Skip to main content

Metabolic Flux Analysis, Modeling, and Engineering Solutions

  • Chapter
Handbook of Industrial Cell Culture

Abstract

Microorganisms have been used for many decades to produce valuable chemicals for the food, pharmaceutical, and bulk industries. These include amino acids, vitamins, antibiotics, alcohols, and organic acids. Random classical mutation techniques have led to improvements in production properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Heinrich, R. and Schuster, S. (1996) The regulation of cellular systems. Chapman and Hall, New York, NY.

    Book  Google Scholar 

  2. vanGulik W. M. and Heijnen J. J. (1995) A metabolic network stoichiometry analysis of microbial growth and product formation. Biotechnol. Bioeng. 48, 681–698.

    Article  CAS  Google Scholar 

  3. Varma, A. and Palsson, B. O. (1994) Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wildtype Escherichia cou i w3110. Appl. Environ. Microbiol. 60, 3724–3731.

    CAS  Google Scholar 

  4. Stephanopoulos, G. and Vallino, J. J. (1991) Network rigidity and metabolic engineering in metabolite production. Science 252, 1675–1681.

    Article  CAS  Google Scholar 

  5. Savageau, M. A. (1976) Biochemical systems analysis: A study of function and design in molecular biology. Addison-Wesley, Reading, MA.

    Google Scholar 

  6. Kacser, H. and Burns, J. A. (1973) The control of flux. Symp. Soc. Exp. Biol. 27, 65–104.

    CAS  Google Scholar 

  7. Heinrich, R. and Rapoport, T. A. (1974) A linear steady state treatment of enzymatic chains. Eur. J. Biochem. 42, 89–95.

    Article  CAS  Google Scholar 

  8. Small, J. R. and Kacser, H. (1993) Responses of metabolic systems to large changes in enzyme activities and effectors. 2. The linear treatment of branched pathways and metabolite concentrations. Assessment of the general non-linear case. Eur. J. Biochem. 213(1), 625–640.

    Article  CAS  Google Scholar 

  9. Teusink, B., Passarge, J., Reijenga, C. A., Esgalhado, E., Van der Weijden, C. C., Schepper, M., et al. (2000) Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur. J. Biochem. 267, 5313–5329.

    Article  CAS  Google Scholar 

  10. Visser, D., v. d. Heijden, R., Mauch, K., Reuss, M., and Heijnen, J. J. (2000) Tendency modeling: a new approach to obtain simplified kinetic models of metabolism applied to Saccharomyces cerevisiae. Metab. Eng. 2, 252–275.

    Article  CAS  Google Scholar 

  11. Roels, J. A. (1983) Energetics and kinetics in biotechnology. Elsevier Biomedical, Amsterdam.

    Google Scholar 

  12. Vanrolleghem, P. A., deJong-Gubbels, P., vanGulik, W. M., Pronk, J. T., vanDijken, J. P., and Heijnen J. J. (1996) Validation of a metabolic network for Saccharomyces cerevisiae using mixed substrate studies. Biotechnol. Prog. 12, 434–448.

    Article  CAS  Google Scholar 

  13. Andre, B. (1995) An overview of membrane transport proteins in Saccharomyces cerevisiae. Yeast 11, 1575–1611.

    Article  CAS  Google Scholar 

  14. Hinnebusch, A. G. and Liebman S. W. (1991) Protein synthesis and translational control in Saccharomyces cerevisiae, in The Molecular Biology of the Yeast Saccharomyces (Broach, J. R., Pringle, J. R., and Jones, E. W., eds.), Cold Spring Harbor Laboratory Press, New York, NY, pp. 627–735.

    Google Scholar 

  15. Rigoulet, M., Leverve, X., Fontaine, E., Ouhabi, R., and Guerin, B. (1998) Quantitative analysis of some mechanisms affecting the yield of oxidative phosphorylation: dependence upon both fluxes and forces. Mol. Cell. Biochem. 184, 35–52.

    Article  CAS  Google Scholar 

  16. Kallow, W., von Döhren, H., and Kleinkauf, H. (1998) Penicillin biosynthesis-energy requirement for tripeptide precursor formation by delta-(1-alpha-aminoadipy1)-1-cysteinyl-d-valine synthetase from Acremonium chrysogenum. Biochemistry 37, 5947–5952.

    Article  CAS  Google Scholar 

  17. vanGulik, W. M., deLaat, W. T. A. M., Vinke, J. L., and Heijnen, J. J. (2000) Application of metabolic flux analysis for the identification of metabolic bottlenecks in the biosynthesis of penicillin-G. Biotechnol. Bioeng. 68, 602–618.

    Article  CAS  Google Scholar 

  18. vanGulik, W. M., Antoniewicz, M. R., deLaat, W. T. A. M., Vinke, J. L., and Heijnen, J. J. (2001) Energetics of growth and penicillin production in a high producing strain of Penicillium chrysogenum. Biotechnol. Bioeng. 72, 185–193.

    Article  CAS  Google Scholar 

  19. Mauch, K., Buziol, S., Schmid, J., and Reuss, M. (2001) Computer aided design of metabolic networks, in AIChE Symposium Series. Chemical Process Control-6 Conference, Tucson, AZ.

    Google Scholar 

  20. Schuster, S., Dandekar T., and Fell, D. A. (1999) Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol. 17, 53–60.

    Article  CAS  Google Scholar 

  21. De Jong-Gubbels, P., Vanrolleghem, P. A., Heijnen, J. J., van Dijken, J. P., and Pronk, J. T. (1995) Metabolic fluxes in chemostat cultures of Saccharomyces cerevisiae grown on mixtures of glucose and ethanol. Yeast 11, 407–418.

    Article  Google Scholar 

  22. Gancedo, J. M. (1986) Carbohydrate metabolism in yeast, in Carbohydrate Metabolism in Cultured Cells (Morgan, J. M., ed.). Plenum Press. New York, NY, pp. 245–286

    Chapter  Google Scholar 

  23. Kiss, R. D. and Stephanopoulos, G.(1992) Metabolic characterization of a L-lysine producing strain by continuous culture. Biotechnol. Bioeng. 39, 565–574.

    Article  CAS  Google Scholar 

  24. Sonntag, K., Eggeling, L., De Graaf, A. A., and Sahm, H. (1993) Flux partitioning in the split pathway of lysine synthesis in Corynebacterium glutamicum. Eur. J. Biochem. 213, 1325–1331.

    Article  CAS  Google Scholar 

  25. Wiechert, W. and de Graaf, A. A. (1997) Bidirectional reaction steps in metabolic networks: I. modeling and simulation of carbon isotope labeling experiments. Biotechnol. Bioeng. 55, 101–117.

    Article  CAS  Google Scholar 

  26. Marx, A., de Graaf, A. A., Wiechert, W., Eggeling, L., and Sahm, H. (1996) Determination of the fluxes in the central metabolism of Corynebacterium glutamicum by nuclear magnetic resonance spectroscopy combined with metabolic balancing. Biotechnol. Bioeng. 49, 111–129.

    Article  CAS  Google Scholar 

  27. Marx, A., Eikmans, B. J., Sahm, H., de Graaf, A. A., and Eggeling, L. (1999) Response of the central metabolism in Corynebacterium glutamicum to the use of an NADH-dependent glutamate dehydrogenase. Metab. Eng. 1, 1, 35–48.

    Article  CAS  Google Scholar 

  28. Schmidt, K, Carlsen, M., Nielsen, J., and Villadsen, J. (1997) Modelling isotopomer distributions in biochemical networks using isotopomer mapping matrices. Biotechnol. Bioeng. 55, 831–840.

    Article  CAS  Google Scholar 

  29. Schmidt, K., Marx, A., de Graaf, A. A., Wiechert, W., Sahm, H., Nielsen, J., et al. (1998) 13C tracer experiments and metabolite balancing for metabolic flux analysis: comparing two approaches. Biotechnol. Bioeng. 58, 254–257.

    Article  CAS  Google Scholar 

  30. Szyperski, T. (1998) 13C-NMR, MS and metabolic flux balancing in biotechnology research. Quart. Rev. Biophys. 31, 41–106.

    Article  CAS  Google Scholar 

  31. van Winden, W. A., Verheijen, P. J. T., and Heijnen, J. J. (2001a) Possible pitfalls of flux calculations based on 13C-labeling. Metab. Eng. 3, 151–162.

    Article  Google Scholar 

  32. van Winden, W. A., Heijnen, J. J., Verheijen, P. J. T., and Grievink, J. (2001) A priori analysis of metabolic flux identifiability from 13C-labeling data. Biotechnol. Bioeng. 74, 505–516.

    Article  Google Scholar 

  33. van Winden, W. A., Schipper, D., Verheijen, P. J. T., and Heijnen, J. J. (2001) Innovations in the generation and analysis of 2D [13C,1H] COSY spectra for flux analysis purposes. Metab. Eng. 3, 322–343.

    Article  Google Scholar 

  34. Pramanik, J., Trelstad, P. L., Schuler, A. J., Jenkins, D., and Keasling, J. D. (1999) Development and validation of a flux-based stoichiometric model for enhanced biological phosphorus removal metabolism. Wat. Res. 33, 462–476.

    Article  Google Scholar 

  35. Edwards, J. S. and Palsson, B. O. (2000) The Escherichia cou i MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc. Natl. Acad. Sci. USA 97, 5528–5533.

    Article  CAS  Google Scholar 

  36. Edwards, J. S. and Palsson, B. O. (1999) Systems properties of the Heamophilus influenzae Rd metabolic genotype. J. Biol. Chem. 274, 17,410–17,416.

    Google Scholar 

  37. Bailey, J. E. (1998) Mathematical modelling and analysis in biochemical engineering: past accomplishments and future opportunities. Biotechnol. Prog. 14, 8–20.

    Article  CAS  Google Scholar 

  38. Cornish-Bowden, A. and Hofmeyr, J. H. S. (1994) Determination of control coefficients in intact metabolic systems. Biochem. J. 298, 367–375.

    CAS  Google Scholar 

  39. Jørgensen, H. S., Nielsen, J., Villadsen, J., and Møllgaard, H. (1995) Metabolic flux distributions in Penicillium chrysogenum during fed-batch cultivations. Biotechnol. Bioeng. 46, 117–131.

    Article  Google Scholar 

  40. Stephanopoulos, G. N., Aristidou, A. A., and Nielsen, J. (1998) Metabolic control analysis, in Metabolic Engineering, Principles and Methodologies, Academic Press, San Diego, CA.

    Google Scholar 

  41. Heinrich, R., Rapoport, S. M., and Rapoport, T. A. (1977) Metabolic regulation and mathematical models. Prog. Biophys. Mol. Biol. 32, 1–82.

    Article  CAS  Google Scholar 

  42. Nielsen, J. and Jørgensen, H. S. (1995) Metabolic control analysis of the penicillin biosynthetic pathway in a high-yielding strain of Penicillium chrysogenum. Biotechnol. Prog. 11, 299–305.

    Article  CAS  Google Scholar 

  43. Small, J. R. and Kacser, H. (1993) Responses of metabolic systems to large changes in enzyme activities and effectors. 1. The linear treatment of unbranched chains. Eur. J. Biochem. 213, 613–624.

    Article  CAS  Google Scholar 

  44. Small, J. R. and Kacser, H. (1993) Responses of metabolic systems to large changes in enzyme activities and effectors. 2. The linear treatment of branched pathways and metabolite concentrations. Assessment of the general non-linear case. Eur. J. Biochem. 213, 625–640.

    Article  CAS  Google Scholar 

  45. Nielsen, J. (1995) “Physiological Engineering Aspects of Penicillium chrysogenum”, DSc. thesis Technical University of Denmark, Lyngby, Denmark.

    Google Scholar 

  46. Fell, D. A. and Thomas, S. (1995) Physiological control of metabolic flux: the requirement for multisite modulation. Biochem. J. 311, 35–39.

    CAS  Google Scholar 

  47. Wright, B. E. and Kelly, P. J. (1981) Kinetic models of metabolism in intact cells, tissues and organisms. Curr. Top. Cell. Regul. 19, 103–158.

    CAS  Google Scholar 

  48. Teusink, B. (1999) Exposing a complex metabolic system: glycolysis in Saccharomyces cerevisiae. PhD thesis, Universiteit van Amsterdam.

    Google Scholar 

  49. Rizzi, M., Baltes, M., Theobald, U., and Reuss, M. (1997) In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae, II. Mathematical model. Biotechnol. Bioeng. 55, 592–608.

    Article  CAS  Google Scholar 

  50. Heijnen, J. J. (2000) Unified kinetic and MCA based models in metabolic engineering. Paper presented at Metabolic Engineering III, Colorado Springs, CO.

    Google Scholar 

  51. Westerhoff, H. V. and Van Dam, K. (1987) Thermodynamics and Control of Biological FreeEnergy Transduction. Elsevier, Amsterdam.

    Google Scholar 

  52. Visser, D. and Heijnen, J. J. Dynamic simulation and metabolic re-design of a branched pathway using LinLog kinetics. Metab. Engin., submitted.

    Google Scholar 

  53. Mendes, P. and Kell, D. B. (1998) Non-linear optimization of biochemical pathways: applications to metabolite engineering and parameter estimation. Bioinformatics 14, 869–883.

    Article  CAS  Google Scholar 

  54. Visser, D., Schmid, J. W., Mauch, K., Reuss, M., and Heijnen, J. J. Optimization of Escherichia coli’s primary metabolism using lin-log kinetics. Metab. Engin., submitted.

    Google Scholar 

  55. VanDam, J. C., Eman, M. R., Frank, J., Lange, H. C., vanDedem, G. W. K., and Heijnen, J. J. (2002) Analysis of glycolytic intermediates in Saccharomyces cerevisiae using anion exchange chromatography and electrospray ionization with tandem mass spectromic detection. Anal. Biochim. Acta. 460, 209–218.

    Article  CAS  Google Scholar 

  56. Visser, D., van Zuylen, G. A., van Dam, J. C., Oudshoorn, A., Eman, M. R., Ras, C., et al. (2002) Rapid sampling for analysis of in-vivo kinetics using the BioSCoPE: a system for continuous pulse experiments. Biotechnol. Bioeng. 79, 674–681.

    Article  CAS  Google Scholar 

  57. Wu, L., Van Gulik, W. M., and Heijnen, J. J. Dynamic measurements of off-gas signals in a perturbed chemostats in a 300 seconds time window for in-vivo kinetics analysis of Saccharomyces cerevisiae. Biotechnol. Bioeng., in press.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

van Gulik, W.M., van Winden, W.A., Heijnen, J.J. (2003). Metabolic Flux Analysis, Modeling, and Engineering Solutions. In: Vinci, V.A., Parekh, S.R. (eds) Handbook of Industrial Cell Culture. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-346-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-346-0_15

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-315-2

  • Online ISBN: 978-1-59259-346-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics