Jr, Hamilton LD. Synthetic-fuel plants: potential tumor risks to public health. Risk Anal 1985;5:181–194.

    Article  PubMed  CAS  Google Scholar 

  67. Gaitan E. Thyroid disorders: possible role of environmental pollutants and naturally occrring agents. Am Chem Soc Div Environ Chem 1986;26:58–85.

    Google Scholar 

  68. Lindsay RH, Gaitan E. Polyhydroxyphenols and phenol derivatives. In: Gaitan E, ed. Environmental Goitrogenesis. CRC Press, Boca Raton, FL, 1989, pp. 73–93.

    Google Scholar 

  69. Gaitan E, Cooksey RC, Legan J, Cruse JM, Lindsay RH, Hill J. Antithyroid and goitrogenic effects of coal-water extracts from iodine-sufficient goiter areas. Thyroid 1993;3:49–53.

    Article  PubMed  CAS  Google Scholar 

  70. Cooksey RC, Gaitan E, Lindsay RH, Hill JB, Kelly K. Humic substances: a possible source of environmental goitrogens. Org Geochem 1985;8:77–80.

    Article  CAS  Google Scholar 

  71. Lindsay RH. Hydroxypyridines. In: Gaitan E, ed., Environmental Goitrogenesis. CRC Press, Boca Raton, FL, 1989, pp. 97–104.

    Google Scholar 

  72. Peakall DB. Phthalate esters: occurrence and biological effects. Residue Rev 1975;54:1–41.

    Article  PubMed  CAS  Google Scholar 

  73. Proceedings of the conference on phthalates. Environ Health Perspect 1982;45:1–156.

    Google Scholar 

  74. Gaitan E. Phthalate esters and phthalic acid derivatives. In: Gaitan E, ed. Environmental Goitrogenesis. CRC Press, Boca Raton, FL, 1989, pp. 107–112.

    Google Scholar 

  75. Lin CC, Chen TW, Ng YY, Chuu PH, Yang WC. Thyroid dysfunction and nodular goiter in hemodialysis and peritoneal dialysis. Perit Dial Int 1998;18:516–521.

    PubMed  CAS  Google Scholar 

  76. Gaitan E, Medina P, DeRouen TA, Sun Zia M. Goiter prevalence and bacterial contamination of water supplies. J Clin Endocrinol Metab 1980;51:957–961.

    Article  PubMed  CAS  Google Scholar 

  77. Hinton RH, Mitchell FE, Mann A, et al. Effects of phthalic acid esters on the liver and thyroid. Environ Health Perspect 1986;70:195–210.

    Article  PubMed  CAS  Google Scholar 

  78. Colon I, Caro D, Bourdony CJ, Rosario O. Identification of phthalate esters in the serum of young Puerto Rican girls with premature breast development. Environ Health Perspect 2000;108:895–900.

    Article  PubMed  CAS  Google Scholar 

  79. Buckley EH. Accumulation of airborne polychlorinated biphenyls in foliage. Science 1982;216:520–522.

    Article  PubMed  CAS  Google Scholar 

  80. Barsano CP. Polyhalogenated and polycyclic aromatic hydrocarbons. In: Gaitan E, ed. Environmental Goitrogenesis. CRC Press, Boca Raton, FL, 1989, pp. 115–136.

    Google Scholar 

  81. Committee SDW. Drinking Water and Health. National Academy Press, Washington, DC, 1980.

    Google Scholar 

  82. Timmis KN, Steffan RJ, Unterman R. Designing microorganisms for the treatment of toxic wastes. Annu Rev Microbiol 1994;48:525–557.

    Article  PubMed  CAS  Google Scholar 

  83. Han S, Eltis LD, Timmis KN, Muchmore SW, Bolin JT. Crystal structure of the biphenyl-cleaving estradiol dioxygenase from a PCB-degrading pseudomonad. Science 1995;270:976–980.

    Article  PubMed  CAS  Google Scholar 

  84. Gaitan E. Disorders of the thyroid. In: Tarcher AB, ed. Principles and Practice of Environmental Medicine. Plenum Press, New York, 1992, pp. 371–387.

    Google Scholar 

  85. Lunden A, Noren K. Polychlorinated naphthalenes and other organochlorine contaminants in Swedish human milk, 1972–1992. Arch Environ Contam Toxicol 1998;34:414–423.

    Article  PubMed  CAS  Google Scholar 

  86. Kimbrough RD, Krouskas CA. Polychlorinated biphenyls, dibenzo-p-dioxins, and dibenzofurans and birth weight and immune and thyroid function in children. Regul Toxicol Pharmacol 2001;34:42–52.

    Article  PubMed  CAS  Google Scholar 

  87. Bahn AK, Mills JL, Synder PJ, et al. Hypothyroidism in workers exposed to polybrominated biphenyls. N Engl J Med 1980;302:31–33.

    Article  PubMed  CAS  Google Scholar 

  88. Emmett EA, Maroni M, Jefferys J, Schmith J, Levin BK, Alvares A. Studies of transformer repair workers exposed to PCBs: II. Results of clinical laboratory investigations. Am J Ind Med 1988;14:47–62.

    CAS  Google Scholar 

  89. Langer P, Tajtakova M, Fodor G, et al. Increased thyroid volume and prevalence of thyroid disorders in an area heavily polluted by polychlorinated biphenyls. Eur J Endocrinol 1998;139:402–409.

    Article  PubMed  CAS  Google Scholar 

  90. Koopman-Esseboom C, Morse DC, Weisglas-Kuperus N, et al. Effects of dioxins and polychlorinated biphenyls on thyroid hormone status of pregnant women and their infants. Pediatr Res 1994;36:468–473.

    Article  PubMed  CAS  Google Scholar 

  91. Hagmar L, Rylander L, Dyremark E, Klasson-Wehler E, Erfurth EM. Plasma concentrations of persistent organochlorines in relation to thyrotropin and thyroid hormone levels in women. Int Arch Occup Environ Health 2001;74:184–188.

    Article  PubMed  CAS  Google Scholar 

  92. Hagmar L, Bjork J, Sjodin A, Bergman A, Erfurth EM. Plasma levels of persistent organohalogens and hormone levels in adult male humans. Arch Environ Health 2001;56:138–143.

    Article  PubMed  CAS  Google Scholar 

  93. Sala M, Sunyer J, Herrero C, To-Figueras J, Grimalt J. Association between serum concentrations of hexachlorobenzene and polychlorobiphenyls with thyroid hormone and liver enzymes in a sample of the general population. Occup Environ Med 2001;58:172–177.

    Article  PubMed  CAS  Google Scholar 

  94. Osius N, Karmaus W, Kruse H, Witten J. Exposure to polychlorinated biphenyls and levels of thyroid hormones in children. Environ Health Perspect 1999;107:843–849.

    Article  PubMed  CAS  Google Scholar 

  95. SDW Committee.,Drinking Water and Health. National Academy Press, Washington, DC, 1977.

    Google Scholar 

  96. Simonich SL, Hites RA. Global distribution of persistent organochlorine compounds. Science 1995; 269:1851–1854.

    Article  PubMed  CAS  Google Scholar 

  97. Rogan WJ, Bagniewska A, Damstra T. Pollutants in breast milk. N Engl J Med 1980;302:1450–1453.

    Article  PubMed  CAS  Google Scholar 

  98. Weetman AP, McGregor AM. Autoimmune thyroid disease: further developments in our understanding. Endocr Rev 1994;15:788–830.

    PubMed  CAS  Google Scholar 

  99. Spaulding S. Lithium effects on the thyroid gland. In: Gaitan E, ed. Environmental Goitrogenesis. CRC Press, Boca Raton, FL, 1989, pp. 149–157.

    Google Scholar 

  100. Lazarus JH, ed. Endocrine and Metabolic Effects of Lithium. 1986, New York, Plenum Press.

    Google Scholar 

  101. Dich J, Jarvinen R, Knekt P, Penttila PL. Dietary intakes of nitrate, nitrite and NDMA in the Finnish Mobile Clinic Health Examination Survey. Food Addit Contam 1996;13:541–552.

    Article  PubMed  CAS  Google Scholar 

  102. Meah MN, Harrison N, Davies A. Nitrate and nitrite in foods and the diet. Food Addit Contam 1994;11:519–532.

    Article  PubMed  CAS  Google Scholar 

  103. Vaessen HA, Schothorst RC. The oral nitrate and nitrite intake in The Netherlands: evaluation of the results obtained by HPIC analysis of duplicate 24-hour diet samples collected in 1994. Food Addit Contam 1999;16:181–188.

    Article  PubMed  CAS  Google Scholar 

  104. Greer MA, Stott AK, Milne KA. Effects of thiocyanate, perchlorate and other anions on thyroidal iodine metabolism. Endocrinology 1966;79:237–247.

    Article  PubMed  CAS  Google Scholar 

  105. Jahreis G, Hesse V, Schone F, Hennig A, Gruhn K. Effect of chronic dietary nitrate and different iodine supply on porcine thyroid function, somatomedin-C-level and growth. Exp Clin Endocrinol 1986;88:242–248.

    Article  PubMed  CAS  Google Scholar 

  106. Bloomfield RA, Welsch CW. Effect of dietary nitrate on thyroid function. Science 1961;134:160.

    Article  Google Scholar 

  107. Gatseva P, Marinova S, Vurtigova L. Changes in the thyroid and other internal organs of experimental animals exposed to a drinking regimen with a high nitrate content. Probl Khig 1992;17:43–47.

    PubMed  CAS  Google Scholar 

  108. Allen AL, Townsend HG, Doige CE, Fretz PB. A case-control study of the congenital hypothyroidism and dysmaturity syndrome of foals. Can Vet J 1996;37:349–351; 354–358.

    Google Scholar 

  109. Bloomfield RA, Welsch VW, Muhrer ME. Overcoming nitrate-induced thyroid inhibition with iodide. J. Anim Sci 1964;23:207.

    Google Scholar 

  110. Horing H, Dobberkau H, Seffner W. Antithyroidale Umweltchemilakien. Gesamte Hyg 1988; 34:170–173.

    CAS  Google Scholar 

  111. Vladeva S., Gatseva P, Gopina G. Comparative analysis of results from studies of goitre in children from Bulgarian villages with nitrate pollution of drinking water in 1995 and 1998. Cent Eur J Public Health 2000;8:179–181.

    PubMed  CAS  Google Scholar 

  112. van Maanen JM, van Dijk A, Mulder K, et al. Consumption of drinking water with high nitrate levels causes hypertrophy of the thyroid. Toxicol Lett,1994;72:365–374.

    Article  PubMed  Google Scholar 

  113. Stanbury JB, Wyngaarten JB. Effects of perchlorate on the human thyroid gland. Metabolism 1952; 1:533–539.

    PubMed  CAS  Google Scholar 

  114. Godley AF, Stanbury JB. Preliminary experience in the treatment of hyperthyroidism with potassium perchlorate. J Clin Endocrinol 1954;14:70–78.

    Article  CAS  Google Scholar 

  115. Wenzel KW, Lente JR. Similar effects of thionamide drugs and perchlorate on thyroid-stimulating immunoglobulins in Graves’ disease: evidence against an immunosuppressive action of thionamide drugs. J Clin Endocrinol Metab 1984;58:62–69.

    Article  PubMed  CAS  Google Scholar 

  116. Yamada T. Effects of perchlorate and other anions on thyroxine metabolism in the rat. Endocrinology 1967;81:1285–1290.

    Article  PubMed  CAS  Google Scholar 

  117. Gibbs JP, Ahmad R, Crump KS, et al. Evaluation of a population with occupational exposure to airborne ammonium perchlorate for possible acute or chronic effects on thyroid function. J Occup Environ Med 1998:40:1072–1082.

    PubMed  CAS  Google Scholar 

  118. Lamm SH, Braverman LE, Li FX, Richman K, Pino S, Howearth G. Thyroid health status of ammonium perchlorate workers: a cross-sectional occupational health study. J Occup Environ Med 1999;41: 248–260.

    Article  PubMed  CAS  Google Scholar 

  119. Perchlorate Environmental Contamination: Toxicological Review and Risk Characterization Based on Emerging Information. Publication NCEA-1–0503. Washington, DC, U.S., Environmental Protection Agency, 1998.

    Google Scholar 

  120. Lamm SH, Doemland M. Has perchlorate in drinking water increased the rate of congenital hypothyroidism? J Occup Environ Med, 1999;41:409–411.

    Article  PubMed  CAS  Google Scholar 

  121. Li Z, Li FX, Byrd D, et al. Neonatal thyroxine level and perchlorate in drinking water. J Occup Environ Med 2000;42:200–205.

    Article  PubMed  CAS  Google Scholar 

  122. Xiao Li F, Byrd DM, Deyhle GM, et al. Neonatal thyroid-stimulating hormone level and perchlorate in drinking water. Teratology 2000;62:429–431.

    Article  Google Scholar 

  123. Brechner RJ, Parkhurst GD, Humble WO, Brown MB, Herman WH. Ammonium perchlorate contamination of Colorado River drinking water is associated with abnormal thyroid function in newborns in Arizona. J Occup Environ Med 2000;42:777–782.

    Article  PubMed  CAS  Google Scholar 

  124. Crump C, Michaud P, Tellez R, et al. Does perchlorate in drinking water affect thyroid function in newborns or school-age children? J Occup Environ Med 2000;42:603–612.

    Article  PubMed  CAS  Google Scholar 

  125. Li FX, Squartsoff L, Lamm SH. Prevalence of thyroid diseases in Nevada counties with respect to perchlorate in drinking water. J Occup Environ Med 2001;43:630–634.

    Article  PubMed  CAS  Google Scholar 

  126. Chang S, Lai S, Lamm S. Neurobehavioral diseases in Nevada counties with respect to perchlorate in drinking water. Tetrology (under review).

    Google Scholar 

  127. Lawrence JE, Lamm SH, Pino S, Richman K, Braverman LE. The effect of short-term low-dose perchlorate on various aspects of thyroid function. Thyroid 2000;10:659–663.

    Article  PubMed  CAS  Google Scholar 

  128. Lawrence J, Lamm S, Braverman LE. Low-dose perchlorate (3 mg daily) and thyroid function. Thyroid 2001;11:295.

    Article  PubMed  CAS  Google Scholar 

  129. Greer MA, Goodman G, Pleus RC, Greer SE. Health effects assessment for environmental perchlorate contamination: The dose response for inhibition of thyroidal radioiodine uptake in humans. Environ Health Perspect 2002;110:927–937.

    Article  PubMed  CAS  Google Scholar 

  130. Soldin OP, Braverman LE, Lamm SH. Perchlorate clinical pharmacology and human health: a review. Ther Drug Monit 2001;23:316–331.

    Article  PubMed  CAS  Google Scholar 

  131. Siglin JC, Mattie DR, Dodd DE, Hildebrandt PK, Baker WH. A 90-day drinking water toxicity study in rats of the environmental contaminant ammonium perchlorate. Toxicol Sci 2000;57:61–74.

    Article  PubMed  CAS  Google Scholar 

  132. York RG, Brown WR, Girard MF, Dollarhide JS. Two-generation reproduction study of ammonium perchlorate in drinking water in rats evaluates thyroid toxicity. Int J Toxicol 2001;20:183–197.

    Article  PubMed  CAS  Google Scholar 

  133. York RG, Brown WR, Girard MF, Dollarhide JS. Oral (drinking water) developmental toxicity study of ammonium perchlorate in New Zealand White rabbits. Int J Toxicol 2001;20:199–205.

    Article  PubMed  CAS  Google Scholar 

  134. Hooth MJ, Deangelo AB, George MH, et al. Subchronic sodium chlorate exposure in drinking water results in a concentration-dependent increase in rat thyroid follicular cell hyperplasia. Toxicol Pathol 2001;29:250–259.

    Article  PubMed  CAS  Google Scholar 

  135. Bercz JP, Jones L, Garner L, Murray D, Ludwig DA, Boston J. Subchronic toxicity of chlorine dioxide and related compounds in drinking water in the nonhuman primate. Environ Health Perspect 1982;46:47–55.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Engel, A., Lamm, S.H. (2003). Goitrogens in the Environment. In: Braverman, L.E. (eds) Diseases of the Thyroid. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-352-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-352-1_15

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-405-0

  • Online ISBN: 978-1-59259-352-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics