Skip to main content

Plant Disease Resistance Genes

  • Chapter
Book cover Innate Immunity

Part of the book series: Infectious Disease ((ID))

  • 377 Accesses

Abstract

No adaptive immune system equivalent to the highly effective vertebrate immune system has been detected in plants. Nevertheless, the very existence of plants in the presence of many pathogens bears witness to the presence of highly effective systems for defense against pathogen invasion and disease. One system is based on disease resistance genes, which allow plants to detect pathogen infection and mount effective defense responses. These genes were first identified in the early years of the 20th century and were cloned and characterized more than 90 years later in the last decade of the century (see refs. 1 and 2 for reviews). Intense studies of these genes are now taking place in the present century to discern how their products function and how this knowledge can be applied to problems of disease resistance and food security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ellis J, Jones D. Structure and function of proteins controlling strain-specific pathogen resistance in plants. Curr Opin Plant Biol 1998;1:288–293.

    Article  PubMed  CAS  Google Scholar 

  2. Ellis J, Dodds P, Pryor T. Structure, function and evolution of plant disease resistance genes. Curr Opin Plant Biol 2000;3:278–284.

    Article  PubMed  CAS  Google Scholar 

  3. Flor HH. Current status of the gene-for-gene concept. Annu Rev Phytopathol 1971;9:278–296.

    Article  Google Scholar 

  4. Lauge R, De Wit PJ. Fungal avirulence genes: structure and possible functions. Fungal Genet Biol 1998;24:285–297.

    Article  PubMed  CAS  Google Scholar 

  5. Mudgett MB, Staskawicz BJ. Protein signaling via type III secretion pathways in phytopathogenic bacteria. Curr Opin Microbiol 1998;1:109–114.

    Article  PubMed  CAS  Google Scholar 

  6. Chen Z, Kloek AP, Boch J, Katagiri F, Kunkel BN. The Pseudomonas syringae avrRpt2 gene product promotes pathogen virulence from inside plant cells. Mol Plant Microbe Interact 2000;13:1312–1321.

    Article  PubMed  CAS  Google Scholar 

  7. Bryan GT, Wu K-S, Farrall L, et al. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pita. Plant Cell 2000;12:2033–2046.

    PubMed  CAS  Google Scholar 

  8. Jones DA. Resistance genes and resistance protein function. In: Dickinson M, Beynon J (eds.). Molecular Plant Pathology, Annual Plant Reviews, vol. 4. Sheffield: Sheffield Academic Press, 2000, pp. 108–143.

    Google Scholar 

  9. Li P, Nijhawan D, Budihardjo J, et al. Cytochrome c and dATP-dependent formation of Apaf1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997;91:479–489.

    Article  PubMed  CAS  Google Scholar 

  10. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 1997;90:405–413.

    Article  PubMed  CAS  Google Scholar 

  11. Zou H, Li Y, Liu X, Wang X. An Apaf- 1 -cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 1999;274:11549–11556.

    Article  PubMed  CAS  Google Scholar 

  12. Yuan J, Horvitz HR. The Caenorhabditis elegans cell death gene CED-4 encodes a novel protein and is expressed during the period of extensive programmed cell death. Development 1992;116:309–320.

    PubMed  CAS  Google Scholar 

  13. White K. Cell death: Drosophila Apaf-1-no longer in the (d)Ark. Curr Biol 2000;10.R167-R169.

    Article  PubMed  CAS  Google Scholar 

  14. Chinnaiyan AM, Chaudhary D, O’Rourke K, Koonin EV, Dixit VM. Role of CED-4 in the activation of CED-3. Nature 1997;388:728–729.

    Article  PubMed  CAS  Google Scholar 

  15. van der Biezen EA, Jones JDG. The NB-ARC domain: a novel signaling motif shared by plant resistance gene products and regulators of cell death in animals. Curr Biol 1998;8:R226-R227.

    Article  PubMed  Google Scholar 

  16. Steimle V, Otten LA, Zufferey M, Mach B. Complmentation cloning of an MHC class-II transactivator mutated in hereditary MHC class-II deficiency (or bare lymphocyte syndrome). Cell 1993;75:135–146.

    PubMed  CAS  Google Scholar 

  17. Raval A, Howcroft TK, Weissman JD, et al. Transcriptional coactivator, CIITA, is an acetyltransferase that bypasses a promoter requirement for TAF(II)250. Mol Cell 2001;7:105–115.

    Article  PubMed  CAS  Google Scholar 

  18. Bertin J, Nir W-J, Fischer CM, et al. Human CARD4 protein is a novel CED-4/Apaf-1 cell death family member that activates NF-KB. J Biol Chem 1999;274:12955–12958.

    Article  PubMed  CAS  Google Scholar 

  19. Inohara N, Koseki T, del Peso L, et al. Nod1, and Apaf-1-like activator of caspase-9 and nuclear factor-KB. J Biol Chem 1999;274:14560–14567. Erratum ibid. 18675.

    Article  PubMed  CAS  Google Scholar 

  20. Ogura Y, Inohara N, Benito A, Chen FF, Yamaoka S, Nunez G. Nod2, a Nodl/Apaf-1 family member that is restricted to monocytes and activates NFKB. J Biol Chem 2001; online.

    Google Scholar 

  21. Hlaing T, Guo RF, Dilley KA, et al. Molecular cloning and characterization of DEFCAP-L and — S, two isoforms of a novel member of the mammalian Ced-4 family of apoptosis proteins. J Biol Chem 2001;276:9230–9238.

    Article  PubMed  CAS  Google Scholar 

  22. Roy N, Mahadevan MS, McLean M, et al. The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell 1995;80:167–178.

    Article  PubMed  CAS  Google Scholar 

  23. Chen QF, Baird SD, Mahadevan M, et al. Sequence of a 131-kb region of 5q13.1 containing the spinal muscular atrophy candidate genes SMN and NAIP. Genomics 1998;48:121–127.

    Article  PubMed  CAS  Google Scholar 

  24. Liston P, Roy N, Tamai K, et al. Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature 1996;379:349–353.

    Article  PubMed  CAS  Google Scholar 

  25. Hammond-Kosack KE, Jones JDG. Incomplete dominance of tomato Cf genes for resistance to Cladosporium fulvum. Mol Plant Microbe Interact 1994;7:58–70.

    Article  CAS  Google Scholar 

  26. Yu I-C, Parker J, Bent AF. Gene-for-gene disease resistance without the hypersensitive response in Arabidopsis dndl mutant. Proc Natl Acad Sci USA 1998;95:7819–7824.

    Article  PubMed  CAS  Google Scholar 

  27. Bendahmane A, Kanyuka K, Baulcombe DC. The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 1999;11:781–791.

    PubMed  CAS  Google Scholar 

  28. Song Wy, Wang GL, Chen LL, et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 1995;270:1804–1806.

    Article  PubMed  CAS  Google Scholar 

  29. Martin GB, Brommonschenkel SH, Chunwongse J, et al. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 1993;262:1432–1436.

    Article  PubMed  CAS  Google Scholar 

  30. Jones DA, Thomas CM, Hammond-Kosack KE, Balint-Kurti PJ, Jones JDG. Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 1994;266:789–793.

    Article  PubMed  CAS  Google Scholar 

  31. Dixon MS, Jones DA, Keddie JS, et al. The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell 1996;84:451–459.

    Article  PubMed  CAS  Google Scholar 

  32. Dixon MS, Hatzixanthis K, Jones Da, Harrison K, Jones JDG. The tomato Cf-5 disease resistance gene and six homologs show pronounced allelic variation in leucine-rich repeat copy number. Plant Cell 1998;10:1915–1925.

    PubMed  CAS  Google Scholar 

  33. Thomas CM, Jones DA, Parniske M, et al. Characterization of the tomato Cf-4 gene for resistance to Cladosporium fulvum identifies sequences that determine recognitional specificity of Cf-4 and Cf-9. Plant Cell 1997;9:2209–2224.

    PubMed  CAS  Google Scholar 

  34. Lauge R, Joosten MHAJ, Haanstra JPW, et al. Successful search for a resistance gene in tomato targeted against a virulence factor of a fungal pathogen. Proc Natl Acad Sci USA 1998;95:9014–9018.

    Article  PubMed  CAS  Google Scholar 

  35. Kawchuk LM, Hachey J, Lynch DR, et al. Tomato Ve disease resistance genes encode cell surface-like receptors. Proc Natl Acad Sci USA 2001; online.

    Google Scholar 

  36. Xiao SY, Ellwood S, Calis O, et al. Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 2001;291:118–120.

    Article  PubMed  CAS  Google Scholar 

  37. Cai DG, Kleine M, Kifle S, et al. Positional cloning of a gene for nematode resistance in sugar beet. Science 1997;275:832–834.

    Article  PubMed  CAS  Google Scholar 

  38. Jones DA, Jones JDG. The role of leucine-rich repeat proteins in plant defenses. Adv Bot Res 1997;24:89–167.

    Article  Google Scholar 

  39. Marcotte EM. Computational genetics: finding protein function by nonhomology methods. Curr Opinion Struct Biol 2000;10:359–365.

    Article  CAS  Google Scholar 

  40. Clark SE, Williams RW, Meyerowitz EM. The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 1997;89:575–585.

    Article  PubMed  CAS  Google Scholar 

  41. Li JM, Chory J. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 1997;90:929–938.

    Article  PubMed  CAS  Google Scholar 

  42. Gómez-Gómez L, Boller T. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 2000;5:1003–1011.

    Article  PubMed  Google Scholar 

  43. Jeong S, Trotochaud AE, Clark SE. The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase. Plant Cell 1999;11:1925–1933.

    PubMed  CAS  Google Scholar 

  44. Aliprantis AO, Yang RB, Weiss DS, Godowski P, Zychlinsky A. The apoptotic signaling pathway activated by Toll-like receptor-2. EMBO J 2000;19:3325–3336.

    Article  PubMed  CAS  Google Scholar 

  45. Aliprantis AO, Yang RB, Mark MR, et al. Cell activation and apoptosis by bacterial lipoproteins through Toll-like receptor-2. Science 1999;285:736–739.

    Article  PubMed  CAS  Google Scholar 

  46. Salmeron JM, Barker SJ, Carland FM, Mehta AY, Staskawicz BJ. Tomato mutants altered in bacterial disease resistance provide evidence for a new locus controlling pathogen recognition. Plant Cell 1994;6:511–520.

    PubMed  CAS  Google Scholar 

  47. Salmeron JM, Oldroyd GE, Rommens CM, et al. Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell 1996;86:123–133.

    Article  PubMed  CAS  Google Scholar 

  48. Inohara N, Ogura Y, Chen FF, Muto A, Nunez G. Human Nod 1 confers responsiveness to bacterial lipopolysaccharides. J Biol Chem 2001;276:2551–2554.

    Article  PubMed  CAS  Google Scholar 

  49. Loh YT, Zhou JM, Martin GB. The myristylation motif of Pto is not required for disease resistance. Mol Plant Microbe Interact 1998;11:572–576.

    Article  PubMed  CAS  Google Scholar 

  50. Loh YT, Martin GB. The disease-resistance gene Pto and the fenthion-sensitivity gene Fen encode closely related functional protein kinases. Proc Natl Acad Sci USA 1995;92:181–4184.

    Google Scholar 

  51. Rommens CMT, Salmeron JM, Baulcombe DC, Staskawicz BJ. Use of a gene expression system based on potato virus X to rapidly identify and characterize a tomato Pto homolog that controls fenthion sensitivity. Plant Cell 1995;7:249–257.

    PubMed  CAS  Google Scholar 

  52. Salmeron JM, Staskawicz BJ. Molecular characterization and hrp dependence of the avirulence gene avrPto from Pseudomonas syringae pv. tomato. Mol Gen Genet 1993;239:6–16.

    PubMed  CAS  Google Scholar 

  53. Shan LB, Thara VK, Martin GB, Zhou JM, Tang XY. The Pseudomonas AvrPto protein is differentially recognized by tomato and tobacco and is localized to the plant plasma membrane. Plant Cell 2000;12:2323–2337.

    PubMed  CAS  Google Scholar 

  54. Lawrence GJ, Finnegan EJ, Ayliffe MA, Ellis JG. The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N. Plant Cell 1995;7:1195–1206.

    PubMed  CAS  Google Scholar 

  55. Anderson PA, Lawrence GJ, Morrish BC, et al. Inactivation of the flax rust resistance gene M associated with loss of a repeated unit within the leucine-rich repeat coding region. Plant Cell 1997;9:641–651.

    PubMed  CAS  Google Scholar 

  56. Bent AF, Kunkel BN, Dahlbeck D, et al. RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of disease resistance genes. Science 1994;265:1856–1860.

    Article  PubMed  CAS  Google Scholar 

  57. Mindrinos M, Katagiri F, Yu GL, Ausubel FM. The A. thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats. Cell 1994;78:1089–1099.

    Article  PubMed  CAS  Google Scholar 

  58. Simons G, Groenendijk J, Wijbrandi J, et al. Dissection of the Fusarium 12 gene cluster in tomato reveals six homologs and one active gene copy. Plant Cell 1998;10:1055–1068.

    PubMed  CAS  Google Scholar 

  59. Milligan SB, Bodeau J, Yaghoobi J, et al. The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 1998;10:1307–1319.

    PubMed  CAS  Google Scholar 

  60. Vos P, Simons G, Jesse T, et al. The tomato Mi-1 gene confers resistance to both root-knot nematodes and potato aphids. Nature Biotechnol 1998;16:1365–1369.

    Article  CAS  Google Scholar 

  61. Meyers BC, Chin DB, Shen KA, et al. The major resistance gene cluster in lettuce is highly duplicated and spans several megabases. Plant Cell 1998;10:1817–1832.

    PubMed  CAS  Google Scholar 

  62. Meyers BC, Shen KA, Rohani P, Gaut B, Michelmore RW. Receptor-like genes in the major resistance locus of lettuce are subject to divergent selection. Plant Cell 1998;10:1833–1846.

    PubMed  CAS  Google Scholar 

  63. Botella MA, Parker JE, Frost LN, et al. Three gene of the Arabidopsis RPP1 complex resistance locus recognize distinct Peronospora parasitica avirulence determinants. Plant Cell 1998;10:1847–1860.

    PubMed  CAS  Google Scholar 

  64. Grant MR, Godiard L, Straube E, et al. Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science 1995;269:843–846.

    Article  PubMed  CAS  Google Scholar 

  65. Boyes DC, Nam J, Dangl JL. The Arabidopsis thaliana RPM1 disease resistance gene product is a peripheral plasma membrane protein that is degraded coincident with the hypersensitive response. Proc Natl Acad Sci USA 1998;95:15849–15854.

    Article  PubMed  CAS  Google Scholar 

  66. Warren RF, Henk A, Mowery P, Holub E, Innes RW. A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes. Plant Cell 1998;10:1439–1452.

    PubMed  CAS  Google Scholar 

  67. Tamaki S, Dahlbeck D, Staskawicz B, Keen NT. Characterization and expression of two avirulence genes cloned from Pseudomonas syringae pv. glycinea. J Bacteriol 1988;170:4846–4854.

    PubMed  CAS  Google Scholar 

  68. Dangl JL, Ritter C, Gibbon MJ, et al. Functional homologs of the Arabidopsis RPM1 disease resistance gene in bean and pea. Plant Cell 1992;4:1359–1369.

    PubMed  CAS  Google Scholar 

  69. Jenner C, Hitchin E, Mansfield J, et al. Gene-for-gene interactions between Pseudomonas syringae pv. phaseolicola and Phaseolus. Mol Plant Microbe Interact 1991;4:553–562.

    Article  PubMed  CAS  Google Scholar 

  70. Nimchuk Z, Marois E, Kjemtrup S, et al. Eukaryotic fatty acylation drives plasma membrane targeting and enhances function of several type III effector proteins from Pseudomonas syringae. Cell 2000;101:353–363.

    Article  PubMed  CAS  Google Scholar 

  71. Schuler GD, Altschul SF, Lipman DJ. A workbench for multiple alignment construction and analysis. Protein Struct Funct Genet 1991;9:180–190.

    Article  CAS  Google Scholar 

  72. Parniske M, Hammond-Kosack Ke, Goldstein C et al. Novel disease resistance specificities result from sequence exchange between tandemly repeated genes at the Cf-4/9 locus of tomato. Cell 1997;91:821–832.

    Article  PubMed  CAS  Google Scholar 

  73. Noel L, Moores TL, van der Biezen EA, Pronounced intraspecific haplotype divergence at the RPP5 complex disease resistance locus of Arabidopsis. Plant Cell 1999;11:2099–2112.

    PubMed  CAS  Google Scholar 

  74. Collins N, Drake J, Ayliffe M, et al. Molecular characterisation of the maize Rp1 -D rust resistance haplotype and its mutants. Plant Cell 1999;111:1365–1376.

    Google Scholar 

  75. Sun Q, Collins N, Ayliffe M, et al. Recombination between paralogues at the Rpl rust resistance locus in maize. Genetics 2001;158:423–438.

    PubMed  CAS  Google Scholar 

  76. Ellis JG, Lawrence GJ, Luck JE, Dodds PN. Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity. Plant Cell 1999;11:495–506.

    PubMed  CAS  Google Scholar 

  77. Zhou F, Kurth J, Wei F, et al. Cell-autonomous expression of barley Mlal confers race-specific resistance to the powdery mildew fungus via a rar1 -independent signaling pathway. Plant Cell 2001;13:337–350.

    PubMed  CAS  Google Scholar 

  78. Halterman D, Zhou F, Wei F, Wise RP, Schulze-Lefert P. The MLA6 coiled-coil, NBS-LRR protein confers AvrMla6-dependent resistance specificity to BLumeria graminis f. sp. hordei in barley and wheat. Plant J 2001;25:335–348.

    Article  PubMed  CAS  Google Scholar 

  79. Van der Hoorn RAL, Roth R, De Wit PJGM. Identification of distinct specificity determinants in resistance protein cf-4 allows construction of a cf-9 mutant that confers recognition of avirulence protein avr4. Plant Cell 2001;13:273–285.

    PubMed  Google Scholar 

  80. Wulff BBH, Thomas CM, Smoker M, Grant M, Jones JDG. Domain swapping and gene shuffling identify sequences required for induction of an avr-dependent hypersensitive response by the tomato cf-4 and cf-9 proteins. Plant Cell 2001;13:255–272.

    PubMed  CAS  Google Scholar 

  81. Kobe B, Diesenhofer J. The leucine-rich repeat: a versatile binding motif. Trends Biol Sci 1994;19:415–421.

    Article  CAS  Google Scholar 

  82. Dodds PN, Lawrence GJ, Ellis JG. Six amino acid changes confined to the leucine-rich repeat 1βstrand/β-turn motif determine the difference between the P and P2 rust resistance specificities n flax. Plant Cell 2001;13:163–178.

    PubMed  CAS  Google Scholar 

  83. Luck JE, Lawrence GJ, Dodds PN, Shepherd KW, Ellis JG. Regions outside of the leucine-rich repeats of flax rust resistance proteins have a role in specificity determination. Plant Cell 2000;12:1367–1378.

    PubMed  CAS  Google Scholar 

  84. Hughes AL. Origin and evolution of HLA class-I pseudogenes. Mol Biol Evol 1995;12:247–258.

    PubMed  CAS  Google Scholar 

  85. Dodds PN, Lawrence G, Pryor T, Ellis J. Genetic analysis and evolution of plant disease resistance genes. In: Dickinson M, Beynon J (eds.). Molecular Plant Pathology. Sheffield: Sheffield Academic Press, 2000, pp. 88–107.

    Google Scholar 

  86. Scofield SR, Tobias CM, Rathgen JP, et al. Molecular basis of gene-for-gene specificity on bacterial speck disease of tomato. Science 1996;274:2063–2065.

    Article  PubMed  CAS  Google Scholar 

  87. Tang X, Frederick RD, Zhou J, et al. Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase. Science 1996;274:2060–2063.

    Article  PubMed  CAS  Google Scholar 

  88. Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J 2000;19:4004–4014.

    Article  PubMed  CAS  Google Scholar 

  89. Leister RT, Katagiri F. A resistance gene product of the nucleotide binding site leucine rich repeats class can form a complex with bacterial avirulence proteins in vivo. Plant J 2000;22:345–354.

    Article  PubMed  CAS  Google Scholar 

  90. van der Biezen EA, Jones JD. Plant disease-resistance proteins and the gene-for-gene concept. Trends Biochem Sci 1998;23:454–456.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Ellis, J.G., Jones, D.A. (2003). Plant Disease Resistance Genes. In: Ezekowitz, R.A.B., Hoffmann, J.A. (eds) Innate Immunity. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-320-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-320-0_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9746-5

  • Online ISBN: 978-1-59259-320-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics