Skip to main content

The Role of Mast Cells in Innate Immunity

  • Chapter
Innate Immunity

Part of the book series: Infectious Disease ((ID))

  • 373 Accesses

Abstract

Mast cells (MCs) are bone marrow-derived tissue-dwelling immune effector cells that are recognizable by virtue of their distinctive metachromatically staining secretory granules. They are prominent in the tissues and organs that are in contact with the external environment (1). MCs respond to both immunologic and nonimmunologic stimulation with an effector repertoire that includes preformed granule-associated inflammatory mediators such as histamine and protease/proteoglycan complexes, newly formed eicosanoid products of arachidonic acid metabolism (cysteinyl leukotrienes, prostaglandin D2) and induced expression of several proinflammatory cytokines and chemokines. The diverse effector functions of MCs, their ability to respond to a variety of nonimmune stimuli, and their anatomic distribution are all compatible with a role as initiators of innate immune responses. Furthermore, experimental evidence provides strong support for such a role. This review details the evidence supporting a key role for MCs in innate immunity and the potential mechanisms by which this occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McNeil HP, Austen KF. Biology of the mast cell. In: Frank MM, Austen KF, Claman HN, et al. (eds.). Sampter’s Immunologic Diseases, 5th ed. Baltimore: Williams & Wilkins, 1995, pp. 185–204.

    Google Scholar 

  2. Kitamura Y, Go S, Hatanaka K. Decrease of mast cells in W/Wv mice and their increase by bone marrow transplantation. Blood 1978;52:447–452.

    PubMed  CAS  Google Scholar 

  3. Geissler EN, Ryan MA, Housman DE. The dominant-white spotting (W) locus of the mouse encodes the c-kit proto-oncogene. Cell 1988;55:185–192.

    PubMed  CAS  Google Scholar 

  4. Zsebo KM, Wypych J, McNiece IK, et al. Identification, purification, and biological characterization of hematopoietic stem cell factor from Buffalo rat liver-conditioned medium. Cell 1990;63:195–201.

    PubMed  CAS  Google Scholar 

  5. Huang E, Nocka K, Beier DR, et al. The hematopoietic growth factor KL is encoded by the SI locus and is the ligand of the c-kit receptor, the gene product of the W locus. Cell 1990;63:225–233.

    PubMed  CAS  Google Scholar 

  6. Kitamura Y, Go S. Decreased production of mast cells in Sl/Sld anemic mice. Blood 1979;53:492–497.

    PubMed  CAS  Google Scholar 

  7. de Vries P, Brasel KA, Eisenman JR, et al. The effect of recombinant mast cell growth factor on purified murine hematopoietic progenitor cells. J Exp Med 1991;173:1205–1211.

    PubMed  Google Scholar 

  8. Valent P, Spanblochl E, Sperr WR, et al. Induction of differentiation of human mast cells from bone marrow and peripheral blood mononuclear cells by recombinant human stem cell factor/kit-ligand in long-term culture. Blood 1992;80:2237–2245.

    PubMed  CAS  Google Scholar 

  9. Irani A-MA, Nillson G, Miettinen U, et al. Recombinant human stem cell factor stimulates differentiation of mast cells from dispersed human fetal liver cells. Blood 1992;80:3009–3021.

    PubMed  CAS  Google Scholar 

  10. Mitsui H, Furitsu T, Dvorak AM, et al. Development of human mast cells from umbilical cord blood cells by recombinant human and murine c-kit ligand. Proc Natl Acad Sci USA 1993;90:735–739.

    PubMed  CAS  Google Scholar 

  11. Kirshenbaum AS, Goff JP, Semere T, et al. Demonstration that mast cells arise from a progenitor cell population that is CD34+, c-kit+, and expresses aminopeptidase N (CD 13). Blood 1999;94:2333–2342.

    CAS  Google Scholar 

  12. Rodewald HR, Dessing M, Dvorak AM, et al. Identification of a committed precursor for the mast cell lineage. Science 1996;271:818–822.

    PubMed  CAS  Google Scholar 

  13. Guy-Grand D, Dy M, Luffau G, et al. Gut mucosal mast cells: origin, traffic and differentiation. J Exp Med 1984;160:12–28.

    PubMed  CAS  Google Scholar 

  14. Gurish MF, Tao H, Abonia JP, et al. Intestinal mast cell progenitors require CD49d β7 (α4β7) for tissue-specific homing. J Exp Med 2001;194:1243–1252.

    PubMed  CAS  Google Scholar 

  15. Rosenkranz AR, Coxon A, Maurer M, et al. Impaired mast cell development and innate immunity in Mac-1 (CD 1 lb/CD 18, CR3)-deficient mice. J Immunol 1998;161:6463–6467.

    PubMed  CAS  Google Scholar 

  16. Tachimoto H, Hudson SA, Bochner BS. Acquisition and alteration of adhesion molecules during cultured human mast cell differentiation. J Allergy Clin Immunol 2001;107:302–309.

    PubMed  CAS  Google Scholar 

  17. Sperr WR, Agis H, Czerwenka K, et al. Differential expression of cell surface integrins on human mast cells and human basophils. Ann Hematol 1992;65:10–16.

    PubMed  CAS  Google Scholar 

  18. Guo CB, Kagey-Sobotka A, Lichtenstein LM, Bochner BS. Immunophenotyping and functional analysis of purified human uterine mast cells. Blood 1992;79:708–712.

    PubMed  CAS  Google Scholar 

  19. Columbo M, Bochner BS, Marone G. Human skin mast cells express functional β1 integrins that mediate adhesion to extracellular matrix proteins. J Immunol 1995;154:6058–6064.

    PubMed  CAS  Google Scholar 

  20. Steegmaier M, Blanks JE, Borges E, Vestweber D. P-selectin glycoprotein ligand-1 mediates rolling of mouse bone marrow-derived mast cells on P-selectin but not efficiently on E-selectin. Eur J Immunol 1997;27:1339–1345.

    PubMed  CAS  Google Scholar 

  21. Sriramaro P, Anderson W, Wolitzky BA, Broide DH. Mouse bone marrow-derived mast cells roll on P-selectin under conditions of flow in vivo. Lab Invest 1996;74:634–643.

    Google Scholar 

  22. Qu Z, Liebler JM, Powers MR, et al. Mast cells are a major source of basic fibroblast growth factor in chronic inflammation and cutaneous hemangioma. Am J Pathol 1995;147:564–573.

    PubMed  CAS  Google Scholar 

  23. Pesci A, Bertorelli G, Gabrielli M, Olivieri D. Mast cells in fibrotic lung disorders. Chest 1993;103:989–996.

    PubMed  CAS  Google Scholar 

  24. Gotis-Graham I, McNeil HP. Mast cell responses in rheumatoid synovium. Association of the MCTC subset with matrix turnover and clinical progression. Arthritis Rheum 1997;40:479–489.

    PubMed  CAS  Google Scholar 

  25. Nilsson G, Butterfield JH, Nilsson K, Siegbahn A. Stem cell factor is a chemotactic factor for human mast cells. J Immunol 1994;153:3717–3723.

    PubMed  CAS  Google Scholar 

  26. Meininger CJ, Yano H, Rottapel R, et al. The c-kit receptor ligand functions as a mast cell chemoattractant. Blood 1992;79:958–963.

    PubMed  CAS  Google Scholar 

  27. Ochi H, Hirani WM, Yuan Q, et al. T helper type-2 cytokine-mediated comitogenic responses and CCR3 expression during differentiation of human mast cells in vitro. J Exp Med 1999;190:267–280.

    PubMed  CAS  Google Scholar 

  28. Juremalm M, Hjertson M, Olsson N, et al. The chemokine receptor CXCR4 is expressed within the mast cell lineage and its ligand stromal cell-derived factor-1 alpha acts as a mast cell chemotaxin. Eur J Immunol 2000;30:3614–3622.

    PubMed  CAS  Google Scholar 

  29. Lin TJ, Issekutz TB, Marshall JS. Human mast cells transmigrate through human umbilical vein endothelial monolayers and selectively produce IL-8 in response to stromal cell-derived factor1 alpha. J Immunol 2000;165:211–220.

    PubMed  CAS  Google Scholar 

  30. Enerback L. Mast cells in rat gastrointestinal mucosa. I. Effects of fixation. Acta Pathol Microbiol Scand 1966;66:289–302.

    PubMed  CAS  Google Scholar 

  31. Enerback L. Mast cells in rat gastrointestinal mucosa. II. Dye-binding and metachromatic properties. Acta Pathol Microbiol Scand 1966;66:303–312.

    PubMed  CAS  Google Scholar 

  32. Irani AM, Craig S, DeBlois G, et al. Deficiency of the tryptase-positive, chymase-negative mast cell type in gastrointestinal mucosa of patients with defective T lymphocyte function. J Immunol 1987;138:4381–4386.

    PubMed  CAS  Google Scholar 

  33. Echtenacher B, Mannel DN, Hultner L. Critical protective role of mast cells in a model of acute septic peritonitis. Nature 1996;381:75–79.

    PubMed  CAS  Google Scholar 

  34. Malaviya R, Ikeda T, Ross E, et al. Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-alpha. Nature 1996;381:77–80.

    PubMed  CAS  Google Scholar 

  35. Friend DS, Ghildyal N, Austen KF, et al. Mast cells that reside at different locations in the jejunum of mice infected with Trichinella spiralis exhibit sequential changes in their granule ultrastructure and chymase phenotype. J Cell Biol 1996;135:279–290.

    PubMed  CAS  Google Scholar 

  36. Ruitenberg EJ, Elgersma A. Absence of intestinal mast cell response in congenitally athymic mice during Trichinella spiralis infection. Nature (Lond) 1976;264:258–260.

    PubMed  CAS  Google Scholar 

  37. Lantz CS, Boesiger J, Song CH, et al. Role for interleukin-3 in mast cell and basophil development and in immunity to parasites. Nature (Lond) 1998;392:90–93.

    CAS  Google Scholar 

  38. Schwartz LB, Irani AM, Roller K, et al. Quantitation of histamine, tryptase, and chymase in human T and TC mast cells. J Immunol 1987;138:2611–2615.

    PubMed  CAS  Google Scholar 

  39. Benditt EP, Arase M, Roeper ME. Histamine and heparin in isolated rat mast cells. J Histochem Cytochem 1956;4:419.

    Google Scholar 

  40. Leino L, Lilius E-M. Histamine receptors on leukocytes are expressed differently in vitro and ex vivo. Int Arch Allergy Appl Immunol 1990;91:30–35.

    PubMed  CAS  Google Scholar 

  41. Falus A, Meretey K. Histamine: An early messenger in inflammatory and immune reactions. Immunol Today 1992;13:154–156.

    PubMed  CAS  Google Scholar 

  42. Schwartz LB, Lewis RA, Austen KF. Tryptase from human pulmonary mast cells. Purification and characterization. J Biol Chem 1981;256:11939–11943.

    PubMed  CAS  Google Scholar 

  43. Schechter NM, Choi JK, Slavin DA, et al. Identification of a chymotrypsin-like proteinase in human mast cells. J Immunol, 1986;137:962–970.

    PubMed  CAS  Google Scholar 

  44. Pallaoro M, Fejzo MS, Shayesteh L, et al. Characterization of genes encoding known and novel human mast cell tryptases on chromosome 16p13.3. J Biol Chem 274;3355–3362.

    Google Scholar 

  45. Miller JS, Westin EH, Schwartz LB. Cloning and characterization of complementary DNA for human tryptase. J Clin Invest 1989;84:1188–1195.

    PubMed  CAS  Google Scholar 

  46. Miller JS, Moxley G, Schwartz LB. Cloning and characterization of a second complementary DNA for human tryptase. J Clin Invest 1990;86:864–870.

    PubMed  CAS  Google Scholar 

  47. Wong GW, Tang Y, Feyfant E, et al. Identification of a new member of the tryptase family of mouse and human mast cell proteases which possesses a novel COOH-terminal hydrophobic extension. J Biol Chem 1999;274:30784–30793.

    PubMed  CAS  Google Scholar 

  48. Stevens RL. Human and mouse mast cell tryptases. Identification, cloning, expression, function, and metabolism. In: Marone G, Lichtenstein LM, Galli SJ (eds). Mast Cells and Basophils in Physiology, Pathology, and Host Defense, 2002, in press.

    Google Scholar 

  49. Urata H, Kinoshita A, Perez DM, et al. Cloning of the gene and cDNA for human heart chymase. J Biol Chem, 1991;266:17173–17179.

    PubMed  CAS  Google Scholar 

  50. Schechter NM, Irani AM, Sprows JL, et. al. Identification of a cathepsin G-like proteinase in the MCTC type of human mast cell. J Immunol 1990;145:2652–2661.

    PubMed  CAS  Google Scholar 

  51. Reynolds DS, Stevens RL, Gurley DS, et al. Isolation and molecular cloning of mast cell carboxypeptidase A: a novel member of the carboxypeptidase gene family. J Biol Chem 1989;264:20094–20099.

    PubMed  CAS  Google Scholar 

  52. Irani AM, Goldstein SM, Wintroub BU, et al. Human mast cell carboxypeptidase. Selective localization to MCTC cells. J Immunol 1991;147:247–253.

    PubMed  CAS  Google Scholar 

  53. Irani AA, Schechter NM, Craig SS, et al. Two types of human mast cells that have distinct neutral protease compositions. Proc Natl Acad Sci USA 1986;83:4464–4468.

    PubMed  CAS  Google Scholar 

  54. Reynolds DS, Gurley DS, Austen KF, et al. Cloning of the cDNA and gene of the mouse mast cell protease-6. Transcription by progenitor mast cells and mast cells of the connective tissue subclass. J Biol Chem 1991;266:3847–3853.

    PubMed  CAS  Google Scholar 

  55. McNeil HP, Reynolds DS, Schiller V, et al. Isolation, characterization, and transcription of the gene encoding mouse mast cell protease 7. Proc Natl Acad Sci USA 1992; 89:11174–11178.

    PubMed  CAS  Google Scholar 

  56. Ghildyal N, Friend DS, Stevens RL, et al. Fate of two mast cell tryptases in V3 mastocytosis and normal BALB/c mice undergoing passive systemic anaphylaxis. Prolonged retention of exocytosed mMCP-6 in connective tissues and rapid accumulation of enzymatically active mMCP-7 in the blood. J Exp Med 1996;184:1061–1073.

    PubMed  CAS  Google Scholar 

  57. Huang C, Wong GW, Ghildyal N, et al. The tryptase, mouse mast cell protease 7, exhibits anticoagulant activity in vivo and in vitro due to its ability to degrade fibrinogen in the presence of the diverse array of protease inhibitors in plasma. J Biol Chem 1997;272:31885–31893.

    PubMed  CAS  Google Scholar 

  58. Huang C, Friend DS, Qiu WT, et al. Induction of a selective and persistent extravasation of neutrophils into the peritoneal cavity by tryptase mouse mast cell protease 6. J Immunol 1998;160:1910–1919.

    PubMed  CAS  Google Scholar 

  59. Compton SJ, Cairns JA, Holgate ST, et al. The role of mast cell tryptase in regulating endothelial cell proliferation, cytokine release, and adhesion molecule expression: tryptase induces expression of mRNA for IL-lβ and IL-8 and stimulates the selective release of IL-8 from human unbilical vein endothelial cells. J Immunol 1998;161:1939–1946.

    PubMed  CAS  Google Scholar 

  60. Blair RJ, Meng H, Marchese MJ, et al. Human mast cells stimulate vascular tube formation. Tryptase is a novel, potent angiogenic factor. J Clin Invest 1997;99:2691–2700.

    PubMed  CAS  Google Scholar 

  61. Cairns JA, Walls AF. Mast cell tryptase is a mitogen for epithelial cells. Stimulation of IL-8 production and intercellular adhesion molecule-1 expression. J Immunol 1996;156:275–283.

    PubMed  CAS  Google Scholar 

  62. Gruber BL, Kew RR, Jelaska A, et al. Human mast cells activate fibroblasts: tryptase is a fibrogenic factor stimulating collagen messenger ribonucleic acid synthesis and fibroblast chemotaxis. J Immunol 1997;158:2310–2317.

    PubMed  CAS  Google Scholar 

  63. Molino M, Barnathan ES, Numerof R, et al. Interactions of mast cell tryptase with thrombin receptors and PAR-2. J Biol Chem 1997;272:4043–4049.

    PubMed  CAS  Google Scholar 

  64. Schechter NM, Brass LF, Lavker RM, et al. Reaction of mast cell proteases tryptase and chymase with protease activated receptors (PARs) on keratinocytes and fibroblasts. J Cell Physiol 1998;176:365–373.

    PubMed  CAS  Google Scholar 

  65. Chandrasekharan UM, Sanker S, Glynias MJ, et al. Angiotensin II-forming activity in a reconstructed ancestral chymase. Science 1996;271:502–505.

    PubMed  CAS  Google Scholar 

  66. Sanker S, Chandrasekharan UM, Wilk D, et al. Distinct multisite synergistic interactions determine substrate specificities of human chymase and rat chymase-1 for angiotensin II formation and degradation. J Biol Chem 1997;272:2963–2968.

    PubMed  CAS  Google Scholar 

  67. Fang KC, Raymond WW, Lazarus SC, et al. Dog mastocytoma cells secrete a 92-kD gelatinase activated extracellularly by mast cell chymase. J Clin Invest 1996;97:1589–1596.

    PubMed  CAS  Google Scholar 

  68. Fang KC, Raymond WW, Blount JL, et al. Dog mast cell alpha-chymase activates progelatinase B by cleaving the Phe88-G1n89 and Phe91-G1u92 bonds of the catalytic domain. J Biol Chem 1997;272:25628–25635.

    PubMed  CAS  Google Scholar 

  69. Coussens LM, Raymond WW, Bergers G, et al. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev 1999;13:1382–1397.

    PubMed  CAS  Google Scholar 

  70. Kofford MW, Schwartz LB, Schechter NM, et al. Cleavage of type I procollagen by human mast cell chymase initiates collagen fibril formation and generates a unique carboxyl-terminal propeptide. J Biol Chem 272:7127–7131.

    Google Scholar 

  71. Longley BJ, Tyrrell L, Ma Y, et al. Chymase cleavage of stem cell factor yields a bioactive, soluble product. Proc Natl Acad Sci USA 1997;94:9017–9021.

    PubMed  CAS  Google Scholar 

  72. de Paulis A, Minopoli G, Arbustini E, et al. Stem cell factor is localized in, released from, and cleaved by human mast cells. J Immunol 1999;163:2799–2808.

    PubMed  Google Scholar 

  73. Caughey GH. Roles of mast cell tryptase and chymase in airway function. Am J Physiol 1989;257:L39.

    Google Scholar 

  74. Friend DS, Ghildyal N, Gurish MF, et al. Reversible expression of tryptases and chymases in the jejunal mast cells of mice infected with Trichinella spiralis. J Immunol 1998;160:5537–5545.

    PubMed  CAS  Google Scholar 

  75. Wright SH, Lawrence CE, Paterson YY, Miller HR. Delayed expulsion of the nematode Trichinella spiralis in mice lacking the mucosal mast cell-specific granule chymase, mouse mast cell protease-1. J Exp Med 2000;192:1849–1856.

    PubMed  Google Scholar 

  76. Humphries DE, Nicodemus CF, Schiller V, et al. The human serglycin gene. Nucleotide sequence and methylation pattern in human promyelocytic leukemia HL-60 cells and T lymphoblast Molt-4 cells. J Biol Chem 1992;267:13558–13563.

    PubMed  CAS  Google Scholar 

  77. Avraham S, Stevens RL, Gartner MC, et al. Isolation of a cDNA that encodes the peptide core of the secretory proteoglycan of rat basophilic leukemia-1 cells and assessment of its homology to the human analogue. J Biol Chem 1988;263:7292–7296.

    PubMed  CAS  Google Scholar 

  78. Avraham S, Stevens RL, Nicodemus CF, et al. Molecular cloning of a cDNA that encodes the peptide core of a mouse mast cell secretory granule proteoglycan and comparison with the analogous rat and human cDNA. Proc Natl Acad Sci USA 1989;86:3763–3767.

    PubMed  CAS  Google Scholar 

  79. Metcalfe DD, Soter NA, Wasserman SI, et al. Identification of sulfated mucopolysaccharides including heparin in the lesional skin of a patient with systemic mastocytosis. J Invest Dermatol 1980;74:210–215.

    PubMed  CAS  Google Scholar 

  80. Metcalfe DD, Lewis RA, Silbert JE, et al. Isolation and characterization of heparin from human lung. J Clin Invest 1979;64:1537–1543.

    PubMed  CAS  Google Scholar 

  81. Stevens RL, Fox CC, Lichtenstein LM, et al. Identification of chondroitin sulfate E proteoglycans in the secretory granules of human lung mast cells. Proc Natl Acad Sci USA 1988;85:2284–2287.

    PubMed  CAS  Google Scholar 

  82. Eliakim R, Gilead L, Ligumsky M, et al. Possible presence of E-mast cells in the human colon. Proc Natl Acad Sci USA 1986;83:461–464.

    PubMed  CAS  Google Scholar 

  83. Metcalfe DD, Smith JA, Austen KF, Silbert JE. Polydispersity of rat mast cell heparin: implications for proteoglycan assembly. J Biol Chem 1980;255:11753–11758.

    PubMed  CAS  Google Scholar 

  84. Stevens RL, Lee TD, Seldin DC, et al. Intestinal mucosal mast cells from rats infected with Nippostrongylus brasiliensis contain protease-resistant chondroitin sulfate di-B proteoglycans. J Immunol 1986;137:291–295.

    PubMed  CAS  Google Scholar 

  85. Schwartz LB, Riedel C, Caulfield JP, et al. Cell association of complexes of chymase, heparin proteoglycan, and protein after degranulation by rat mast cells. J Immunol 1981;126:2071–2078.

    PubMed  CAS  Google Scholar 

  86. Schwartz LB, Riedel C, Schratz JJ, et al. Localization of carboxypeptidase A to the macromolecular heparin proteoglycan-protein complex in secretory granules of rat serosal mast cells. J Immunol 1982;128:1128–1133.

    PubMed  CAS  Google Scholar 

  87. Serafin WE, Katz HR, Austen KF, et al. Complexes of heparin proteoglycans, chondroitin sulfate E proteoglycans, and [3H] diisopropyl fluorophosphate-binding proteins are exocytosed from activated mouse bone marrow-derived mast cells. J Biol Chem 1986;261:15017–15021.

    PubMed  CAS  Google Scholar 

  88. Knight PA, Wright SH, Lawrence CE, et al. Delayed expulsion of the nematode Trichinella spiralis in mice lacking the mucosal mast cell-specific granule chymase, mouse mast cell protease-1. J Exp Med 2000;192:1849–1856.

    PubMed  CAS  Google Scholar 

  89. Goldstein SM, Leong J, Schwartz LB, et al. Protease composition of exocytosed human skin mast cell protease-proteoglycan complexes. J Immunol 1992;148:2475–2482.

    PubMed  CAS  Google Scholar 

  90. Forsberg E, Pejler G, Ringvall M, et al. Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme. Nature 1999;400:773–776.

    PubMed  CAS  Google Scholar 

  91. Humphries DE, Wong GW, Friend DS, et al. Heparin is essential for the storage of specific granule proteases in mast cells. Nature 1999;400:769–772.

    PubMed  CAS  Google Scholar 

  92. Paterson NAM, Wasserman SI, Said JW, et al. Release of chemical mediators from partially purified human lung mast cells. J Immunol 1976;117:1356–1362.

    PubMed  CAS  Google Scholar 

  93. Heavey DJ, Ernst PB, Stevens RL, et al. Generation of leukotriene C4, leukotriene B4, and prostaglandin D2 by immunologically activated rat intestinal mucosal mast cells. J Immunol 1988;140:1953–1957.

    PubMed  CAS  Google Scholar 

  94. Murakami M, Austen KF, Arm JP. The immediate phase of c-kit ligand stimulation of mouse bone marrow-derived mast cells elicits rapid leukotriene C4 generation through posttranslational activation of cytosolic phospholipase A2 and 5-lipoxygenase. J Exp Med 1995;182:197–206.

    PubMed  CAS  Google Scholar 

  95. Columbo M, Horowitz EM, Botana LM, et al. The human recombinant c-kit receptor ligand, rhSCF, induces mediator release from human cutaneous mast cells and enhances IgE-dependent mediator release from both skin mast cells and peripheral blood basophils. J Immunol 1992;149:599–608.

    PubMed  CAS  Google Scholar 

  96. Clark JD, Lin L-L, Kriz RW, et al. A novel arachidonic acid-selective cytosolic PLA2 contains a Ca2+-dependent translocation domain with homology to PKC and GAP. Cell 1991;65:1043–1051.

    PubMed  CAS  Google Scholar 

  97. Malavia R, Malavia R, Jakschik BA. Reversible translocation of 5-lipoxygenase in mast cells upon IgE/antigen stimulation. J Biol Chem 1993;268:4939–4944.

    Google Scholar 

  98. Dixon RAF, Diehl RE, Opas E, et al. Requirement of a 5-lipoxygenase-activating protein for leukotriene biosynthesis. Nature 1990;343:282–284.

    PubMed  CAS  Google Scholar 

  99. Evans JF, Dupuis P, Ford-Hutchinson AW. Purification and characterization of leukotriene A4 hydrolase from rat neutrophils. Biochem Biophys Acta 1985;840:43–50.

    PubMed  CAS  Google Scholar 

  100. Lam BK, Penrose JF, Freeman GJ, et al. Expression cloning of a cDNA for human leukotriene C4 synthase, an integral membrane protein conjugating reduced glutathione to leukotriene A4. Proc Natl Acad Sci USA 1994;91:7663–7667.

    PubMed  CAS  Google Scholar 

  101. Lam BK, Gagnon L, Austen KF, et al. The mechanism of leukotriene B4 export from human polymorphonuclear leukocytes. J Biol Chem 1990;265:13438–13441.

    PubMed  CAS  Google Scholar 

  102. Lam BK, Xu K, Atkins MB, et al. Leukotriene C4 uses a probenecid-sensitive export carrier that does not recognize leukotriene B4. Proc Natl Acad Sci USA 1992;89:11598–11602.

    PubMed  CAS  Google Scholar 

  103. Lindbom L, Hedqvist P, Dahlen SE, et al. Leukotriene B4 induces extravasation and migration of polymorphonuclear leukocytes in vivo. Acta Physiol Scand 1982;116:105–108.

    PubMed  CAS  Google Scholar 

  104. Yokomizo T, Izumi T, Chang K, Takuwa Y, Shimizu T. A G-protein-coupled receptor for leukotriene B4 that mediates chemotaxis. Nature 1997;387:620–624.

    PubMed  CAS  Google Scholar 

  105. Yokomizo T, Kato K, Terawaki K, Izumi T, Shimizu T. A second leukotriene B(4) receptor, BLT2. A new therapeutic target in inflammation and immunological disorders. J Exp Med 2000;192:421–432.

    PubMed  CAS  Google Scholar 

  106. Raulf M, Stuning M, Konig W. Metabolism of leukotrienes by L-gamma-glutamyl-transpeptidase and dipeptidase from human polymorphonuclear granulocytes. Immunology 1985;55:135–147.

    PubMed  CAS  Google Scholar 

  107. Davidson AB, Lee TH, Scanlon PD, et al. Bronchoconstrictor effects of leukotriene E4 in normal and asthmatic subjects. Am Rev Respir Dis 1987;135:333–337.

    PubMed  CAS  Google Scholar 

  108. Griffin M, Weiss JW, Leitch AG, et al. Effect of leukotriene D4 on the airways in asthma. N Engl J Med 1983;308:436–439.

    PubMed  CAS  Google Scholar 

  109. Laitinen LA, Laitinen A, Haahtela T, et al. Leukotriene E4 and granulocytic infiltration into asthmatic airways. Lancet 1993;341:989–990.

    PubMed  CAS  Google Scholar 

  110. Soter NA, Lewis RA, Corey EJ, et al. Local effects of synthetic leukotrienes (LTC4, LTD4, LTE4, and LTB4) in human skin. J Invest Dermatol 1983;80:115–119.

    PubMed  CAS  Google Scholar 

  111. Kanaoka Y, Maekawa A, Penrose JF, Austen KF, Lam BK. Attenuated zymosan-induced peritoneal vascular permeability and IgE-dependent passive cutaneous anaphylaxis in mice lacking leukotriene C4 synthase. J Biol Chem 2001;276:22608–22613.

    PubMed  CAS  Google Scholar 

  112. Lynch KR, O’Neill GP, Liu Q, et al. Characterization of the human cysteinyl leukotriene CysLT1 receptor. Nature 1999;399:789–793.

    PubMed  CAS  Google Scholar 

  113. Heise CE, O’ Dowd BF, Figueroa DJ, et al. Characterization of the human cysteinyl leukotriene 2 receptor. J Biol Chem 2000;275:30531–30536.

    PubMed  CAS  Google Scholar 

  114. Mellor EA, Maekawa A, Austen KF, Boyce JA. Cysteinyl leukotriene receptor 1 is also a pyrimidinergic receptor and is expressed by human mast cells. Proc Natl Acad Sci USA 2001;98:7964–7969.

    PubMed  CAS  Google Scholar 

  115. Murakami M, Matsumoto R, Urade Y, et al. c-kit ligand mediates increased expression of cytosolic phospholipase A2, prostaglandin endoperoxide synthase 1, and hematopoietic prostaglandin D2 synthase and increased IgE-dependent PGD2 generation in immature mouse mast cells. J Biol Chem 1995;270:3239–3246.

    PubMed  CAS  Google Scholar 

  116. Liu MC, Bleecker ER, Lichtenstein LM, et al. Evidence for elevated levels of histamine, prostaglandin D2, and other bronchoconstricting prostaglandins in the airways of subjects with mild asthma. Am Rev Respir Dis 1990;142:126–132.

    PubMed  CAS  Google Scholar 

  117. Roberts LJ II, Seibert K, Liston TE, et al. PGD2 is transformed by human coronary arteries to 9 alpha, 11 beta-PGF2, which contracts human coronary artery rings. Adv Prostaglandin Thromboxane Leukotr Res 1987;17A:427–429.

    Google Scholar 

  118. Hirai H, Tanaka K, Yoshie O, et al. Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J Exp Med 2001;193:255–261.

    PubMed  CAS  Google Scholar 

  119. Boie Y, Sawyer N, Slipetz DM, Metters KM, Abramovitz M. Molecular cloning and characterization of the human prostanoid DP receptor. J Biol Chem 1995;270:18910–18916.

    PubMed  CAS  Google Scholar 

  120. Matsuoka T, Hirata M, Tanaka H, et al. Prostaglandin D2 as a mediator of allergic asthma. Science 2000;287:2013–2017.

    PubMed  CAS  Google Scholar 

  121. Bingham CO, III, Austen KF. Phospholipase A2 enzymes in eicosanoid generation. Proc Assoc Am Phys 1999;111:516–524.

    PubMed  CAS  Google Scholar 

  122. Schulman ES, Kagey-Sobotka A, MacGlashan DW Jr, et al. Heterogeneity of human mast cells. J Immunol 1983;131:1936–1941.

    PubMed  CAS  Google Scholar 

  123. MacGlashan DW Jr, Schleimer RP, Peters SP, et al. Generation of leukotrienes by purified lung mast cells. J Clin Invest 1982;70:747–751.

    PubMed  CAS  Google Scholar 

  124. Peters SP, MacGlashan DW Jr, Schulman ES, et al. Arachidonic acid metabolism in purified human lung mast cells. J Immunol 1984;132:1972–1979.

    PubMed  CAS  Google Scholar 

  125. Massey WA, Guo C-B, Dvorak AM, et al. Human uterine mast cells. Isolation, purification, characterization, ultrastructure, and pharmacology. J Immunol 1991;147:1621–1627.

    PubMed  CAS  Google Scholar 

  126. Lawrence ID, Warner JA, Cohan VL, et al. Purification and characterization of human skin mast cells. Evidence for human mast cell heterogeneity. J Immunol 1987;139:3062–3069.

    PubMed  CAS  Google Scholar 

  127. Hsieh FH, Lam BK, Penrose JF, Austen KF, Boyce JA. T helper cell type 2 cytokines coordinately regulate IgE-dependent cysteinyl leukotriene production by human cord blood-derived mast cells: profound induction of leukotriene C4 synthase expression by interleukin 4. J Exp Med 2001 193;123–133.

    PubMed  CAS  Google Scholar 

  128. Gordon JR, Galli SJ. Mast cells as a source of both preformed and immunologically inducible TNF-α/cachectin. Nature 1990;346:274–276.

    PubMed  CAS  Google Scholar 

  129. Subramanian N, Bray MA. Interleukin 1 releases histamine from human basophils and mast cells in vitro. J Immunol 1987;138:271–275.

    PubMed  CAS  Google Scholar 

  130. Lu-Kuo JM, Austen KF, Katz HR. Post-transcriptional stabilization by interleukin-lβ of interleukin-6 mRNA induced by c-kit ligand and interleukin-10 in mouse bone marrow-derived mast cells. J Biol Chem 1996;271:22169–22174.

    PubMed  CAS  Google Scholar 

  131. Gagari E, Tsai M, Lantz CS, et al. Differential release of mast cell interleukin-6 via c-kit. Blood 1997;89:2654–2663.

    PubMed  CAS  Google Scholar 

  132. Walsh LJ, Trinchieri G, Waldorf HA, et al. Human dermal mast cells contain and release tumor necrosis factor a, which induces endothelial leukocyte adhesion molecule 1. Proc Natl Acad Sci USA 1991;88:4220–4224.

    PubMed  CAS  Google Scholar 

  133. Bradding P, Mediwake R, Feather IH, et al. TNF-α is localized to nasal mucosal mast cells and is released in acute allergic rhinitis. Clin Exp Allergy 1995;25:406–415.

    PubMed  CAS  Google Scholar 

  134. Bradding P, Roberts JA, Britten KM, et al. Interleukin-4, -5, and -6 and tumor necrosis factor-a in normal and asthmatic airways: evidence for the human mast cell as a source of these cytokines. Am J Respir Cell Mol Biol 1994;10:471–480.

    PubMed  CAS  Google Scholar 

  135. Okayama Y, Semper A, Holgate ST, Church MK. Multiple cytokine mRNA expression in human mast cells stimulated via Fc epsilon RI. Int Arch Allergy Immunol 1995;107:158–159.

    PubMed  CAS  Google Scholar 

  136. Barata LT, Ying S, Meng Q, et al. IL-4 and IL-5-positive T lymphocytes, eosinophils, and mast cells in allergen-induced late-phase cutaneous reactions in atopic subjects. J Allergy Clin Immunol 1998;101:222–230.

    PubMed  CAS  Google Scholar 

  137. Bradding P, Feather IH, Wilson S, et al. Immunolocalization of cytokines in the nasal mucosa of normal and perennial rhinitic subjects. The mast cell as a source of IL-4, IL-5, and IL-6 in human allergic mucosal inflammation. J Immunol 1993;151:3853–3865.

    PubMed  CAS  Google Scholar 

  138. Lorentz A, Schwengberg S, Sellge G, et al. Human intestinal mast cells are capable of producing different cytokine profiles: role of IgE receptor cross-linking and IL-4. J Immunol 2000;164:43–48.

    PubMed  CAS  Google Scholar 

  139. Ochi H, De Jesus NH, Hsieh F, Austen KF, Boyce JA. Interleukins 4 and 5 prime human mast cells for different profiles of IgE-dependent cytokine production. Proc Natl Acad Sci USA 2000; 97:10509–10513.

    PubMed  CAS  Google Scholar 

  140. Grutzkau A, Kruger-Krasagakes S, Kogel H, et al. Detection of intracellular interleukin-8 in human mast cells: flow cytometry as a guide for immunoelectron microscopy. J Histochem Cytochem 1997;45:935–945.

    PubMed  CAS  Google Scholar 

  141. Moller A, Lippert U, Lessmann D, et al. Human mast cells produce IL-8. J Immunol 1993;151:3261–3266.

    PubMed  CAS  Google Scholar 

  142. Lukacs NW, Hogaboam CM, Kunkel SL, et al. Mast cells produce ENA-78, which can function as a potent neutrophil chemoattractant during allergic airway inflammation. J Leukoc Biol 1998;63:746–751.

    PubMed  CAS  Google Scholar 

  143. Yano K, Yamaguchi M,, de Mora F et al. Production of macrophage inflammatory protein-1 alpha by human mast cells: increased anti-IgE-dependent secretion after IgE-dependent enhancement of mast cell IgE-binding ability. Lab Invest 1997;77:185–193.

    PubMed  CAS  Google Scholar 

  144. Tedla N, Wang HW, McNeil HP, et al. Regulation of T lymphocyte trafficking into lymph nodes during an immune response by the chemokines macrophage inflammatory protein (MIP)- 1 a and MIP-1β. J Immunol 1998;161:5663–5672.

    PubMed  CAS  Google Scholar 

  145. Baghestanian M, Hofbauer R, Kiener HP, et al. The c-kit ligand stem cell factor and anti-IgE promote expression of monocyte chemoattractant protein-1 in human lung mast cells. Blood 1997;90:4438–4449.

    PubMed  CAS  Google Scholar 

  146. Hogaboam C, Kunkel SL, Strieter RM, et al. Novel role of transmembrane SCF for mast cell activation and eotaxin production in mast cell-fibroblast interactions. J Immunol 1998;160:6166–6171.

    PubMed  CAS  Google Scholar 

  147. Boesiger J, Tsai M, Maurer M, et al. Mast cells can secrete vascular permeability factor/vascular endothelial cell growth factor and exhibit enhanced release after immunoglobulin E-dependent upregulation of FcERI expression. J Exp Med 1998;188:1135–1145.

    PubMed  CAS  Google Scholar 

  148. Kanbe N, Kurosawa M, Nagata H, et al. Cord blood-derived human cultured mast cells produce transforming growth factor βl. Clin Exp Allergy 1999;29:105–113.

    PubMed  CAS  Google Scholar 

  149. Reed JA, Albino AP, McNutt NS. Human cutaneous mast cells express basic fibroblast growth factor. Lab Invest 1995;72:215–222.

    PubMed  CAS  Google Scholar 

  150. Zhang S, Anderson DF, Bradding P, et al. Human mast cells express stem cell factor. J Pathol 1998;186:59–66.

    PubMed  CAS  Google Scholar 

  151. de Paulis A, Minopoli G, Arbustini E, et al. Stem cell factor is localized in, released from, and cleaved by human mast cells. J Immunol 1999;163:2799–2808.

    PubMed  Google Scholar 

  152. Sher A, Hein A, Moser G, Caulfield JP. Complement receptors promote the phagocytosis of bacteria by rat peritoneal mast cells. Lab Invest 1979;41:490–499.

    PubMed  CAS  Google Scholar 

  153. Zhang Y, Ramos BF, Jakschik BA. Neutrophil recruitment by tumor necrosis factor from mast cells in immune complex peritonitis. Science 1992;258:1957–1959.

    PubMed  CAS  Google Scholar 

  154. Maurer M, Echtenacher B, Hulktner L, et al. The c-kit ligand, stem cell factor, can enhance innate immunity through effects on mast cells. J Exp Med 2001;188:2343–2348.

    Google Scholar 

  155. Huang C, De Sanctis GT, O’Brien PJ, et al. Evaluation of the substrate specificity of human mast cell tryptase beta I and demonstration of its importance in bacterial infections of the lung. J Biol Chem 2001;276:26276–26284.

    PubMed  CAS  Google Scholar 

  156. Malaviya R, Abraham SN. Role of mast cell leukotrienes in neutrophil recruitment and bacterial clearance in infectious peritonitis. J Leukoc Biol 2000;67:841–846.

    PubMed  CAS  Google Scholar 

  157. Arock M, Ross E, Lai-Kuen R, et al. Phagocytic and tumor necrosis factor alpha response of human mast cells following exposure to gram-negative and gram-positive bacteria. Infect Immun 1998;66:6030–6034.

    PubMed  CAS  Google Scholar 

  158. Bischoff SC, Sellge G, Manns MP, Lorenz A. Interleukin 4 induces a switch of human intestinal mast cells from proinflammatory cells to Th2-type cells. Int Arch Allergy Immunol 2001;124:151–154.

    PubMed  CAS  Google Scholar 

  159. Malaviya R. Ross E. Jakschik BA. Abraham SN. Mast cell degranulation induced by type 1 fimbriated Escherichia coli in mice. J Clin Invest 1994;93:1645–1653.

    PubMed  CAS  Google Scholar 

  160. Malaviya R, Twesten NJ, Ross EA, Abraham SN, Pfeifer JD. Mast cells process bacterial antigens through a phagocytic route for class I MHC presentation to T cells. J Immunol 1996;156:1490–1496.

    PubMed  CAS  Google Scholar 

  161. Malaviya R, Gao Z, Thankavel K, van der Merwe PA, Abraham SN. The mast cell tumor necrosis factor alpha response to FimH-expressing Escherichia coli is mediated by the glycosylphosphatidylinositol-anchored molecule CD48. Proc Natl Acad Sci USA 1999;96:8110–8115.

    PubMed  CAS  Google Scholar 

  162. Malaviya R, Navara C, Uckun FM. Role of Janus kinase 3 in mast cell-mediated innate immunity against gram-negative bacteria. Immunity 2001;18:313–321.

    Google Scholar 

  163. Supajatura V, Ushio H, Nakao A, Okumura K, Ra C, Ogawa H. Protective roles of mast cells against enterobacterial infection are mediated by toll-like receptor 4. J Immunol 2001;167:2250–2256.

    PubMed  CAS  Google Scholar 

  164. Bidri M, Vouldoukis I, Mossalayi MD, et al. Evidence for direct interaction between mast cells and Leishmania parasites. Parasite Immunol 1997;19:475–483.

    PubMed  CAS  Google Scholar 

  165. Prodeus AP, Zhou X, Maurer M, Galli SJ, Carroll MC. Impaired mast cell-dependent natural immunity in complement C3-deficient mice. Nature 1997;390:172–175.

    PubMed  CAS  Google Scholar 

  166. Gommerman JL, Oh DY, Zhou X, et al. A role for CD21/CD35 and CD19 in responses to acute septic peritonitis: a potential mechanism for mast cell activation. J Immunol 2000;165:6915–6921.

    PubMed  CAS  Google Scholar 

  167. Nilsson G, Johnell M, Hammer CH, et al. C3a and C5a are chemotaxins for human mast cells and act through distinct receptors via a pertussis toxin-sensitive signal transduction pathway. J Immunol 1996;157:1693–1698.

    PubMed  CAS  Google Scholar 

  168. el-Lati SG, Dahinden CA, Church MK. Complement peptides C3a- and C5a-induced mediator release from dissociated human skin mast cells. J Invest Dermatol 1994;102:803–806.

    PubMed  CAS  Google Scholar 

  169. Artis D, Humphreys NE, Potten CS, et al. β7 integrin-deficient mice: delayed leukocyte recruitment and attenuated protective immunity in the small intestine during enteric helminth infection. Eur J Immunol 2000;30:1656–1664.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Boyce, J.A., Austen, K.F. (2003). The Role of Mast Cells in Innate Immunity. In: Ezekowitz, R.A.B., Hoffmann, J.A. (eds) Innate Immunity. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-320-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-320-0_20

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9746-5

  • Online ISBN: 978-1-59259-320-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics