Skip to main content

Biochemical Bases of the 5-Fluorouracil—Folinic Acid Interaction and of its Limitations

A Retrospective Analysis

  • Chapter
Fluoropyrimidines in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 202 Accesses

Summary

The sensitivity of many, but not all, human carcinoma cell lines to 5-fluorouracil (5-FU) is substantially increased by exposure of cells to 0.3–10 µM concentrations of reduced folates. The synergism is due to an enhanced kinetic trapping of thymidylate synthase (TS) in an inactive ternary complex, which, although covalent, is in dynamic equilibrium with unbound, active enzyme. Several factors interact to prevent or reverse complete inhibition of TS by fluoropyrimidines. Yet, cellular TS must be maintained completely inactive for a length of time equivalent to one cell generation before any appreciable cell kill ensues. Successful blockade for longer periods yields extensive commitment to cell death, and antitumor kill has been faithfully mirrored by the duration of complete inhibition of TS in those few studies that allow assessment of the time course of enzyme inhibition. In spite of the potency of 5-FU as an inhibitor of TS, maintenance of such a prolonged complete blockade of tumor TS is quite difficult under clinical conditions. These counterintuitive concepts are borne out by abundant preclinical information, and may lie behind the limited clinical activity of the drug. However, the current literature would support the conclusions that the therapeutic objective of fluoropyrimidine therapy is a sustained complete inhibition of TS for periods of 48 h or more, that such inhibition should permit substantial therapeutic effects against human colon carcinomas, and that this objective is probably seldom met.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Heidelberger C, Chaudhuri NK, Danneberg P, et al. Fluorinated pyrimidines, a new class of tumor inhibitory agents. Nature 1957; 179: 663–666.

    Article  PubMed  CAS  Google Scholar 

  2. Heidelberger C. “Fluorinated Pyrimidines and their Nucleosides.” In Antineoplastic and Immunosuppressive Agents II (A.C. Sartorelli and D.G. Johns, eds.) Springer-Verlag, New York, NY pp 193–231.

    Google Scholar 

  3. Heidelberger C, Danenberg PV, Moran RG. Fluorinated Pyrimidines and Their Nucleosides. Adv Enzymol 1983; 54: 57–119.

    CAS  Google Scholar 

  4. Cadman E, Heimer R, Davis L. Enhanced 5-fluorouracil nucleotide formation after methotrexate administration: explanation for drug synergy. Science 1979; 205: 1135–1137.

    Article  PubMed  CAS  Google Scholar 

  5. Martin DS, Stolfi RL, Sawyer RC, Spiegelman S, Casper ES, Young CW. Therapeutic utility of utilizing low doses of N-(phosphonacetyl)-L-aspartic acid in combination with 5-fluorouracil: a murine study with clinical relevance. Cancer Res 1983; 43: 2317–2321.

    PubMed  CAS  Google Scholar 

  6. Danenberg PV, Heidelberger C, Mulkins MA, Peterson AR. The incorporation of 5-fluoro-2’-deoxyuridine into DNA of mammalian tumor cells. Biochem Biophys Res Commun 1981; 102: 654–658.

    Article  PubMed  CAS  Google Scholar 

  7. Major PP, Egan E, Herrick D, Kufe DW. 5-Fluorouracil incorporation in DNA of human breast carcinoma cells. Cancer Res 1982; 42: 3005–3009.

    PubMed  CAS  Google Scholar 

  8. Ingraham HA, Tseng BY, Goulian M. Mechanism for exclusion of 5-fluorouracil from DNA. Cancer Res 1980; 40: 998–1001.

    PubMed  CAS  Google Scholar 

  9. Caradonna SJ, and Cheng YC. Uracil DNA-glycosylase. Purification and properties of this enzyme isolated from blast cells of acute myelocytic leukemia patients. J Biol Chem 1980; 255: 2293–2300.

    PubMed  CAS  Google Scholar 

  10. Umeda M, Heidelberger C. Comparative studies of fluorinated pyrimidines with various cell lines. Cancer Res 1968; 28: 2529–2538.

    PubMed  CAS  Google Scholar 

  11. Rich MA, Bolaffi JL, Knoll JE, Cheong L, Eidinoff ML. Growth inhibition of a human cell strain by 5-fluorouracil, 5-fluorouridine, and 5-fluoro-2-deoxyuridine-reversal studies. Cancer Res 1958; 18: 730–735.

    PubMed  CAS  Google Scholar 

  12. Ullman B, Lee M, Martin DW Jr, Santi DV. Cytotoxicity of 5-fluoro-2’-deoxyuridine: requirement for reduced folate cofactors and antagonism by methotrexate. Proc Natl Acad Sci USA 1978; 75: 980–983.

    Article  PubMed  CAS  Google Scholar 

  13. Evans RM, Laskin JD, Hakala MT. Assessment of growth-limiting events caused by 5-fluorouracil in mouse cells and in human cells. Cancer Res 1980; 40: 4113–22.

    PubMed  CAS  Google Scholar 

  14. Evans RM, Laskin JD, Hakala MT. Effect of excess folates and deoxyinosine on the activity and site of action of 5-fluorouracil. Cancer Res 1981; 41: 3288–3295.

    PubMed  CAS  Google Scholar 

  15. Machover D, Goldschmidt E, Chollet P, et al. Treatment of advanced colorectal and gastric adenocarcinomas with 5-fluorouracil and high-dose folinic acid. J Clin Oncol 1986; 4: 685–696.

    PubMed  CAS  Google Scholar 

  16. Petrelli N, Herrera L, Rustum Y, et al. A prospective randomized trial of 5-fluorouracil versus 5-fluorouracil and high-dose leucovorin versus 5-fluorouracil and methotrexate in previously untreated patients with advanced colorectal carcinoma. J Clin Oncol 1987; 5: 1559–1565.

    PubMed  CAS  Google Scholar 

  17. Erlichman C, Fine S, Wong A, Elhakim T. A randomized trial of fluorouracil and folinic acid in patients with metastatic colorectal carcinoma. J Clin Oncol 1988; 6: 469–475.

    PubMed  CAS  Google Scholar 

  18. Keyomarsi K, Moran RG. Folinic acid augmentation of the effects of fluoropyrimidines on murine and human leukemic cells. Cancer Res 1986; 46: 5229–5235.

    PubMed  CAS  Google Scholar 

  19. Moran RG, Scanlon KL. Schedule-dependent enhancement of the cytotoxicity of fluoropyrimidines to human carcinoma cells in the presence of folinic acid. Cancer Res 1991; 51: 4618–4623.

    PubMed  CAS  Google Scholar 

  20. Howell SB, Mansfield SJ, Taetle R. Significance of variation in serum thymidine concentration for the marrow toxicity of methotrexate. Cancer Chemother Pharmacol 1981; 5: 221–226.

    Article  PubMed  CAS  Google Scholar 

  21. JH Semon and GB Grindey Potentiation of the antitumor activity of methotrexate by concurrent infusion of thymidine Cancer Res 1978; 38:2905–2911.

    Google Scholar 

  22. Jackman AL, Taylor GA, Calvert AH, Harrap KR Modulation of anti-metabolite effects. Effects of thymidine on the efficacy of the quinazoline-based thymidylate synthetase inhibitor, CB3717. Biochem Pharmacol 1984; 33: 3269–3275.

    Article  PubMed  CAS  Google Scholar 

  23. Houghton JA, Williams LG, Loftin SK, et al. Factors that influence the therapeutic activity of 5-fluorouracil [6RS]leucovorin combinations in colon adenocarcinoma xenografts. Cancer Chemother Pharmacol 1992; 30: 423–432.

    Article  PubMed  CAS  Google Scholar 

  24. Beck A, Etienne MC, Cheradame S, Fischei JL, Formento P, Guillot T, Milano G. Wide range for optimal concentration of folinic acid in fluorouracil modulation-experimental data on human tumour cell lines. Eur J Cancer 1994; 30A: 1522–1526.

    Article  Google Scholar 

  25. O’Connell MJ. A phase III trial of 5-fluorouracil and leucovorin in the treatment of advanced colorectal cancer. A Mayo Clinic/North Central Cancer Treatment Group study. Cancer 1989; 63: 1026–1030.

    Article  PubMed  Google Scholar 

  26. Poon MA, O’Connell MJ, Wieand HS, et al. Biochemical modulation of fluorouracil with leucovorin: confirmatory evidence of improved therapeutic efficacy advanced colorectal cancer. J Clin Oncol 1991; 9: 1967–1972.

    PubMed  CAS  Google Scholar 

  27. Petrelli N, Douglass HO Jr, Herrera L, et al. The modulation of fluorouracil with leucovorin in metastatic colorectal carcinoma: a prospective randomized phase III trial. Gastrointestinal Tumor Study Group. J Clin Oncol 1989; 7: 1419–1426.

    PubMed  CAS  Google Scholar 

  28. Leichman CG, Fleming TR, Muggia FM, et al. Phase II study of fluorouracil and its modulation in advanced colorectal cancer: a Southwest Oncology Group study. J Clin Oncol 1995; 13: 1303–1311.

    PubMed  CAS  Google Scholar 

  29. Machover D. A comprehensive review of 5-fluorouracil and leucovorin in patients with metastatic colorectal carcinoma. Cancer 1997; 80 (7): 1179–1187.

    Article  PubMed  CAS  Google Scholar 

  30. van Laar JA, van der Wilt CL, Rustum YM, et al. Therapeutic efficacy of fluoropyrimidines depends on the duration of thymidylate synthase inhibition in the murine colon 26-B carcinoma tumor model. Clin Cancer Res 1996; 2: 1327–1333.

    PubMed  Google Scholar 

  31. Perry KM, Fauman EB, Finer-Moore JS, et al. Plastic adaptation toward mutations in proteins: structural comparison of thymidylate synthases. Proteins 1990; 8: 315–33.

    Article  PubMed  CAS  Google Scholar 

  32. Hardy LW, Finer-Moore JS, Montfort WR, Jones MO, Santi DV, Stroud RM. Atomic structure of thymidylate synthase: target for rational drug design. Science 1987; 235: 448–455.

    Article  PubMed  CAS  Google Scholar 

  33. Sayre PH, Finer-Moore JS, Fritz TA, et al. Multi-targeted Antifolates Aimed at Avoiding Drug Resistance Form Covalent Closed Inhibitory Complexes with Human and Escherichia coli Thymidylate Synthases. J Mol Biol 2001; 313 (4): 813–829.

    Article  PubMed  CAS  Google Scholar 

  34. Pookanjanatavip M, Yuthavong Y, Greene PJ, Santi DV. Subunit complementation of thymidylate synthase. Biochemistry 1992; 31: 10303–10309.

    Article  PubMed  CAS  Google Scholar 

  35. Bradshaw TP, Dunlap RB. Characterization of a novel form of thymidylate synthase: a heterodimer isolated after specific chemical modification of the immobilized native enzyme. Biochemistry 1993; 19932: 12774–12781.

    Article  Google Scholar 

  36. Finer-Moore JS, Montfort WR, Stroud RM. Pairwise specificity and sequential binding in enzyme catalysis: thymidylate synthase. Biochemistry 1990; 29: 6977–6986.

    Article  PubMed  CAS  Google Scholar 

  37. Danenberg KD, Danenberg PV. Evidence for a sequential interaction of the subunits of thymidylate synthetase. J Biol Chem 1979; 254: 4345–4348.

    PubMed  CAS  Google Scholar 

  38. Maley F, Pedersen-Lane J, Changchien L. Complete restoration of activity to inactive mutants of Escherichia coli thymidylate synthase: evidence that E. coli thymidylate synthase is a half-the-sites activity enzyme. Biochemistry 1995; 34: 469–1474.

    Article  Google Scholar 

  39. Reilly RT, Barbour KW, Dunlap RB, Berger FG. Biphasic binding of 5-fluoro-2’-deoxyuridylate to human thymidylate synthase. Mol Pharmacol 1995; 48: 72–79.

    PubMed  CAS  Google Scholar 

  40. Lorenson MY, Maley GF, Maley F. The purification and properties of thymidylate synthetase from chick embryo extracts. J Biol Chem 1967; 242: 3332–3344.

    PubMed  CAS  Google Scholar 

  41. Daron HH, Aull JL. A kinetic study of thymidylate synthase from Lactobacillus casei. J Biol Chem 1978; 253: 940–945.

    PubMed  CAS  Google Scholar 

  42. Lockshin A, Danenberg PV. Biochemical factors affecting the tightness of 5-fluorodeoxyuridylate binding to human thymidylate synthetase. Biochem Pharmacol 1981; 30 (3): 247–257.

    Article  PubMed  CAS  Google Scholar 

  43. Keyomarsi K, Moran RG. Mechanism of the cytotoxic synergism of fluoropyrimidines and folinic acid in mouse leukemic cells. J Biol Chem 1988; 263: 14402–14409.

    PubMed  CAS  Google Scholar 

  44. Radparvar S, Houghton PJ, Houghton JA. Effect of polyglutamylation of 5,10-methylenetetrahydrofolate on the binding of 5-fluoro-2’-deoxyuridylate to thymidylate synthase purified from a human colon adenocarcinoma xenograft. Biochem Pharmacol 1989; 38: 335–342.

    Article  PubMed  CAS  Google Scholar 

  45. Moran RG, Spears CP, Heidelberger C. Biochemical determinants of tumor sensitivity to 5-fluorouracil: ultrasensitive methods for the determination of 5-fluoro-2’-deoxyuridylate, 2’-deoxyuridylate, and thymidylate synthetase. Proc Natl Acad Sci USA 76: 1456–1460.

    Google Scholar 

  46. Berger SH, Hakala MT. Relationship of dUMP and free FdUMP pools to inhibition of thymidylate synthase by 5-fluorouracil. Mol Pharmacol 1984; 25: 303–309.

    PubMed  CAS  Google Scholar 

  47. Webley SD, Welsh SJ, Jackman AL, Aherne GW. The ability to accumulate deoxyuridine triphosphate and cellular response to thymidylate synthase (TS) inhibition. Br J Cancer 2001; 85: 446–452.

    Article  PubMed  CAS  Google Scholar 

  48. Spears CP, Gustaysson BG, Mitchell MS, et al. Thymidylate synthetase inhibition in malignant tumors and normal liver of patients given intravenous 5-fluorouracil. Cancer Res 1984; 44: 4144–4150.

    PubMed  CAS  Google Scholar 

  49. Spears CP, Gustaysson BG, Berne M, Frosing R, Bernstein L, Hayes AA. Mechanisms of innate resistance to thymidylate synthase inhibition after 5-fluorouracil. Cancer Res 1988; 48: 5894–5900.

    PubMed  CAS  Google Scholar 

  50. Spears CP, Gustaysson BG, Frosing R. Folinic acid modulation of fluorouracil: tissue kinetics of bolus administration. Invest New Drugs 1989; 7: 27–36.

    Article  PubMed  CAS  Google Scholar 

  51. Rafi I, Taylor GA, Calvete JA, et al. Clinical pharmacokinetic and pharmacodynamic studies with the antifolate thymidylate synthase inhibitor 3, 4-dihydro-2-amino-6-methyl-4-oxo-5-(4-pyridylthio)-quinazolone dihydrochloride (AG337) given by 24-hour continuous intravenous infusion. Clin Cancer Res 1995; 1: 1275–1284.

    PubMed  CAS  Google Scholar 

  52. Cohen LS, Studzinski GP. Correlation between cell enlargement and nucleic acid and protein content of HeLa cells in unbalanced growth produced by inhibitors of DNA synthesis. J Cell Physiol 1967; 69: 331–339.

    Article  PubMed  CAS  Google Scholar 

  53. Cohen SS. On the nature of thymineless death. Ann NYAcad Sci 1971; 186: 292–301.

    Article  CAS  Google Scholar 

  54. Washtien WL. Increased levels of thymidylate synthetase in cells exposed to 5-fluorouracil. Mol Pharmacol 1984; 25: 171–177.

    PubMed  CAS  Google Scholar 

  55. Kitchens ME, Forsthoefel AM, Barbour KW, et al. Mechanisms of acquired resistance to thymidylate synthase inhibitors: the role of enzyme stability. Mol Pharmacol 1999; 56: 1063–1070.

    PubMed  CAS  Google Scholar 

  56. Chu E, Voeller D, Koeller DM, et al. Identification of an RNA binding site for human thymidylate synthase. Proc Natl Acad Sci U S A. 1993; 90: 517–521.

    Article  PubMed  CAS  Google Scholar 

  57. Chu E, Copur SM, Ju J, et al. Thymidylate Mol Cell Biol 1999; 19: 1582–1594.

    PubMed  CAS  Google Scholar 

  58. Lin X, Parsels LA, Voeller DM, et al. Characterization of a cis-acting regulatory element in the protein coding region of thymidylate synthase mRNA. Nucleic Acids Res 2000; 28: 1381–1389.

    Article  PubMed  CAS  Google Scholar 

  59. Keyomarsi K, Samet J, Molnar G, Pardee AB. The thymidylate synthase inhibitor, ICI D1694, overcomes translational detainment of the enzyme. J Biol Chem 1993; 268: 15142–15149.

    PubMed  CAS  Google Scholar 

  60. Spears CP, Shahinian AH, Moran RG, et. al. In vivo kinetics of thymidylate synthetase inhibition of 5-fluorouracil-sensitive and -resistant murine colon adenocarcinomas. Cancer Res 1982; 42: 450–456.

    PubMed  CAS  Google Scholar 

  61. Swain SM, Lippman ME, Egan EF, et. al. Fluorouracil and high-dose leucovorin in previously treated patients with metastatic breast cancer. J Clin Oncol 1989; 7: 890–899.

    PubMed  CAS  Google Scholar 

  62. Lin BF, Huang RF, Shane B. Regulation of folate and one-carbon metabolism in mammalian cells. III. Role of mitochondrial folylpoly-gamma-glutamate synthetase. J Biol Chem 1993; 268: 21674–21679.

    PubMed  CAS  Google Scholar 

  63. Freemantle SJ, Taylor SM, Krystal G, et.al. Upstream organization of and multiple transcripts from the human folypoly-gamma-glutamate synthetase gene. J Biol Chem 1995; 270: 9579–9584.

    Article  PubMed  CAS  Google Scholar 

  64. Turner FB, Taylor SM, Moran RG. Expression patterns of the multiple transcripts from the folypolyglutamate synthetase gene in human leukemias and normal differentiated tissues. J Biol Chem 2000; 275: 35960–35968.

    Article  PubMed  CAS  Google Scholar 

  65. Sanghani PC, Moran RG. Purification and characteristics of recombinant human folypoly-gamma-glutamate synthetase expressed at high levels in insect cells. Protein Expr Purif 2000; 18: 36–45.

    Article  PubMed  CAS  Google Scholar 

  66. Moran RG, Colman PD. Measurement of folypolyglutamate synthetase in mammalian tissues. Anal Biochem 1984; 140: 326–342.

    Article  PubMed  CAS  Google Scholar 

  67. Turner FB, Andreassi 2nd JL, Ferguson J, et al. Tissue-specific expression of functional isoforms of mouse folypoly-gamma-glutamate synthetase: a basis for targeting folate antimetabolites. Cancer Res 1999; 59: 6074–6079.

    PubMed  CAS  Google Scholar 

  68. Roy K, Mitsugi K, Sirotnak FM. Additional organizational features of the murine folypolyglutamate synthetase gene. Two remotely situated exons encoding an alternate 5’ end and proximal open reading frame under the control of a second promoter. J Biol Chem 1997; 272: 5587–5593.

    Article  PubMed  Google Scholar 

  69. Barredo J, Moran RG. Determinants of antifolate cytotoxicity: folypolyglutamate synthetase activity during cellular proliferation and development. Mol Pharmacol 1992; 42: 687–694.

    PubMed  CAS  Google Scholar 

  70. van der Wilt CL, Cloos J, de Jong M, et.al. Screening of colon tumor cells and tissues for folypolyglutamate synthetase activity. Oncol. Res 1995; 317–321.

    Google Scholar 

  71. Chen L, Qi H, Korenberg J, et.al. Purification and properties of human cytosolic folypoly-ganmia-glutamate synthetase and organization, localization, and differential splicing of its gene. J Biol Chem 1996; 271: 13077–13087.

    Article  PubMed  CAS  Google Scholar 

  72. Lowe KE, Osborne CB, Lin BF, Kim JS, Hsu JC, Shane B. Regulation of folate and one-carbon metabolism in mammalian cells. II. Effect of folylpoly-gamma-glutamate synthetase substrate specificity and level on folate metabolism and folypoly-gamma-glutamate specificity of metabolic cycles of one-carbon metabolism. J Biol Chem 1993; 268: 21665–21673.

    PubMed  CAS  Google Scholar 

  73. McCloskey DE, McGuire JJ, Russell CA, et al. Decreased folypolyglutamate synthetase activity as a mechanism of methotrexate resistance in CCRF-CEM human leukemia. J Biol Chem 1991; 266 (10): 6181–6187.

    PubMed  CAS  Google Scholar 

  74. Zhao R, Titus S, Gao F, et al. Molecular analysis of murine leukemia cell lines resistant to 5, 10-dideazatetrahydrofolate identifies several amino acids critical to the function of folylpolyglutamate synthetase. J Biol Chem 2000; 275: 26599–25606.

    Article  PubMed  CAS  Google Scholar 

  75. Houghton JA, Williams LG, de Graaf SS, et al. Relationship between dose rate of [6RS]Leucovorin administration, plasma concentrations of folates, and pools of 5, 10-methylenetetra-hydrofolates and tetrahydrofolates in human colon adenocarcinoma xenografts. Cancer Res 1990; 50: 3493–3502.

    PubMed  CAS  Google Scholar 

  76. Newman EM, Straw JA, Doroshow JH. Pharmacokinetics of diastereoisomers of (6R,S)-folinic acid (leucovorin) in humans during constant high-dose intravenous infusion. Cancer Res 1989; 49: 5755–5760.

    PubMed  CAS  Google Scholar 

  77. Straw JA, Szapary D, Wynn WT. Pharmacokinetics of the diastereoisomers of leucovorin after intravenous and oral administration to normal subjects. Cancer Res 1984; 44: 3114–3119.

    PubMed  CAS  Google Scholar 

  78. Zhang ZG, Rustum YM. Effects of diastereoisomers of 5-formyltetrahydrofolate on cellular growth, sensitivity to 5-fluoro-2’-deoxyuridine, and methylenetetrahydrofolate polyglutamate levels in HCT-8 cells. Cancer Res 1991; 51: 3476–3481.

    PubMed  CAS  Google Scholar 

  79. Sirotnak FM, Chello PL, Moccio DM, Kisliuk RL, Combepine G, Gaumont Y, Montgomery JA. Stereospecificity at carbon 6 of formyltetrahydrofolate as a competitive inhibitor of transport and cytotoxicity of methotrexate in vitro. Biochem Pharmacol 1979; 28: 2993–2997.

    Article  PubMed  CAS  Google Scholar 

  80. Machover D, Grison X, Goldschmidt E, et al. Fluorouracil combined with the pure (6S)-stereoisomer of folinic acid in high doses for treatment of patients with advanced colorectal carcinoma: a phase I-II study. J Natl Cancer Inst 1992; 84: 321–327.

    Article  PubMed  CAS  Google Scholar 

  81. Rosso R, Mazzei T, Sobrero A, et al. Phase II trial of 5-fluorouracil and the natural 1 isomer of folinic acid in the treatment of advanced colorectal carcinoma. Eur J Cancer 1994; 30A: 338–343.

    Article  Google Scholar 

  82. Goldberg RM, Hatfield AK, Kahn M, et al. Prospectively randomized North Central Cancer Treatment Group trial of intensive-course fluorouracil combined with the 1-isomer of intravenous leucovorin, oral leucovorin, or intravenous leucovorin for the treatment of advanced colorectal cancer. J Clin Oncol 1997; 15: 3320–3329.

    PubMed  CAS  Google Scholar 

  83. Mini E, Mazzei T, Coronnello M, et al. Effects of 5-methyltetrahydrofolate on the activity of fluoropyrimidines against human leukemia (CCRF-CEM) cells. Biochem Pharmacol 1987; 36: 2905–2911.

    Article  PubMed  CAS  Google Scholar 

  84. Chello PL, Bertino JR. Dependence of 5-methyltetrahydrofolate utilization by L5178Y murine leukemia cells in vitro on thepresence of hydroxycobalamin and transcobalamin II. Cancer Res 1973; 33: 1898–1904.

    PubMed  CAS  Google Scholar 

  85. Etienne MC, Fischel JL, Formento P, et al. Combination of reduced folates with methotrexate or 5-fluorouracil. Comparison between 5-formyltetrahydrofolate (folinic acid) and 5-methyltertrahydrofolate in vitro activities. Biochem Pharmacol 1993; 46: 1767–1774.

    Article  PubMed  CAS  Google Scholar 

  86. Carlsson G, Hafstrom LO, Spears CP, et.al. 5-fluorouracil (5-FU) and 5,10-methylene tetrahydrofolate (5,10-CH2FH4) as adjuvant therapy in an experimental rodent colon carcinoma model. Anticancer Res 1997; 17: 3671–3674.

    PubMed  CAS  Google Scholar 

  87. Raghunathan K, Priest. Modulation of fluorouracil antitumor activity by folic acid in a murine model system. Biochem Pharmacol 1999; 58: 835–839.

    Article  PubMed  CAS  Google Scholar 

  88. Olinger EJ, Bertino JR, Binder HJ. Intestinal folate absorption. II. Conversion and retention of pteroylmonoglutamate by jejunum. J Clin Invest 1973; 52: 2138–2145.

    Article  PubMed  CAS  Google Scholar 

  89. Houghton JA, Williams LG, Radparvar S, et al. Characterization of the pools of 5,10-methylenetetrahydrofolates and tetrahydrofolates in xenografts of human colon adenocarcinoma. Cancer Res 1988; 48: 3062–3069.

    PubMed  CAS  Google Scholar 

  90. Houghton JA, Williams LG, Cheshire PJ, et.al. Influence of dose of [6RS]leucovorin on reduced folate pools and 5-fluorouracil-mediated thymidylate synthase inhibition in human colon adenocarcinoma xenografts. Cancer Res 1990; 50: 3940–3946.

    PubMed  CAS  Google Scholar 

  91. Houghton JA, Williams LG, de Graaf SS, et al. Relationship between dose rate of [6RS]Leucovorin administration, plasma concentrations of reduced folates, and pools of 5,10-methylenetetrahydrofolates and tetrahydrofolates in human colon adenocarcinoma xenografts. Cancer Res 1990; 50: 3493–3502.

    PubMed  CAS  Google Scholar 

  92. Cheradame S, Etienne MC, Chazal M, et al. Relevance of tumoral folypolyglutamate synthetase and reduced folates for optimal 5-fluorouracil efficacy: experimental data Eur J Cancer 1997; 33: 950–959.

    Article  PubMed  CAS  Google Scholar 

  93. Cheradame S, Etienne MC, Formento P, et al. Tumoral-reduced folates and clinical resistance to fluorouracil-based treatment in head and neck cancer patients. J Clin Oncol 1997; 15: 2604–2610.

    PubMed  CAS  Google Scholar 

  94. Chazal M, Cheradame S, Formento JL, et al. Decreased folylpolyglutamate synthetase activity in tumors resistant to fluorouracil-folinic acid treatment clinical data Clin Cancer Res 1997; 3: 553–557.

    PubMed  CAS  Google Scholar 

  95. Romanini A, Lin JT, Niedzwiecki D, Bunni M, Priest DG, Bertino JR. Role of folylpolyglutamates in biochemical modulation of fluoropyrimidines by leucovorin. Cancer Res 1991; 51: 789–793.

    PubMed  CAS  Google Scholar 

  96. Wang FS, Aschele C, Sobrero A, Chang YM, Bertino JR. Decreased folypolyglutamate synthetase expression: a novel mechanism of fluorouracil Cancer Res 1993; 53: 3677–3680.

    PubMed  CAS  Google Scholar 

  97. Ayusawa D, Koyama H, and Seno T. Resistance to methotrexate in thymidylate synthetase-deficient mutants of cultured mouse mammary tumor FM3A cells. Cancer Res 1981; 41: 1497–1501.

    PubMed  CAS  Google Scholar 

  98. Houghton PJ, Germain GS, Hazelton BJ, Pennington JW, Houghton JA. Mutants of human colon adenocarcinoma selected for thymidylate synthase deficiency. Proc Natl Acad Sci USA 1989; 86: 1377–1381.

    Article  PubMed  CAS  Google Scholar 

  99. Smith SG, Lehman NL, Moran RG. Cytotoxicity of antifolate inhibitors of thymidylate and purine synthesis to WiDr colonic carcinoma cells. Cancer Res 1993; 53: 5697–5706.

    PubMed  CAS  Google Scholar 

  100. Houghton JA, Harwood FG, Tillman DM. Thymineless death in colon carcinoma cells is mediated via fas signaling. Proc Natl Acad Sci USA 1997; 94: 8144–8149.

    Article  PubMed  CAS  Google Scholar 

  101. Roberts D. An isotopic assay for thymidylate synthetase. Biochemistry 1966; 5: 3546–3548.

    Article  PubMed  CAS  Google Scholar 

  102. Yalowich JC, Kalman TI. Rapid determination of thymidylate synthase activity and its inhibition in intact L1210 leukemia cells in vitro. Biochem Pharmacol 1985; 34: 2319–2324.

    Article  PubMed  CAS  Google Scholar 

  103. Spears CP, Gustaysson BG. Methods for thymidylate synthase pharmacodynamics: serial biopsy, free and total TS, FdUMP and dUMP and H4PteGlu and CH2–H4PteGlu assays. Adv Exp Med Biol 1988; 244: 97–106.

    Article  PubMed  CAS  Google Scholar 

  104. Larsson PA, Carlsson G, Gustavasson B et.al. Thymidylate synthase in advanced gastrointestinal and breast cancers. Acta Oncol 1996; 35: 469–472.

    Article  PubMed  CAS  Google Scholar 

  105. van Laar JA, van der Wilt CL, Rustum YM, et al. Therapeutic efficacy of fluoropyrimidines depends on the duration of thymidylate synthase inhibition in the murine colon 26-B carcinoma tumor model. Clin Cancer Res 1996; 2: 1327–1333.

    PubMed  Google Scholar 

  106. Spears CP, Gustavasson BG, Frosing R. Folinic acid modulation of fluorouracil: tissue kinetics of bolus administration. Invest New Drugs 1989; 7: 27–36.

    Article  PubMed  CAS  Google Scholar 

  107. Horikoshi T, Danenberg KD, Stadlbauer TH, et al. Quantitation of thymidylate synthase, dihydrofolate reductase, and DT-diaphorase gene expression in human tumors using the polymerase chain reaction. Cancer Res 1992; 52: 108–116.

    PubMed  CAS  Google Scholar 

  108. Johnston PG, Lenz HJ, Leichman CG, et al. Thymidylate synthase gene and protein expression correlate and are associated with response to 5-fluorouracil in human colorectal and gastric tumors. Cancer Res 1995; 55: 1407–1412.

    PubMed  CAS  Google Scholar 

  109. Lenz HJ, Leichman CG, Danenberg KD, et al. Thymidylate synthase mRNA level in adenocarcinoma of the stomach: a predictor for primary tumor response and overall survival. J Clin Oncol 1996; 14: 176–182.

    PubMed  CAS  Google Scholar 

  110. Lenz HJ, Danenberg KD, Leichman CG, et al. p53 and thymidylate synthase expression in untreated stage II colon cancer: associations with recurrence, survival, and site. Clin Cancer Res 1998; 4: 1227–1234.

    PubMed  CAS  Google Scholar 

  111. Lenz HJ, Hayashi K, Salonga D, et al. p53 point mutations and thymidylate synthase messenger RNA levels in disseminated colorectal cancer: an analysis of response and survival. Clin Cancer Res 1998; 4: 1243–1250.

    PubMed  CAS  Google Scholar 

  112. Gorlick R, Metzger R, Danenberg KD, et al. Higher levels of thymidylate synthase gene expression are observed in pulmonary as compared with hepatic metastases of colorectal adenocarcinoma. J Clin Oncol 1998; 16: 1465–1469.

    PubMed  CAS  Google Scholar 

  113. Salonga D, Danenberg KD, Johnson M, et al. Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase, and thymidine phosphorylase. Clin Cancer Res 2000; 6: 1322–1327.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Moran, R.G. (2003). Biochemical Bases of the 5-Fluorouracil—Folinic Acid Interaction and of its Limitations. In: Rustum, Y.M. (eds) Fluoropyrimidines in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-337-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-337-8_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-274-2

  • Online ISBN: 978-1-59259-337-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics