Skip to main content

Regulatory Co-options in the Evolution of Deuterostome Immune Systems

  • Chapter
Book cover Innate Immunity

Part of the book series: Infectious Disease ((ID))

  • 365 Accesses

Abstract

Nowhere can Archimedes’ famous dictum, that to move the Earth one would need only a foot of ground somewhere else to stand on, be more aptly cited than in evolutionary bioscience. To understand where our own working systems come from, we must examine equivalent systems in animals that are not ourselves but that are of known evolutionary relationship to us. If the other species are wisely chosen, and if we know enough, then by logic the characteristics of the ancestral states will fall out, and at least the main steps in the evolutionary construction of our own divergence from these ancestors can be understood. As yet we clearly do not know nearly enough to do this for the evolution of innate immune systems in the deuterostomes, the subject of this chapter. However, it is possible to make a start: several recent observations on the workings of the innate immune system in a distantly related deuterostome animal, the sea urchin, prove immensely interesting when viewed comparatively with respect to the innate immune systems of vertebrates. In this chapter we have focused on the evolution of the gene regulatory foundations on which the very different innate immune systems of these different animals are built. Everything in this argument rests on the phylogeny of the deuterostomes, which determines the topography of the tree that organizes the currently extant deuterostomes in respect to their similarities and differences, and from which their ancestral relations are deduced. So it is with a brief reprise of deuterostome phylogeny that we begin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brusca RC, Brusca GJ. Invertebrates. Sunderland, MA: Sinauer, 1990.

    Google Scholar 

  2. Davidson EH. Gene Activity in Early Development. New York: Academic, 1968.

    Google Scholar 

  3. Davidson EH. Gene Activity in Early Development, 2nd ed. New York: Academic, 1976.

    Google Scholar 

  4. Davidson EH. Spatial mechanisms of gene regulation in metazoan embryos. Development 1991;113:1–26.

    PubMed  CAS  Google Scholar 

  5. Adoutte A, Balavoine G, Lartillot N, et al. The new animal phylogeny: reliability and implications. Proc Natl Acad Sci USA 2000;97:4453–4456.

    PubMed  CAS  Google Scholar 

  6. Davidson EH, Thomas TL, Scheller RH, Britten RJ. The sea urchin actin genes and a speculation on the evolutionary significance of small gene families. In: Dover GA, Flavell RB (eds.). Genome Evolution. London: Academic, 1982, pp. 177–191.

    Google Scholar 

  7. Cooper AD, Crain WR Jr. Complete nucleotide sequence of a sea urchin actin gene. Nucleic Acids Res 1982;10:4081–4092.

    PubMed  CAS  Google Scholar 

  8. Kusakabe T, Araki I, Satoh N, Jeffery WR. Evolution of chordate actin genes: evidence from genomic organization and amino acid sequences. J Mol Evol 1997;44;289–298.

    PubMed  CAS  Google Scholar 

  9. Turbeville JM, Schultz JR, Raff RA. Deuterostome phylogeny and the sister group of the chordates: evidence from molecules and morphology. Mol Biol Evol 1994;11:648–655.

    PubMed  CAS  Google Scholar 

  10. Wada H, Satoh N Details of the evolutionary history from invertebrates to vertebrates, as deduced from the sequences of 18S rDNA. Proc Natl Acad Sci USA 1994;91:1801–1804.

    PubMed  CAS  Google Scholar 

  11. Cameron CB, Garey JR, Swalla BJ. Evolution of the chordate body plan: new insights from phylogenetic analyses of deuterostome phyla. Proc Natl Acad Sci USA 2000;97:4469–4474.

    PubMed  CAS  Google Scholar 

  12. Castresana J, Feldmaier-Fuchs G, Yokobori S, Satoh N, Paabo S. The mitochondrial genome of the hemichordate Balanoglossus carnosus and the evolution of deuterostome mitochondria. Genetics 1998;150:1115–1123.

    PubMed  CAS  Google Scholar 

  13. Peterson KJ, Cameron RA, Davidson EH. Set-aside cells in maximal indirect development: evolutionary and developmental significance. Bioessays 1997;19:623–631.

    PubMed  CAS  Google Scholar 

  14. Sprinkle J. Phylum echinodermata. In: Boardman RS, Cheetham AH, Rowell AJ (eds.). Fossil Invertebrates. Cambridge, MA: Blackwell Science, 1987, pp. 550–611.

    Google Scholar 

  15. Conway Morris S, Whittington HB. The animals of the Burgess Shale. Sci Am 1979;241:122–133.

    Google Scholar 

  16. Chen J-y, Huang D-Y, Li C-W. In early Cambrian craniate-like chordate.

    Google Scholar 

  17. Shu D-G, Chen L, Han J, Zhang X-L. An early Cambrian tunicate from China. Nature 1999;411:427–473.

    Google Scholar 

  18. Janvier P. Catching the first fish. Nature 1999;402:21–22.

    CAS  Google Scholar 

  19. Shu D-G, Chen L, Han J, Zhang X-L. An Early Cambrian tunicate from China. Nature 2001;411:472–473.

    PubMed  CAS  Google Scholar 

  20. Smith LC, Davidson EH. The echinoderm immune system: characters shared with vertebrate immune systems, and characters arising later in deuterostome phylogeny. NY Acad Sci 1994;712:213–226.

    CAS  Google Scholar 

  21. Gross PS, Al-Sharif WZ, Clow LA, Smith LC. Echinoderm immunity and the evolution of complement system. Dev Comp Immunol 1999;23:429–442.

    PubMed  CAS  Google Scholar 

  22. Coffaro KA, Hinegardner RT. Immune response in the sea urchin Lytechinus pictus. Science 1977;197:1389–1390.

    PubMed  CAS  Google Scholar 

  23. Coffaro KA. Transplantation immunity in the sea urchin. Doctoral dissertation, University of California, Santa Cruz, CA, 1979.

    Google Scholar 

  24. Smith LC, Davidson EH. The echinoid immune system and the phylogenetic occurrence of immune mechanisms in deuterostomes. Immunol-Today 1992;13:356–362.

    PubMed  CAS  Google Scholar 

  25. Smith LC, Chang L, Britten RJ, Davidson EH. Sea urchin genes expressed in activated coelomocytes are identified by expressed sequence tags. J Immunol 1996;156:593–602.

    PubMed  CAS  Google Scholar 

  26. Al-Sharif WZ, Sunyer JO, Lambris JD, Smith LC. Sea urchin coelomocytes specifically express a homologue of the complement component C3. J Immunol 1998;160:2983–2997.

    PubMed  CAS  Google Scholar 

  27. Smith LC, Shih C-S, Dachenhausen SG. Coelomocytes express SpBf, a homologue of factor B, the second component in the sea urchin complement system. J Immunol 1998;161:6784–6793.

    PubMed  CAS  Google Scholar 

  28. Smith L C., Azumi K Nonaka M. Complement systems in invertebrates: the ancient alternative and lectin pathways. Immunopharmacology 1999;42:107–120.

    PubMed  CAS  Google Scholar 

  29. Nonaka M, Takahashi K. Complete complementary of lamprey. Implication for the evolution of thioester containing proteins. J Immunol 1992;148:3290–3295.

    PubMed  CAS  Google Scholar 

  30. Nonaka M, Takahashi M, Sasaki M. Molecular cloning of a lamprey homologue of the mammalian MHS class III gene, complement factor B. J Immunol 1994;152:2263–2269.

    PubMed  CAS  Google Scholar 

  31. Lagueux M, Perrodou E, Levashina EA, Capovilla M, Hoffmann JA. Constitutive expression of a complement-like protein in Toll and JAK gain-of-function mutants of Drosophila. Proc Natl Acad Sci USA 2000;97:11427–11432.

    PubMed  CAS  Google Scholar 

  32. Rast JP, Oliveri P, Davidson EH. Conserved linkage among sea urchin homologs of genes encoded in the vertebrate MHC region. In: Kasahard M (ed.). Major Histocompatibility Complex. Tokyo: Springer, 2000, pp. 66–74.

    Google Scholar 

  33. Pancer Z. Dynamic expression of multiple scavenger receptor cysteine-rich genes in coelomocytes of the purple sea urchin. Proc Natl Acad Sci USA 2000;97:13156–13161.

    PubMed  CAS  Google Scholar 

  34. Wijngaard PLJ, Metzelaar MJ, MacHugh ND, Morrison WI, Clevers HC. Molecular characterization of the WC1 antigen expressed specifically on bovine CD4-CD8- γδ T lymphocytes. J Immunol 1992;149:3273–3277.

    PubMed  CAS  Google Scholar 

  35. Walker ID, Glew MD, O’Keefe MA, et al. A novel multi-gene family of sheep γδ cells. Immunology 1994;83:517–523.

    PubMed  CAS  Google Scholar 

  36. Kanan JHC, Nayeem N, Binns RM, Chain BM. Mechanisms for variability in a member of the scavenger-receptor cysteine-rich superfamily. Immunogenetics 1997;46:276–282.

    PubMed  CAS  Google Scholar 

  37. Kirkham PA, Takamatsu H-H, Parkhouse RME. Growth arrest of γδ T cells induced by monoclonal antibody against WC1 correlates with activation of multiple tyrosine phosphatases and dephosphorylation of MAP kinase erk2. Eur J Immunol 1997;27:717–725.

    PubMed  CAS  Google Scholar 

  38. O’Keeffe MA, Metcalfe SA, Cunningham CP, Walker ID. Sheep CD4+ αβ T cells express novel members of the T19 multigene family. Immunogenetics 1999;49:45–55.

    PubMed  Google Scholar 

  39. Freeman M, Ashkenas J, Rees DJG, et al. An ancient, highly conserved family of cysteine-rich protein domains revealed by cloning type I and type II murine macrophage scavenger receptors. Proc Natl Acad Sci USA 1990;87:8810–8814.

    PubMed  CAS  Google Scholar 

  40. Dunne DW, Resnick D, Greenberg J, Krieger M, Joiner KA. The type I macrophage scavenger receptor binds to Gram-positive bacteria and recognizes lipoteichoic acid. Proc Natl Acad Sci USA 1994;91:1863–1867.

    PubMed  CAS  Google Scholar 

  41. Elomaa O, Kangas M, Sahlberg C, et al. Cloning of a novel bacteria-binding receptor structurally related to scavenger receptors and expressed in a subset of macrophages. Cell 1995 ;80:603–609.

    PubMed  CAS  Google Scholar 

  42. Greenberg JW, Fischer W, Joiner KA. Influence of lipoteichoic acid structure on recognition by the macrophage scavenger receptor. Infect Immun 1996;64:3318–3325.

    PubMed  CAS  Google Scholar 

  43. Holmskov U, Mollenhauer J, Madsen J, et al. Cloning of gp-340, a putative opsonin receptor for lung surfactant protein D. Proc Natl Acad Sci USA 1999;96:10794–10799.

    PubMed  CAS  Google Scholar 

  44. Trahey M, Weissman IL. Cyclophilin C-associated protein: a normal secreted glycoprotein that down-modulates endotoxin and proinflammatory responses in vivo. Proc Natl Acad Sci USA 1999;96:3006–3011.

    PubMed  CAS  Google Scholar 

  45. Van der Laan LJW, Dôpp EA, Haworth R, et al. Regulatin and functional involvement of macrophage scavenger receptor MARCO in clearance of bacteria in vivo. J Immunol 1999;62:939–947.

    Google Scholar 

  46. Thomas CA, Li Y, Kodama T, et al. Protection from lethal Gram-positive infection by macrophage scavenger receptor-dependent phagocytosis. J Exp Med 2000;191:147–155.

    PubMed  CAS  Google Scholar 

  47. Pancer Z, Rast JP, Davidson EH. Origins of immunity: transcription factors and homologues of effector genes of the vertebrate immune system expressed in sea urchin coelomocytes. Immunogenetics 1999;49:773–786.

    PubMed  CAS  Google Scholar 

  48. Cameron RA, Mahairas G, Rast JP, et al. A sea urchin genome project: sequence scan, virtual map, and additional resources. Proc Natl Acad Sci USA 2000;97:9514–9518.

    PubMed  Google Scholar 

  49. Cameron RA, Oliveri P, Wyllie J, Davidson EH. Cis-regulatory activity of randomly chosen genomic fragments from the sea urchin. Submitted.

    Google Scholar 

  50. Ozinsky A, Underhill DM, Fontenot JD, et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci USA 2000;97:13766–13771.

    PubMed  CAS  Google Scholar 

  51. Imler JL, Hoffmann JA. Toll and Toll-like proteins: an ancient family of receptors signaling infection. Rev Immunogenet 2000;2:294–304.

    PubMed  CAS  Google Scholar 

  52. Anderson KV. Toll signaling pathways in the innate immune response. Curr Opin Immunol 2000;12:13–19.

    PubMed  CAS  Google Scholar 

  53. Kimbrell DA, Beutler B. The evolution and genetics of innate immunity. Nat Rev Genet 2001;2:256–267.

    PubMed  CAS  Google Scholar 

  54. Smith LC, Britten RJ, Davidson EH. Lipopolysaccharide activates the sea urchin immune system. Dev Comp Immun 1995;19:217–224.

    CAS  Google Scholar 

  55. Chow LA, Gross PS, Shih C-S, Smith LC. Expression of SpC3, the sea urchin complement component, in response to lipopolysaccharide. Immunogenetics 2000;51:1021–1033.

    Google Scholar 

  56. Laird DJ, De Tomaso AW, Cooper MD, Weissman IL. 50 million years of chordate evolution: seeking the origins of adaptive immunity. Proc Natl Acad Sci USA 2000;97:6924–6926.

    PubMed  CAS  Google Scholar 

  57. Hansen JD, McBlane JF. Recombination-activating genes, transposition, and the lymphoid-specific combinatorial immune system: a common evolutionary connection. Curr Top Microbiol Immunol 2000;248:111–135.

    PubMed  CAS  Google Scholar 

  58. Schluter SF, Bernstein RM, Bernstein H, Marchalonis JJ. ‘Big Bang’ emergence of the combinatorial immune system. Dev Comp Immunol. 1999;23:107–111.

    PubMed  CAS  Google Scholar 

  59. Flajnik MF, Ohta Y, Namikawa-Yamada C, Nonaka M. Insight into the primordial MHC from studies in ectothermic vertebrates. Immunol Rev 1999;167:59–67.

    PubMed  CAS  Google Scholar 

  60. Rast JP, Litman GW. Towards understanding the evolutionary origins and early diversification of rearranging antigen receptors. Immunol Rev 1998;166:79–86.

    PubMed  CAS  Google Scholar 

  61. Medzhitov R, Janeway CA Jr. Innate immune recognition and control of adaptive immune responses. Semin Immunol 1998;10:351–353.

    PubMed  CAS  Google Scholar 

  62. Litman GW, Anderson MK, Rast JP. Evolution of antigen binding receptors. Annu Rev Immunol 1999;17:109–147.

    PubMed  CAS  Google Scholar 

  63. Bernstein RM, Schluter SF, Bernstein H, Marchalonis JJ. Primordial emergence of the recombination activating gene 1 (RAG 1): sequence of the complete shark gene indicates homology to microbial integrases. Proc Natl Acad Sci USA 1996;93:9454–9459.

    PubMed  CAS  Google Scholar 

  64. Wu L, Antica M, Johnson GR, Scollay R, Shortman K. Developmental potential of the earliest precursor cells from the adult mouse thymus. J Exp Med 1991;174:1617–1627.

    PubMed  CAS  Google Scholar 

  65. Kondo M, Weissman IL, Akashi K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 1997;91:661–672.

    PubMed  CAS  Google Scholar 

  66. Akashi K, Traver D, Miyamoto T, Weissman IL. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 2000;404:193–197.

    PubMed  CAS  Google Scholar 

  67. Cumano A, Paige CJ, Iscove NN, Brady G. Bipotential precursors of B cells and macrophages in murine fetal liver. Nature 1992;356:612–615.

    PubMed  CAS  Google Scholar 

  68. Lacaud G, Carlsson L, Keller G. Identification of a fetal hematopoietic precursor with B cell, T cell, and macrophage potential. Immunity 1998;9:827–838.

    PubMed  CAS  Google Scholar 

  69. Katsura Y, Kawamoto H. Stepwise lineage restriction of progenitors in lympho-myelopoiesis. Int Rev Immunol 2001;20:1–20.

    PubMed  CAS  Google Scholar 

  70. Hunte BE, Capone M, Zlotnik A, Rennick D, Moore TA. Acquisition of CD24 expression by Lin-CD43+B2201owckithi cells coincides with commitment to the B cell lineage. Eur J Immunol 1998;28:3850–3856.

    PubMed  CAS  Google Scholar 

  71. Montecino-Rodriguez E, Leathers H, Dorshkind K. Bipotential B-macrophage progenitors are present in adult bone marrow. Nat Immunol 2001;2:83–88.

    PubMed  CAS  Google Scholar 

  72. Ardavin C, Wu L, Li CL, Shortman K. Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population. Nature 1993;362:761–763.

    PubMed  CAS  Google Scholar 

  73. Lucas K, Vremec D, Wu L, Shortman K. A linkage between dendritic cell and T- cell development in the mouse thymus: the capacity of sequential T- cell precursors to form dendritic cells in culture. Dev Comp Immunol 1998;22:339–349.

    PubMed  CAS  Google Scholar 

  74. Res PCM, Couwenberg F, Vyth-Dreese FA, Spits H. Expression of a pTa mRNA in a committed dendritic cell precursor in the human thymus. Blood 1999;94:2647–2657.

    PubMed  CAS  Google Scholar 

  75. Rothenberg EV, Telfer JC, Anderson MK. Transcriptional regulation of lymphocyte lineage commitment. Bioessays 1999;21:726–742.

    PubMed  CAS  Google Scholar 

  76. Kondo M, Scherer DC, Miyamoto T, et al. Cell-fate conversion of lymphoid-committed progenitors by instructive actions of cytokines. Nature 2000;407:383–386.

    PubMed  CAS  Google Scholar 

  77. Reya T, Grosschedl R. Transcriptional regulation of B-cell differentiation. Curr Opin Immunol 1998;10:158–165.

    PubMed  CAS  Google Scholar 

  78. Liberg D, Sigvardsson M. Transcriptional regulation in B cell differentiation. Crit Rev Immunol 1999;19:127–153.

    PubMed  CAS  Google Scholar 

  79. Busslinger M, Nutt SL, Rolink AG. Lineage commitment in lymphopoiesis. Curr Opin Immunol 2000;12:151–158.

    PubMed  CAS  Google Scholar 

  80. Kee BL, Murre C. Transcription factor regulation of B lineage commitment. Curr Opin Immunol 2001;13:180–185.

    PubMed  CAS  Google Scholar 

  81. Atchley WR, Fitch WM. A natural classification of the basic helix-loop-helix class of transcription factors. Proc Natl Acad Sci USA 1997;94:5172–5176.

    PubMed  CAS  Google Scholar 

  82. Wang SS, Tsai RYL, Reed RR. The characterization of the Olf-1/EBF-like HLH transcription factor family: implications in olfactory gene regulation and neuronal development. J Neurosci 1997;17:4149–4158.

    PubMed  CAS  Google Scholar 

  83. Czerny T, Bouchard M, Kozmik Z, Busslinger M. The characterization of novel Pax genes of the sea urchin and Drosophila reveal an ancient evolutionary origin of the Pax2/5/8 subfamily. Mech Dev 1997;67:179–192.

    PubMed  CAS  Google Scholar 

  84. Prasad BC, Ye B, Zackhary R, et al. Unc-3, a gene required for axonal guidance in Caenorhabditis elegans, encodes a member of the O/E family of transcription factors. Development 1998;125:1561–1568.

    PubMed  CAS  Google Scholar 

  85. Bain G, Murre C. The role of E-proteins in B- and T- lymphocyte development. Semin Immunol 1998;10:143–153.

    PubMed  CAS  Google Scholar 

  86. Kuo CT, Leiden JM. Transcriptional regulation of T lymphocyte development and function. Annu Rev immunol 1999;17:149–187.

    PubMed  CAS  Google Scholar 

  87. Ting C-N, Olson MC, Barton KP, Leiden JM. Transcription factor GATA-3 is required for development of the T- cell lineage. Nature 1996;384:474–478.

    PubMed  CAS  Google Scholar 

  88. Hendriks RW, Nawijn MC, Engel JD, et al. Expression of the transcription factor GATA-3 is required for the development of the earliest T cell progenitors and correlates with stages of cellular proliferation in the thymus. Eur J Immunol 1999;29:1912–1918.

    PubMed  CAS  Google Scholar 

  89. Tomita K, Hattori M, Nakamura E, et al. The bHLH gene Hes1 is essential for expansion of early T cell precursors. Genes Dev. 1999;13:1203–1210.

    PubMed  CAS  Google Scholar 

  90. Heemskerk MHM, Blom B, Nolan G, et al. Inhibition of T cell and promotion of natural killer cell development by the dominant negative helix loop helix factor Id3. J Exp Med 1997;186:1597–1602.

    PubMed  CAS  Google Scholar 

  91. Barndt R, Dai MF, Zhang Y. A novel role for HEB downstream or parallel to the pre-TCR signaling pathway during αß thymopoiesis. J Immunol 1999;163:3331–3343.

    PubMed  CAS  Google Scholar 

  92. Okamura RM, Sigvardsson M, Galceran J, et al. Redundant regulation of T cell differentiation and TCRα gene expression by the transcription factors LEF-1 and TCF-1. Immunity 1998;8:11–20.

    PubMed  CAS  Google Scholar 

  93. Verbeek S, Izon D, Hofhuis F, et al. An HMG-box-containing T- cell factor required for thymocyte differentiation. Nature 1995;374:70–74.

    PubMed  CAS  Google Scholar 

  94. Clevers HC, Grosschedl R. Transcriptional control of lymphoid development: lessons from gene targeting. Immunol Today 1996;17:336–343.

    PubMed  CAS  Google Scholar 

  95. Anderson MK, Hernandez-Hoyos G, Diamond RA, Rothenberg EV. Precise developmental regulation of Ets family transcription factors during specification and commitment to the T cell lineage. Development 1999;126:3131–3148.

    PubMed  CAS  Google Scholar 

  96. Zhuang Y, Cheng P, Weintraub H. B-lymphocyte development is regulated by the combined dosage of three basic helix-loop-helix genes, E2A, E2–2, and HEB. Mol Cell Biol 1996;16:2898–2905.

    PubMed  CAS  Google Scholar 

  97. Huang L, Li X, El-Hodiri HM, et al. Involvement of Tcf/Lef in establishing cell types along the animal-vegetal axis of sea urchins. Dev Genes Evol 2000;210:73–81.

    PubMed  CAS  Google Scholar 

  98. Lin WH, Huang LH, Yeh JY, et al. Expression of a Drosophila GATA transcription factor in multiple tissues in the developing embryos. Identification of homozygous lethal mutants with Pelement insertion at the promoter region. J Biol Chem 1995;270:25150–25158.

    PubMed  CAS  Google Scholar 

  99. Pandolfi PP, Roth ME, Karis A, et al. Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nat Genet 1995;11:40–44.

    PubMed  CAS  Google Scholar 

  100. Staal FJT, Meelidijk J, Moerer P, et al. Wnt signaling is required for thymocyte development and activates Tcf-1 mediated transcription. Eur J Immunol 2001;31:285–293.

    PubMed  CAS  Google Scholar 

  101. Reya T, O’Riordan M, Okamura R, et al. Wnt signaling regulates B lymphocyte proliferation through a LEF-1 dependent mechanism. Immunity 2000;13:15–24.

    PubMed  CAS  Google Scholar 

  102. Roose J, Clevers H. TCF transcription factors: molecular switches in carcinogenesis. Biochim Biophys Acta 1999;1424:M23–M37

    PubMed  CAS  Google Scholar 

  103. Brunner E, Peter O, Schweitzer L, Basler K. Pangolin encodes a Lef-1 homologue that acts downstream of Armadillo to transduce the Wingless signal in Drosophila. Nature 1997;385:829–833.

    PubMed  CAS  Google Scholar 

  104. Manaia A, Lemarchandel V, Klaine M, et al. Lmo2 and GATA-3 associated expression in intraembryonic hemogenic sites. Development 2000;127:643–653.

    PubMed  CAS  Google Scholar 

  105. Labastie M-C, Cortes F, Romeo P-H, Dulac C, Péault B. Molecular identity of hematopoietic precursor cells emerging in the human embryo. Blood 1998;92:3624–3635.

    PubMed  CAS  Google Scholar 

  106. Petersen U-M, Kadalayil L, Rehorn K-P, et al. Serpent regulates Drosophila immunity genes in the larval fat body through an essential GATA motif. EMBO J 1999;18:4013–4022.

    PubMed  CAS  Google Scholar 

  107. Lowry JA, Atchley WR. Molecular evolution of the GATA family of transcription factors: conservation within the DNA-binding domain. J Mol Evol 2000;50:103–115.

    PubMed  CAS  Google Scholar 

  108. Dzierzak E, Medvinsky A, de Bruijn M. Qualitative and quantitative aspects of haematopoietic cell development in the mammalian embryo. Immunol Today 1998;19:228–236.

    PubMed  CAS  Google Scholar 

  109. North T, Gu T- L, Stacy T, et al. Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. Development 1999;126:2563–2575.

    PubMed  CAS  Google Scholar 

  110. Mukouyama Y, Chiba N, Hara T, et al. The AML1 transcription factor functions to develop and maintain hematogenic precursor cells in the embryonic aorta-gonad-mesonephros region. Dev Biol 2000;220:27–36.

    PubMed  CAS  Google Scholar 

  111. Cai Z, de Bruijn M, Ma X, et al. Haploinsufficiency of AML1 affects the temporal and spatial generation of hematopoietic stem cells in the mouse embryo. Immunity 2000;13:423–431.

    PubMed  CAS  Google Scholar 

  112. Gewirtz AM, Anfossi G, Venturelli D, et al. G1/S transition in normal human T- lymphocytes requires the nuclear protein encoded by c-myb. Science 1989;245:180–183.

    PubMed  CAS  Google Scholar 

  113. Nichogiannopoulou A, Trevisan M, Neben S, Friedrich C, Georgopoulos K. Defects in hemopoietic stem cell activity in Ikaros mutant mice. J Exp Med 1999;190:1201–1214.

    PubMed  CAS  Google Scholar 

  114. Scott EW, Fisher RC, Olson MC, et al. PU.1 functions in a cell-autonomous manner to control the differentiation of multipotential lymphoid-myeloid progenitors. Immunity 1997;6:437–447.

    PubMed  CAS  Google Scholar 

  115. Brown KE, Guest SS, Smale ST, et al. Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell 1997;91:845–854.

    PubMed  CAS  Google Scholar 

  116. Winandy S, Wu L, Wang J-H, Georgopoulos K. Pre-T cell receptor (TCR) and TCR-controlled checkpoints in T cell differentiation are set by Ikaros. J Exp Med 1999;190:1039–1048.

    PubMed  CAS  Google Scholar 

  117. Lloberas J, Soler C, Celada A. The key role of PU.1/SPI-1 in B cells, myeloid cells and macrophages. Immunol Today 1999;20:184–189.

    PubMed  CAS  Google Scholar 

  118. Fisher RC, Scott EW. Role of PU.1 in hematopoiesis. Stem Cells 1998;16:25–37.

    PubMed  CAS  Google Scholar 

  119. Nerlov C, Graf T. PU.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors. Genes Dev 1998;12:2403–2412.

    PubMed  CAS  Google Scholar 

  120. Singh H, DeKoter RP, Walsh JC. PU.1, a shared transcriptional regulator of lymphoid and myeloid cell fates. Cold Spring Harbor Symp Quant Biol 1999;64:13–20.

    PubMed  CAS  Google Scholar 

  121. Spain LM, Guerriero A, Kunjibettu S, Scott EW. T cell development in PU.1-deficient mice. J Immunol 1999;163:2681–2687.

    PubMed  CAS  Google Scholar 

  122. DeKoter RP, Singh H. Regulation of B lymphocyte and macrophage development by graded expression of PU.1. Science 2000;288:1439–1441.

    PubMed  CAS  Google Scholar 

  123. Anderson MK, Weiss A, Hemandez-Hoyos G, et al. Constitutive expression of PU.1 in fetal hematopoietic progenitors blocks T- cell development at the pro-T stage. Immunity 2002;16:285–296.

    PubMed  CAS  Google Scholar 

  124. Anderson MK, Rothenberg EV. Transcription factor expression in lymphocyte development: clues to the evolutionary origins of lymphoid cell lineages? Curr Top Microbiol Immunol 2000;248:137–155.

    PubMed  CAS  Google Scholar 

  125. Laudet V, Hanni C, Stéhelin D, Duterque-Coquillaud M. Molecular phylogeny of the ETS gene family. Oncogene 1999;18:1351–1359.

    PubMed  CAS  Google Scholar 

  126. Zhang P, Behre G, Pan J, et al. Negative cross-talk between hematopoietic regulators: GATA proteins repress PU.1. Proc Natl Acad Sci USA 1999;96:8705–8710.

    PubMed  CAS  Google Scholar 

  127. Rekhtman N, Radparvar F, Evans T, Skoultchi A. Direct interaction of hematopoietic transcription factors PU.1 and GATA-1: functional antagonism in erythroid cells. Genes Dev 1999;13:1398–1411.

    PubMed  CAS  Google Scholar 

  128. Nerlov C, Querfurth E, Kulessa H, Graf T. GATA-1 interacts with the myeloid PU.1 transcription factor and represses PU.1-dependent transcription. Blood 2000;95:2543–2551.

    PubMed  CAS  Google Scholar 

  129. Matsumura I, Kawasaki A, Tanaka H, et al. Biologic significance of GATA-1 activities in Rasmediated megakaryocytic differentiation of hematopoietic cell lines. Blood 2000;96:2440–2450.

    PubMed  CAS  Google Scholar 

  130. Hernandez-Hoyos G, Anderson MK, Rothenberg EV. Distinct actions of GATA-3 in three phases of thymocyte development: specification, β-selection, and CD4/CD8 differentiation. Submitted.

    Google Scholar 

  131. Shintani S, Terzic J, Saraga-Babic M, et al. Do lampreys have lymphocytes? The Spi evidence. Proc Natl Acad Sci USA 2000;97:7417–7422.

    PubMed  CAS  Google Scholar 

  132. Anderson MK, Sun X, Miracle AL, Litman GW, Rothenberg EV. Evolution of hematopoiesis: three members of the PU.1 transcription factor family in a cartilaginous fish, Raja eglanteria. Proc Natl Acad Sci USA 2001;98:553–558.

    PubMed  CAS  Google Scholar 

  133. Miracle AL, Anderson MK, Litman RT, et al. Complex expression patterns of lymphocyte-specific genes during the development of cartilaginous fish implicate unique lymphoid tissues in generating an immune repertoire. Int Immunol 2001;13:567–580.

    PubMed  CAS  Google Scholar 

  134. Zapata A, Amemiya CT. Phylogeny of lower vertebrates and their immunological structures. Curr Top Microbiol Immunol 2000;248:67–107.

    PubMed  CAS  Google Scholar 

  135. Brass AL, Kehrli E, Eisenbeis CF, Storb U, Singh H. Pip, a lymphoid-restricted IRF, contains a regulatory domain that is important for autoinhibition and ternary complex formation with the Ets factor PU.1. Genes Dey 1996;10:2335–2347.

    CAS  Google Scholar 

  136. Marecki S, Fenton MJ. PU.1 interferon regulatory factor interactions: mechanisms of transcriptional regulation. Cell Biochem Biophys 2000;33:127–148.

    PubMed  CAS  Google Scholar 

  137. Tamura T, Nagamura-Inoue T, Shmeltzer Z, Kuwata T, Ozato K. ICSBP directs bipotential myeloid progenitor cells to differentiate into mature macrophages. Immunity 2000;13:155–165.

    PubMed  CAS  Google Scholar 

  138. Hansen JD, Strassburger P, Du Pasquier L. Conservation of a master hematopoietic switch gene during vertebrate evolution: isolation and characterization of Ikaros from teleost and amphibian species. Eur J Immunol 1997;27:3049–3058.

    PubMed  CAS  Google Scholar 

  139. Haire RN, Miracle AL, Rast JP, Litman GW. Members of the Ikaros gene family are present in early representative vertebrates. J Immunol 2000;165:306–312.

    PubMed  CAS  Google Scholar 

  140. Grégoire J-M, Roméo P-H. T- cell expression of the human GATA-3 gene is regulated by a nonlineage specific silencer. J Biol Chem 1999;274:6567–6578.

    PubMed  Google Scholar 

  141. Moulton KS, Semple K, Wu H, Glass CK. Cell-specific expression of the macrophage scavenger receptor gene is dependent on PU.1 and a composite AP-1/ets motif. Mol Cell Biol 1994;14:4408–4418.

    PubMed  CAS  Google Scholar 

  142. Davidson EH. Changes that make new forms: gene regulatory systems and the evolution of body parts. In: Genomic Regulatory Systems, 1st ed.

    Google Scholar 

  143. Olson MC, Scott EW, Hack AA, et al. PU.1 is not essential for early myeloid gene expression but is required for terminal myeloid differentiation. Immunity 1995;3:703–714.

    PubMed  CAS  Google Scholar 

  144. Lichanska AM, Browne CM, Henkel GW, et al. Differentiation of the mononuclear phagocyte system during mouse embryogenesis: the role of transcription factor PU.1. Blood 1999;94:127–138.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Rothenberg, E.V., Davidson, E.H. (2003). Regulatory Co-options in the Evolution of Deuterostome Immune Systems. In: Ezekowitz, R.A.B., Hoffmann, J.A. (eds) Innate Immunity. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-320-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-320-0_4

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9746-5

  • Online ISBN: 978-1-59259-320-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics