Advertisement

Linking Biochemistry, Vascular Biology, and Clinical Events in Acute Coronary Syndromes

  • Richard C. Becker
  • Annemarie Armani
Chapter
Part of the Contemporary Cardiology book series (CONCARD)

Abstract

The clinical expression of disease recognized as acute coronary syndromes represents the culmination of many diverse and complex cellular, biochemical, and biologic processes within the coronary arterial vasculature. Although unique in their own right, atherosclerosis and thrombosis share common origins and are intimately linked by a common denominator, inflammation. An increasing knowledge base and in-depth understanding of vascular biology has provided a clearer view of atherothrombosis and, with it, the platform for targeted therapies and management.

Keywords

Acute Coronary Syndrome Atherosclerotic Plaque Unstable Angina Tissue Factor Plaque Rupture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Furchgott RF, Zawadski JV.: The obligatory role of endothelial cells in the relaxation of arterial smooth muscle cells by acetycholine. Nature 1980; 288: 373–376.PubMedCrossRefGoogle Scholar
  2. 2.
    Marcum JA, Rosenberg RD.: Heparin-like molecules with anticoagulant activity are synthesized by cultured endothelial cells. Biochem Biophys Res Commun 1985; 126: 365–372.PubMedCrossRefGoogle Scholar
  3. 3.
    Vogel KG, Peterson DW.: Extracellular, surface and intracellular proteglycans produced by human embryo lung fibroblasts in culture. J Biol Chem 1981; 256: 13235–13240.PubMedGoogle Scholar
  4. 4.
    Jarvelainen HT, Kinsella MG, Wight TN, Sandell LJ.: Differential expression of small chondroitin/dermatan sulfate proteoglycans, PG-I/biglycan and PG-II/decorin, by vascular smooth muscle and endothelial cells in culture. J Biol Chem 1991; 266: 23274–23279.PubMedGoogle Scholar
  5. 5.
    Kresse H, Hausser H, Schonherr E, Bittner K.: Biosynthesis and interactions of small chondroitin/dermatan sulfate proteoglycans. Eur J Clin Chem Clin Biochem 1994; 32: 259–266.PubMedGoogle Scholar
  6. 6.
    Heeb MJ, Mesters RM, Tans G, Rosing J, Griffin JH.: Binding of protein S to factor Va associated with inhibition of prothrombinase that is independent of activated protein C. J Biol Chem 1993; 268: 2872–2877.PubMedGoogle Scholar
  7. 7.
    Broze GJ Jr, Warren LA, Novotny WF, Higuchi DA, Girard TJ, Miletich JP.: The lipoprotein-associated coagulation inhibitor that inhibits factor VII-tissue factor complex also inhibits factor Xa: insight into its possible mechanism of action. Blood 1988; 71: 335–343.PubMedGoogle Scholar
  8. 8.
    van’t Veer C, Hackeng TM, Delahaye C, Sixma JJ, Bouma BN.: Activated factor X and thrombin formation triggered by tissue factor on endothelial cell matrix in a flow model: effect of the tissue factor pathway inhibitor. Blood 1994; 84: 1132–1139.Google Scholar
  9. 9.
    Kaiser B, Hoppensteadt DA, Jeske W, Wun TC, Fareed J.: Inhibitory effects ofTFPI of thrombin and factor Xa generation in vitro-modulatory action of glycosaminoglycans. Thromb Res 1994; 75: 609–619.PubMedCrossRefGoogle Scholar
  10. 10.
    Sprecher CA, Kisiel W, Mathewes S, Foster DC.: Molecular cloning, expression, and partial characterization of a second human tissue-factor-pathway inhibitor. Proc Natl Acad Sci USA 1994; 91: 3353–3357.PubMedCrossRefGoogle Scholar
  11. 11.
    Petersen LC, Sprecher CA, Foster DC, Blumberg H, Hamamoto T, Kisiel W.: Inhibitory properties of a novel human Kunitz-type protease inhibitor homologous to tissue factor pathway inhibitor. Biochemistry 1996; 35: 266–272.PubMedCrossRefGoogle Scholar
  12. 12.
    Tait JF, Gibson D, Fujikawa K.: Phospholipid binding properties of human placental anticoagulant protein-I, a member of the lipocortin family. J Biol Chem 1989; 264: 7944–7951.PubMedGoogle Scholar
  13. 13.
    Yamamoto H, Bossaller C, Cartwright J Jr, Henry PD.: Videomicroscopic demonstration of defective cholinergic arteriolar vasodilation in atherosclerotic rabbit. J Clin Invest 1988; 81: 1752–1758.PubMedCrossRefGoogle Scholar
  14. 14.
    Sellke FW, Armstrong ML, Harrison DG.: Endothelium-dependent vascular relaxation is abnormal in the coronary microcirculation of atherosclerotic primates. Circulation 1990; 81: 1585–1593.Google Scholar
  15. 15.
    Zeiher AM, Drexler H, Wollschlager H, Just H.: Endothelial dysfunction of the coronary microvasculature is associated with impaired coronary blood flow regulation in patients with early atherosclerosis. Circulation 1991; 84: 1984–1992.PubMedCrossRefGoogle Scholar
  16. 16.
    Stern DM, Drillings M, Nossel HL, Harlet-Jensen A, LaGamma KS, Owen J.: Binding of factors IX and Ixa to cultured endothelial cells. Proc Natl Acad Sci USA 1983; 80: 4119–4123.PubMedCrossRefGoogle Scholar
  17. 17.
    Stern DM, Nawroth PP, Kisiel W, Vehar G, Esmon CT.: The binding of factor Ixa to cultured bovine aortic endothelial cells. J Biol Chem 1985; 260: 6717–6722.PubMedGoogle Scholar
  18. 18.
    Colucci M, Balconi G, Lorenzet R, Pietra A, Locati D, Donati MB, et al.: Cultured human endothelial cells generate tissue factor in response to endotoxin. J Clin Invest 1983; 71: 1893–1896.PubMedCrossRefGoogle Scholar
  19. 19.
    Yang Z, Arnet U, Bauer E, et al.: Thrombin-induced endothelium-dependent inhibition and direct activation of platelet-vessel wall interaction: role of prostacyclin, nitric oxide, and thromboxane A2. Circulation 1994; 86: 2266–2272.CrossRefGoogle Scholar
  20. 20.
    Caplan BA, Gerrity RG, Schwartz CJ.: Endothelial cell morphology in focal areas of in vivo Evans Blue uptake in the young pig aorta. I. Quantitative light microscopic findings. Exp Mol Pathol 1974; 21: 102–117.PubMedCrossRefGoogle Scholar
  21. 21.
    Jauchem JR, Lopez M, Sprague EA, Schwartz CJ.: Mononuclear cell chemoattractant activity from cultured arterial smooth muscle cells. Exp Mol Pathol 1982; 37: 166–174.PubMedCrossRefGoogle Scholar
  22. 22.
    Schwartz CJ, Valente AJ, Sprague EA, Kelley JL, Suenram CA, Rozek MM.: Atherosclerosis as an inflammatory process: the roles of the monocyte-macrophage. Aim NY Acad Sci 1985; 454: 115–120.CrossRefGoogle Scholar
  23. 23.
    Schwartz CJ, Valente AJ, Sprague EA, Kelley JL, Suenram CA, Graves DT, et al.: Monocyte-macrophage participation in atherogenesis: inflammatory components of pathogenesis. Semin Thromb Hemost 1986; 12: 79–86.PubMedCrossRefGoogle Scholar
  24. 24.
    Goldstein JL, Ho YK, Basu SK, Brown MS.: Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci USA 1979; 76: 333–337.PubMedCrossRefGoogle Scholar
  25. 25.
    Brown MS, Basu SK, Falck JR, Ho YK, Goldstein JL.: The scavenger cell pathway for lipoprotein degradation: specificity of the binding site that mediates the uptake of negatively charged LDL by macrophages. J Supramol Str 1980; 13: 67–81.CrossRefGoogle Scholar
  26. 26.
    Khoo JC, Miller E, McLoughlin P, Steinberg D.: Enhanced macrophage uptake of low density lipoprotein after self-aggregation. Arteriosclerosis 1988; 8: 348–358.PubMedCrossRefGoogle Scholar
  27. 27.
    Frank JS, Fogelman AM.: Ultrastructure of the intima in WHHL and cholesterol-fed rabbit aortas prepared by ultra-rapid freezing and freeze-etching. J Lipid Res 1989; 30: 34967–34978.Google Scholar
  28. 28.
    Guyton JR, Klemp KF, Mims MR: Altered ultrastructural morphology of self-aggregated low density lipoproteins: coalescence of lipid domains forming droplets and vesicles. J Lipid Res 1991; 32: 953–962.PubMedGoogle Scholar
  29. 29.
    Lovanen PT, Kokkonen JO.: Modification of low density lipoproteins by secretory granules of rat serosal mast cells. J Biol Chem 1991; 266: 4430–4436.Google Scholar
  30. 30.
    Steinbrecher UP, Lougheed M.: Scavenger receptor-independent stimulation of cholesterol esterification in macrophages by low density lipoproteins extracted from human aortic intima. Arteroscler Thromb 1992; 12: 608–625.CrossRefGoogle Scholar
  31. 31.
    Xu XX, Tabas I.: Sphingomyelinase enhances low density lipoprotein uptake and ability to induce cholesterl ester accumulation in macrophages. J Biol Chem 1991; 266: 24849–24858.PubMedGoogle Scholar
  32. 32.
    Tirzui D, Bobrian A, Tasca C, Simionescu M, Simionescu N.: Intimal thickenings of human aorta contain modified reassembled lipoproteins. Atherosclerosis 1995; 112: 101–114.CrossRefGoogle Scholar
  33. 33.
    Hollander W, Colombo MA, Kirkpatrick B, Paddock J.: Soluble proteins in the human atherosclerotic plague: with special reference to immunoglobulins, C3-complement component, alpha I-antitrypsin and alpha 2-macroglobulin. Atherosclerosis 1979; 34: 391–405.PubMedCrossRefGoogle Scholar
  34. 34.
    Rus HG, Niculescu F, Constantinescu E, Cristea A, Vlaicu R.: Immunoelectron-microscopic localization of the terminal C5b-9 complement complex in human atherosclerotic fibrous plaque. Atherosclerosis 1986; 61: 35–42.PubMedCrossRefGoogle Scholar
  35. 35.
    Reynolds GD, Vance RP.: C-reactive protein immunohistochemical localization in normal and atherosclerotic human aortas. Arch Pathol Lab Med 1987; 111: 265–269.PubMedGoogle Scholar
  36. 36.
    Hoff HF, Heideman CL, Gaubatz JW, Scott DW, Titus JL, Gotto AM Jr.: Correlation of apolipoprotein B retention with the structure of atherosclerotic plaques from human aortas. Lab Invest 1978; 38: 560–567.PubMedGoogle Scholar
  37. 37.
    Hansson GK, Seifert PS.: Complement receptors and regulatory proteins in human atherosclerotic lesions. Arteriosclerosis 1989; 9: 802–811.PubMedCrossRefGoogle Scholar
  38. 38.
    Seifert PS, Hugo F, Hansson GK, Bhakdi S.: Prelesional complement activation in experimental atherosclerosis. Lab Invest 1989; 60: 747–754.PubMedGoogle Scholar
  39. 39.
    Saikku P, Mattila K, Nieminen MS, et al.: Serological evidence of an association of a novel Chlamydia, TWAR, with chronic coronary heart disease and acute myocardial infarction. Lancet 1988; 2: 983–986.PubMedCrossRefGoogle Scholar
  40. 40.
    Gupta S, Leathrm EW, Carrington D, et al.: Elevated Chlamydia pneumoniae antibodies, cardiovascular events, and azithromycin in male survivors of myocardial infarction. Circulation 1997; 96: 404–407.PubMedCrossRefGoogle Scholar
  41. 41.
    Gaydos CA, Summersgil JT, Sahney NN, et al.: Replication of Chlamydia pneumoniae in vitro in human macrophages, endothelial cells, and aortic artery smooth muscle cells. Infect Immun 1996; 64: 1614–1620.PubMedGoogle Scholar
  42. 42.
    Speir E, Huang ES, Modali R, et al.: Interaction of human cytomegalovirus with p53: possible role in coronary restenosis. Scand J Infect Dis Suppl 1995; 99: 78–81.PubMedGoogle Scholar
  43. 43.
    Little WC, Constantinescu M, Applegate RJ, et al.: Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation 1988; 78: 1157–1166.PubMedCrossRefGoogle Scholar
  44. 44.
    Davies MJ, Thomas AC.: Plaque fissuring the cause of acute myocardial infarction, sudden ischemic death and crescendo angina. Br Heart J 1985; 53: 363–373.PubMedCrossRefGoogle Scholar
  45. 45.
    Davies MJ, Richardson PD, Woolf N, Katz DR, Mann J.: Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Br Heart J 1993; 69: 377–381.PubMedCrossRefGoogle Scholar
  46. 46.
    Moreno PR, Falk E, Palacios IF, Newell JB, Fuster V, Fallon JT.: Macrophage infiltration in acute coronary syndromes: implications for plaque rupture. Circulation 1994; 90: 775–778.PubMedCrossRefGoogle Scholar
  47. 47.
    Galis Z, Sukhova G, Kranzhofer R, Clark S, Libby P.: Macrophage foam cells from experimental atheroma constitutively produce matrix-degrading proteinases. Proc Natl Acad Sci USA 1995; 92: 402–406.PubMedCrossRefGoogle Scholar
  48. 48.
    Brown DL, Hibbs MS, Kearney M, Loushin C, Isner JM.: Identification of 92–1(D gelatinase in human coronary atherosclerotic lesions. Association of active enzyme synthesis with unstable angina. Circulation 1995; 91: 2125–2131.PubMedCrossRefGoogle Scholar
  49. 49.
    Amento EP, Ehsani N, Palmer H, Libby P.: Cytokines positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells. Arterioscler Thromb 1991; 11: 1223–1230.PubMedCrossRefGoogle Scholar
  50. 50.
    Hansson GK, Holm J, Jonasson L.: Detection of activated T lymphocytes in the human atherosclerotic plaque. Am J Pathol 1989; 135: 169–175.PubMedGoogle Scholar
  51. 51.
    Kaartinen M, Penttila A, Kovanen PT.: Accumulation of activated mast cells in the shoulder region of human coronary atheroma, the predilection site of atheromatous rupture. Circulation 1994; 90: 1669–1678.PubMedCrossRefGoogle Scholar
  52. 52.
    Constantinides P.: Infiltrates of activated mast cells at the site of coronary atheromatous erosion or rupture in myocardial infarction. Circulation 1995; 92: 1084–1088.CrossRefGoogle Scholar
  53. 53.
    Enos WF, Holmes RH, Beyer J.: Coronary disease among United States soldiers killed in action in Korea. JAMA 1953; 152: 1090.CrossRefGoogle Scholar
  54. 54.
    Davies PF, Remuzzi A, Gordon EJ, Dewey CF Jr, Gimbrone MA Jr.: Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc Natl Acad Sci USA 1986; 83: 2114–2117.PubMedCrossRefGoogle Scholar
  55. 55.
    Loree HM, Kamm RD, Stringfellow RG, Lee RT.: Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ Res 1992; 71: 850–858.PubMedCrossRefGoogle Scholar
  56. 56.
    Lee RT, Grodzinsky AJ, Frank EH, Kamm RD, Schoen FJ.: Structure dependent dynamic mechanical behavior of fibrous caps from human atherosclerotic plaques. Circulation 1991; 83: 1764–1770.PubMedCrossRefGoogle Scholar
  57. 57.
    Tofler GH, Stone PH, Maclure M, et al.: Analysis of possible triggers of acute myocardial infarction (The MILIS Study). Am J Cardiol 1990; 66: 22–27.PubMedCrossRefGoogle Scholar
  58. 58.
    Behar S, Halabi M, Reicher-Reiss H, et al.: Circadian variation and possible external triggers of onset of myocardial infarction. Am J Med 1993; 94: 395–400.PubMedCrossRefGoogle Scholar
  59. 59.
    Tofler GH, Muller JE, Stone PH, Forman S, Solomon RE, Knatterud GL, Braunwald E.: Modifiers of timing and possible triggers of acute myocardial infarction in the TIMI II population. J Am Coll Cardiol 1992; 20: 1049–1055.PubMedCrossRefGoogle Scholar
  60. 60.
    Mittleman MA, Maclure M, Tofler GH, Sherwood JB, Goldberg RJ, Muller JE.: Triggering of acute myocardial infarction by heavy exertion: protection against triggering by regular exertion. N Engl J Med 1993; 329: 1677–1683.PubMedCrossRefGoogle Scholar
  61. 61.
    Willich SN, Lewis M, Lowel H, Arntz HR, Schubert F, Schroder R.: Physical exertion as a trigger of acute myocardial infarction. N Engl J Med 1993; 329: 1684–1690.PubMedCrossRefGoogle Scholar
  62. 62.
    Williams RB.: Psychological factors in coronary artery disease: epidemiological evidence. Circulation 1987;76(Suppl. I):I-117-I-123.Google Scholar
  63. 63.
    Jern C, Eriksson E, Tengborn L, Risberg B, Wadenvik H, Jern S.: Changes of plasma coagulation and fibrinolysis in response to mental stress. Thromb Hemost 1989; 62: 767–771.Google Scholar
  64. 64.
    Yusuf S, Peto J, Lewis J, Collins R, Sleight P.: Beta blockade during and after myocardial infarction: an overview of the randomized trials. Prog Cardiovasc Dis 1985; 27: 335–371.PubMedCrossRefGoogle Scholar
  65. 65.
    The SOLVD Investigators. Effects of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N Engl J Med 1992; 327: 685–691.CrossRefGoogle Scholar
  66. 66.
    Fernandez-Ortiz A, Badimon JJ, Falk E, et al.: Characterization of the relative thrombogenicity of atherosclerotic plaque components: implications for consequences of plaque rupture. J Am Coll Cardiol 1994; 23: 1562–1569.PubMedCrossRefGoogle Scholar
  67. 67.
    Merten M, Dong JF, Lopez JA, Thiagarajan P.: Cholesterol sulfate: a new adhesive molecule for platelets. Circulation 2001; 103: 2032–2034.PubMedCrossRefGoogle Scholar
  68. 68.
    Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R.: Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med 1997; 336: 1276–1282.PubMedCrossRefGoogle Scholar
  69. 69.
    Herrick JB.: Clinical features of sudden obstruction of the coronary arteries. JAMA 1912; 59: 2015–2020.CrossRefGoogle Scholar
  70. 70.
    Saphir O, Priest WS, Hamburger WW, Katz LN.: Coronary arteriosclerosis, coronary thrombosis, and the resulting myocardial changes. An evaluation of their respective clinical pictures including the electrocardiographic records, based on the anatomical findings. Am Heart J 1935; 10: 567–595.CrossRefGoogle Scholar
  71. 71.
    Chapman I: Morphogenesis of occluding coronary artery thrombosis. Arch Pathol 1965; 80: 256–261.PubMedGoogle Scholar
  72. 72.
    Constantinides P.: Plaque fissures in human coronary thrombosis. J Atheroscler Res 1966; 6: 1–17.CrossRefGoogle Scholar
  73. 73.
    Bouch DC, Montgomery GL.: Cardiac lesions in fatal cases of recent myocardial ischaemia from a coronary care unit. Br Heart J 1970; 32: 795–803.PubMedCrossRefGoogle Scholar
  74. 74.
    Ridolfi RL, Hutchins GM.: The relationship between coronary artery lesions and myocardial infarcts: ulceration of atherosclerotic plaques precipitating coronary thrombosis. Am Heart J 1977; 93: 468–486.PubMedCrossRefGoogle Scholar
  75. 75.
    Falk E.: Unstable angina with fatal outcome: dynamic coronary thrombosis leading to infarction and/or sudden death. Circulation 1985; 71: 699–708.PubMedCrossRefGoogle Scholar
  76. 76.
    Davies MJ, Thomas A.: Thrombosis and acute coronary-artery lesions in sudden cardiac ischemic death. N Engl J Med 1984; 310: 1137–1140.PubMedCrossRefGoogle Scholar
  77. 77.
    Santamore WP, Yelton Jr BW, Ogilby JD.: Dynamics of coronary occlusion in the pathogenesis of myocardial infarction. J Am Coll Cardiol 1991; 18: 1397–1405.PubMedCrossRefGoogle Scholar
  78. 78.
    Losordo DW, Rosenfeld K, Kaufman J, Pieczek A, Isner JM.: Focal compensatory enlargement of human arteries in response to progressive atherosclerosis. Circulation 1994; 89: 2570–2577.PubMedCrossRefGoogle Scholar
  79. 79.
    Takano M, Mizuno K, Okamatsu K, et al.: Mechanical and structural characteristics of vulnerable plaques-assembly coronary angioscopy and intravascular ultrasound. J Am Coll Cardiol 2001; 38: 99–104.PubMedCrossRefGoogle Scholar
  80. 80.
    Thieme T, Wernecke KD, Meyer R, et al.: Angioscopic evaluation of atherosclerotic plaques: validation by histomorphologic analysis and association with stable and unstable coronary syndromes. J Am Coll Cardiol 1996; 28: 1–6.PubMedCrossRefGoogle Scholar
  81. 81.
    Toussanint JE Lamuraglia GM, Southern JF, Fuster V Kantor HL.: Magnetic resonance images lipid, fibrous, calcified, hemorrhagic and thrombotic components of human atherosclerosis in vivo. Circulation 1996; 94: 932–938.CrossRefGoogle Scholar
  82. 82.
    Pasterkamp G, Falk E, Woutman H, Borst C.: Techniques characterizing the coronary atherosclerotic plaque: influence on clinical decision making? J Am Coll Cardiol 2000; 36: 13–21.PubMedCrossRefGoogle Scholar
  83. 83.
    Dangas G, Mehran R, Wallenstein S, et al.: Correlation of angiographie morphology and clinical presentation in unstable angina. J Am Coll Cardiol 1997; 29: 519–525.PubMedCrossRefGoogle Scholar
  84. 84.
    Sherman CT, Litvack F, Grundfest W, et al.: Coronary angioscopy in patients with unstable angina pectoris. N Engl J Med 1986; 315: 913–919.PubMedCrossRefGoogle Scholar
  85. 85.
    Kragel AH, Gertz SD, Roberts WC.: Morphologic comparison of frequency and types of acute lesions in the major epicardial coronary arteries in unstable angina pectoris, sudden coronary death and acute myocardial infarction. J Am Coll Cardiol 1991; 18: 801–808.PubMedCrossRefGoogle Scholar
  86. 86.
    Kloner RA, Rude RE, Carlson N, et al.: Ultrastructural evidence of microvascular damage and myocardial cell injury after coronary artery occlusion: which comes first? Circulation 1980; 62: 945–952.PubMedCrossRefGoogle Scholar
  87. 87.
    Roe MT, Ohman EM, Mass ACP, et al.: Shifting the open-artery hypopiesis downstream: the quest for optimal reperfusion. J Am Coll Cardiol 2001; 37: 9–18.PubMedCrossRefGoogle Scholar
  88. 88.
    Rus HG, Vlacicu R, Miculescu F.: Interleukin-6 and interleukin-8 protein and gene expression in human arterial atherosclerotic wall. Atherosclerosis 1996; 127: 263–271.PubMedCrossRefGoogle Scholar
  89. 89.
    Sukovich DA, Kauser K, Shirley FS, et al.: Expression of interleukin-6 in atherosclerotic lesions of male ApoE-knockout mice: inhibition by 17beta-estradiol. Arterioscler Thromb Vasc Biol 1998; 18: 1498–1505.PubMedCrossRefGoogle Scholar
  90. 90.
    Cermak J, Key NS, Bach RR, Balla J, Jacobs HS, Vercellotti GM.: C-reactive protein induces human peripheral blood monocytes to synthesize tissue factor. Blood 1993; 82: 513–520.PubMedGoogle Scholar
  91. 91.
    Ridker PM.: High sensitivity C-reactive protein. Circulation 2001; 103: 1813–1818PubMedCrossRefGoogle Scholar
  92. 92.
    Crisby M, Nordin-Fredriksson G, Shah PK, et al.: Pravastatin treatment increases collagen content and decreases lipid content, inflammation, metalloproteinases, and cell death in human carotid plaques. Circulation 2001; 103: 926–933.PubMedCrossRefGoogle Scholar
  93. 93.
    Ridker PM, Rifai N, Lowenthal SP.: Rapid reduction in C-reactive protein with cerviastatin among 785 patients with primary hypercholesterolemia. Circulation 2001; 103: 1191–1193.PubMedCrossRefGoogle Scholar
  94. 94.
    Hatton MWC, Moar SL, Richardson M.: Deendothelialization in vivo initiates a thrombogenic reaction at the rabbit aorta surface. Correlation of uptake of fibrinogen and antithrombin III with thrombin generation by the exposed subendothelium. Am J Pathol 1989; 135: 499–508.PubMedGoogle Scholar
  95. 95.
    Hatton MWC, Southward SMR, Ross-Ouellet B, DeReske M, Blajchman MA, Richardson M.: An increased uptake of prothrombin, antithrombin, and fibrinogen by the rabbit balloon-deendothelialized aorta surface in vivo is maintained until reendothelialization is complete. Arterioscler Thromb Vasc Biol 1996; 16: 1147–1155.PubMedCrossRefGoogle Scholar
  96. 96.
    Marmur JD, Thiruvikraman SV, Fyfe BS, et al.: Identification of active tissue factor in human coronary atheroma. Circulation 1996; 94: 1226–1232.PubMedCrossRefGoogle Scholar
  97. 97.
    Wilcox JN, Smith KM, Schwartz SM, Gordon D.: Localization of tissue factor in the normal vessel wall and in the atherosclerotic plaque. Proc Natl Acad Sci USA 1989; 86: 2839–2843.PubMedCrossRefGoogle Scholar
  98. 98.
    Annex BH, Denning SM, Channon KM, et al.: Differential expression of tissue factor protein in directional atherectomy specimens from patients with stable and unstable coronary syndromes. Circulation 1995; 91: 619–622.PubMedCrossRefGoogle Scholar
  99. 99.
    Toschi V, Gallo R, Lettino M, et al.: Tissue factor modulates the thrombogenicity of human atherosclerotic plaques. Circulation 1997; 95: 594–599.PubMedCrossRefGoogle Scholar
  100. 100.
    Sandset PM, Abildgaard V, Larson ML.: Heparin induces release of extrinsic coagulation pathway inhibitor. Thromb Res 1988; 50: 803–813.PubMedCrossRefGoogle Scholar
  101. 101.
    Becker RC, Spencer FA, Li YouFu, et al.: Thrombin conversion after the abrupt cessation of intravenous unfractionated heparin among patients with acute coronay syndromes. J Am Coll Cardiol 1999; 34: 1020–1027.PubMedCrossRefGoogle Scholar
  102. 102.
    Barry WL, Gimple LW, Humphries JE, et al.: Arterial thrombin activity after angioplasty in an atherosclerotic rabbit model. Time course and effect of hirudin. Circulation 1996; 94: 88–93.PubMedCrossRefGoogle Scholar
  103. 103.
    Bar-Shavit R, Eldor A, Vlodaysky I.: Binding of thrombin to subendothelial extracellular matrix. Protection and expression of functional properties. J Clin Invest 1989; 84: 1096–1104.PubMedCrossRefGoogle Scholar
  104. 104.
    Nelken NA, Soifer SJ, O’Keefe J, Vu T-KH, Charo IF, Coughlin SR.: Thrombin receptor expression in normal and atheroosclerotic human arteries. J Clin Invest 1992; 90: 1614–1621.PubMedCrossRefGoogle Scholar
  105. 105.
    Lundgren CH, Sawa H, Sobel BE, Fujii S.: Modulation of expression of monocyte/macrophage plasminogen activator activity and its implications for attenuation of vasculopathy. Circulation 1994; 90: 1927–1934.PubMedCrossRefGoogle Scholar
  106. 106.
    Marczin N, Antonov A, Papapetropoulos A, et al.: Monocyte-induced downregulation of nitric oxide synthase in cultured aortic endothelial cells. Arterioscler Thromb Vasc Biol 1996; 16: 1095–1103.PubMedCrossRefGoogle Scholar
  107. 107.
    Gupta M, Doellgast GJ, Cheng T, Lewis JC.: Expression and localization of tissue factor-based procoagulant activity (PCA) in pigeon monocyte-derived macrophages. Thromb Haemost 1993; 70: 963–969.PubMedGoogle Scholar
  108. 108.
    Semen GG, Abbate R, Gori AM, et al.: Transient intermittent lymphocyte activation is responsible for the instability of angina. Circulation 1992; 86: 790–797.CrossRefGoogle Scholar
  109. 109.
    Liuzzo G, Vallejo AN, Kopecky SL, et al.: Molecular fingerprint of interferon-y signaling in unstable angina. Circulation 2001; 103: 1509–1514.PubMedCrossRefGoogle Scholar
  110. 110.
    Liuzzo G, Goronzy JJ, Yang H, et al.: Monoclonal T-cell proliferation and plaque instability in acute coronary syndromes. Circulation 2000; 102: 2883–2888.CrossRefGoogle Scholar
  111. 111.
    Houtkamp MA, van der Wal AC, deBoar OJ, et al.: Interleukin-15 expression in atherosclerotic plaques: an alternative pathway for T cell activation in atherosclerosis? Arterioscler Thromb Vasc Biol 2001; 21: 1208–1213.PubMedCrossRefGoogle Scholar
  112. 112.
    Schonbeck U, Mach F, sukhova GK, et al.: CD 40 ligation induces tissue factor expression in human vascular smooth muscle cells. Am J Pathol 2000; 156: 7–14.PubMedCrossRefGoogle Scholar
  113. 113.
    Loppnow H, Libbey P.: Proliferating or interleukin activated human vascular smooth muscle secrete copious interleukin 6. J Clin Invest 1990; 85: 731–738.PubMedCrossRefGoogle Scholar
  114. 114.
    Hynes RO.: Integrins: a family of cell surface receptors. Cell 1987; 48: 549–554.PubMedCrossRefGoogle Scholar
  115. 115.
    Plow EF, Ginsberg MH.: Cellular adhesion: GPIIb/IIIa as a prototypic adhesion receptor. Prog Hemost Thromb 1989; 9: 117–156.PubMedGoogle Scholar
  116. 116.
    Liuzzo G, Biasucci LM, Gallimore JR, et al.: The prognostic value of C-reactive protein and serum amyloid A protein in severe unstable angina. N Engl J Med 1994; 331: 417–424.PubMedCrossRefGoogle Scholar
  117. 117.
    Becker R, Cannon C, Bovill E, et al.: Prognostic value of plasma fibrinogen concentration in patients with unstable angina and non-Q-wave myocardial infarction (TIMI IIIB Trial). Am J Cardiol 1996; 78: 142–147.PubMedCrossRefGoogle Scholar
  118. 118.
    Lefvert A, Hamsten A, Holm G.: Association between circulating immune complexes, complement C4 null alleles, and myocardial infarction before age 45 years. Arterioscler Thromb Vasc Biol 1995; 15: 665–668.PubMedCrossRefGoogle Scholar
  119. 119.
    Neumann FJ, Ott I, Gawaz M, et al.: Cardiac release of cytokines and inflammatory responses in acute myocardial infarction. Circulation 1995; 92: 748–755PubMedCrossRefGoogle Scholar
  120. 120.
    Furman M, Becker R, Yarzebski J, Savegeau J, Gore J, Goldberg R.: Effect of elevated leukocyte count on in-hospital mortality following acute myocardial infarction. Am J Cardiol 1996; 78: 945–948.PubMedCrossRefGoogle Scholar
  121. 121.
    Van Mourik JA, Lawrence PA, Loskutoff DJ.: Purification of an inhibitor of plasminogen activator (antiactivator) synthesized by endothelail cells. J Biol Chem 1984; 259: 14914–14921.PubMedGoogle Scholar
  122. 122.
    Ginsburg D, Zeheb R, Yang AY, et al.: cDNA cloning of human plasminogen activator-inhibitor from endothelial cells. J Clin Invest 1986; 78: 1673–1680.PubMedCrossRefGoogle Scholar
  123. 123.
    Ny T, Sawdey M, Lawrence D, Milian JL, Loskutoff DJ.: Cloning and sequence of cDNA coding for the human 0-migrating endothelial-cell-type plasminogen activator inhibitor. Proc Natl Acad Sci USA 1986; 83: 6776–6780.PubMedCrossRefGoogle Scholar
  124. 124.
    Declerck PJ, DeMol M, Alessi MC, et al. Purification and characterization of a plasminogen activator inhibitor 1 binding protein from human plasma. J Biol Chem 1988; 263: 15454–15461.PubMedGoogle Scholar
  125. 125.
    Vaughan DE, Declerck PJ, Reilly TM, Park K, Collen D, Fasman GD.: Dynamic structural and functional relationships in recombinant plasminogen activator inhibitor-1 (rPAI-1). Biochim Biophys Acta 1993; 1202: 221–229.PubMedCrossRefGoogle Scholar
  126. 126.
    Lambers JW, Cammenga M, Konig BW, Mertens K, Pannekoek H, van Mourik JA.: Activation of human endothelial cell-type plasminogen activator inhibitor (PAI-1) by negatively charged phospholipids. J Biol Chem 1987; 262: 17492–17496.PubMedGoogle Scholar
  127. 127.
    Sprengers ED, Kluft C.: Plasminogen activator inhibitors. Blood 1987; 69: 381–387.PubMedGoogle Scholar
  128. 128.
    Sprengers ED, Princen HM, Kooistra T, van Hinsbergh VW.: Inhibition of plasminogen activators by conditioned medium of human hepatocytes and hepatoma cell line Hep G2. J Lab Clin Med 1985; 105: 751–758.PubMedGoogle Scholar
  129. 129.
    Dichek D, Quertermous T.: Thrombin regulation of mRNA levels of tissue plasminogen activator and plasminogen activator inhibitor-1 in cultured human umbilical vein endothelial cells. Blood 1989; 74: 222–228.PubMedGoogle Scholar
  130. 130.
    Schneiderman J, Sawdey MS, Keeton MR, et al. Increased type 1 plasminogen activator inhibitor gene expression in atherosclerotic human arteries. Proc Natl Acad Sci USA 1992; 89: 6998–7002.PubMedCrossRefGoogle Scholar
  131. 131.
    Hamsten A, Wiman B, Faire UD, de Faire U, Blomback M.: Increased plasma levels of a rapid inhibitor of tissue plasminogen activator in young survivors of myocardial infarction. N Engl J Med 1985; 313: 1557–1563.PubMedCrossRefGoogle Scholar
  132. 132.
    Hamsten A, de Faire U, Walldius G, et al. Plasminogen activator inhibitor in plasma: risk factor for recurrent myocardial infarction. Lancet 1987; 2: 3–9.PubMedCrossRefGoogle Scholar
  133. 133.
    Berk BC, Vekshtein V, Gordon HM, Tsuda T.: Angiotensin II-stimulated protein synthesis in cultured vascular smooth muscle cells. Hypertension 1989; 13: 305–314.PubMedCrossRefGoogle Scholar
  134. 134.
    Katz AM.: Angiotensin-II: hemodynamic regulator or growth factor? J Mol Cell Cardiol 1990; 22: 739–747.PubMedCrossRefGoogle Scholar
  135. 135.
    Ridker PM, Gaboury CL, Conlin PR, Seely EW, Williams GH, Vaughan DE.: Stimulation of plasminogen activator inhibitor in vivo by infusion of angiotensin II: evidence of a potential interaction between the renin angiotensin system and firinolytic function. Circulation 1993; 87: 1969–1973.PubMedCrossRefGoogle Scholar
  136. 136.
    Olson JA Jr, Shiverick KT, Ogilvie S, Buhi WC, Raizade MK.: Angiotensin II induces secretion of plasminogen activator inhibitor-I and a tissue metalloprotease inhibitor-related protein from rat brain astrocytes. Neurobiology 1991; 88: 1928–1932.Google Scholar
  137. 137.
    Vaughan DE, Rouleau J-L, Ridker PM, Arnold JMO, Menapace FJ, Pfeffer MA.: Effects of ramipril on plasma fibrinolytic balance in patients with acute anterior myocardial infarction. Circulation 1997; 96: 442–447.PubMedCrossRefGoogle Scholar
  138. 138.
    Neri Serneri GG, Boddi M, Poggesi L, et al. Activation of cardioa resin-angiotension system in unstable angina. J Am Coll Cardiol 2001; 38: 49–55.PubMedCrossRefGoogle Scholar
  139. 139.
    Brozovic M, Stirling Y, Harricks C.: Factor VII in an industrial population. Br J Haematol 1974; 28: 381–391.PubMedCrossRefGoogle Scholar
  140. 140.
    Conlan MG, Folsom AR, Finch A, et al. Associations of factor VII and von Willebrand factor with age, race, sex and risk factors for atherosclerosis. Thromb Haemost 1993; 3: 380–385.Google Scholar
  141. 141.
    Kannel WB, Wolf PA, Castelli WP, D’Agostino RB.: Fibrinogen and risk of cardiovascular disease. JAMA 1987; 258: 1183–1186.PubMedCrossRefGoogle Scholar
  142. 142.
    Jansson JH, Olofsson BO, Nilsson TK.: Predictive value of tissue plasminogen activator mass concentration on long term mortality in patients with coronary artery disease: a 7-year follow up. Circulation 1993; 88: 2030–2034.PubMedCrossRefGoogle Scholar
  143. 143.
    American Diabetes Association. Consensus statement: detection and management of lipid disorders in diabetes. Diabetes Care 1996: 19 (Suppl. 1): S96 - S102.Google Scholar
  144. 144.
    Krolewski AS, Kosinski EJ, Warram HJ, et al. Magnitude and determinants of coronary artery disease in juvenile-onset, insulin-dependent diabetes mellitus. Am J Cardiol 1987; 59: 750–755.PubMedCrossRefGoogle Scholar
  145. 145.
    Schwartz CJ, Valente AJ, Sprague EA, et al. Pathogenesis of the atherosclerotic lesion: implications for diabetes mellitus. Diabetes Care 1992; 15: 1156–1157.PubMedCrossRefGoogle Scholar
  146. 146.
    Bierman EL.: Atherogenesis in diabetes. Arterioscler Thromb 1992; 12: 647–656.PubMedCrossRefGoogle Scholar
  147. 147.
    Lyon TJ.: Lipoprotein glycation and its metabolic consequences. Diabetes 1992;41(Suppl. 2; 67–73.Google Scholar
  148. 148.
    Raman M, Nesto RW.: Heart disease in diabetes mellitus. Endocrinol Metab Clin North Am 1996; 25: 425–438.PubMedCrossRefGoogle Scholar
  149. 149.
    Pyorala K, Savolainedn E, Kaukola S, et al. Plasma insulin as a coronary heart disease risk factor: Relationship to other risk factors and predictive value during 9 1/2 year follow-up of the Helsinki Policemen Study. Acta Med Scand 1985;701(Suppl.)38–52.Google Scholar
  150. 150.
    Kern PA, Saghizadeh M, Ong JM, Bosch RJ, Deem R, Simsolo RB.: The expression of tumor necrosis factor in human adipose tissue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase. J Clin Invest 1995; 95: 2111–2119.PubMedCrossRefGoogle Scholar
  151. 151.
    Haraldsen G, Kvale D, Lien B, Farstad IN. Brandtzaeg P.: Cytokine-regulated expression of E-selectin, intercellular adhesion molecule-1 (CAM-1), and vascular cell adhesion molecule-1 (VCAM-1) in human microvascular endothelial cells. J Immunol 1996; 156: 2558–2565.PubMedGoogle Scholar
  152. 152.
    Festa A, D’Agostino R Jr, Mykkanen L, et al. Relative contributionof insulin and its precursors to fibrinogen and PAI-1 in a large population with different states of glucose tolerance. The Insulin Resistance Atherosclerosis Study (IRAS). Arterioscler Thromb Vase Biol 1999; 19: 562–568.CrossRefGoogle Scholar
  153. 153.
    Keys A.: Coronary heart disease in seven countries. Circulation 1970; 41: 1–211.CrossRefGoogle Scholar
  154. 154.
    Walker ID, Davidson JF, Hutton I.: Disordered fibrinolytic potential in coronary heart disease. Thromb Res 1977; 15: 114A.Google Scholar
  155. 155.
    Tremoll E, Maderna P, Calil S, et al. Increased platelet sensitivity and thromboxane B2 formation in type-II hyperlipoproteinemic patients. Eur J Clin Invest 1984; 14: 329–333.CrossRefGoogle Scholar
  156. 156.
    Wilkes HC, Meade TW, Barzegar S, et al. Gemfibrozil reduces plasma prothrombin fragment F1+2 concentration, a marker of coagulability, in patients with coronary heart disease. Thromb Haemost 1992; 67: 503–506.PubMedGoogle Scholar
  157. 157.
    Eisenberg PR, Sherman LA, Schectman K, Perez J, Sobel BE, Jaffe AS. Fibrionopeptide A: a marker of acute coronary thrombosis. Circulation 1985; 71: 912–918.PubMedCrossRefGoogle Scholar
  158. 158.
    Becker RC, Bovill E, Corrao JM, et al. Platelet activity persists among patients with unstable angina and non-Q wave myocardial infarction. J Thromb Thrombolysis 1994; 1: 95–100.PubMedCrossRefGoogle Scholar
  159. 159.
    Becker RC, Tracy RP, Bovill EG, et al. Surface 12-lead electrocardiographic findings and plasma markers of thrombin activity and generation in patients with myocardial ischemia at rest. J Thromb Thrombolysis 1994; 1: 101–107.PubMedCrossRefGoogle Scholar
  160. 160.
    Furman MI, Bernard MR, Krueger LA, et al. Circulating monocyte-platelet aggregates are an early marker of acute myocardial infarction. J Am Coll Cardiol, 2001; 4: 1002–1006.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2003

Authors and Affiliations

  • Richard C. Becker
  • Annemarie Armani

There are no affiliations available

Personalised recommendations